CN103234980B - 一种基于机器视觉的在线织物瑕疵检测与报警系统 - Google Patents

一种基于机器视觉的在线织物瑕疵检测与报警系统 Download PDF

Info

Publication number
CN103234980B
CN103234980B CN201210294940.7A CN201210294940A CN103234980B CN 103234980 B CN103234980 B CN 103234980B CN 201210294940 A CN201210294940 A CN 201210294940A CN 103234980 B CN103234980 B CN 103234980B
Authority
CN
China
Prior art keywords
video
online
fabric
flaw
stamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210294940.7A
Other languages
English (en)
Other versions
CN103234980A (zh
Inventor
胡剑凌
曹洪龙
张达奇
衡杰
彭婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201210294940.7A priority Critical patent/CN103234980B/zh
Publication of CN103234980A publication Critical patent/CN103234980A/zh
Application granted granted Critical
Publication of CN103234980B publication Critical patent/CN103234980B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明提出了一种基于机器视觉的在线织物瑕疵检测与报警系统,选用高清晰度和高速的摄像头获取织物在线视频,获取的在线视频通过视频AD数字化处理后,由视频处理器进行采集和预处理,并通过视频处理器输出到视频终端;视频由主处理器进行智能视频处理,采用多模式自适应瑕疵检测方法进行瑕疵的检测;如发现存在瑕疵,主处理器通知控制设备停止机器生产,并报警;如出现误检,通过系统的人机交互接口界面通知织物生产设备继续生产,否则停止生产来减少出现瑕疵的织物量。本发明的基于机器视觉的在线织物瑕疵检测与报警系统,引入在线视频检测的方法,并采用多模式自适应瑕疵检测方式,提高瑕疵识别效率,降低次品率。

Description

一种基于机器视觉的在线织物瑕疵检测与报警系统
技术领域
本发明属于检测系统领域,具体涉及一种基于机器视觉的在线织物瑕疵检测与报警系统。
背景技术
在纺织行业中,织物产品的瑕疵检测占有重要地位。提高织物瑕疵检测检测的准确率和效率,将有助于整个产品的顾客满意度和产品的整体效益。一般来说,有织物瑕疵造成织物成为残次品后,其价值将降低40%~50%,甚至更低。目前,织物瑕疵检测主要有一下两种方式:
人工检测,主要靠人的视觉来进行瑕疵检测,该方法主要是人力消耗大,瑕疵检测效率低,而且由于人的视觉疲劳等原因存在一定的漏检率。
自动检测方法,主要采用现代检测技术和图像处理技术结合,高速进行织物瑕疵检测,效率高。
但目前上述两种方法主要用于生产出的织物进行检测,定性,即仅能给出织物是否存在瑕疵,不能干预织物生产。
发明内容
为了解决上述存在的不足问题,本发明旨在提供一种基于机器视觉的在线织物瑕疵检测与报警系统,降低织物瑕疵率,降低生产成本。
为实现上述发明目的,本发明所采用的技术方案是:
本发明的基于机器视觉的在线织物瑕疵检测与报警系统,选用高清晰度和高速的摄像头获取织物在线视频,获取的在线视频通过视频AD数字化处理后,由视频处理器进行采集和预处理,并通过视频处理器输出到视频终端;采集的视频由主处理器进行智能视频处理,采用多模式自适应瑕疵检测方法进行瑕疵的检测;如果发现存在瑕疵,主处理器通知控制设备停止机器生产,并通过报警模块向生产人员进行报警;如果出现误检,通过系统的人机交互接口界面通知织物生产设备继续生产,否则停止生产来减少出现瑕疵的织物量。
优选的,所述检测与报警系统主要采用高速摄像头进行视频获取,转换成数字视频后由视频预处理模块进行预处理,主要包括图像颜色空间转换、图像隔行/逐行扫描转换、图像增强、直方图计算、感兴趣区域提取等处理;然后通过主控模块对预处理后的视频进行采集,一方面可以进行视频输出,另一方面可以将数据暂存于双口DARAM中,实现与信号处理模块共享采集的视频。
进一步的,所述信号处理模块可以进行常见的织物瑕疵检测,主要包括破洞、跳花或跳纱、经缩、双经等等常见瑕疵的检测,同时可以进行印花瑕疵的检测。
更进一步的,在进行印花瑕疵检测之前,所述信号处理模块对印花进行训练和识别,然后可以根据印花特征进行印花瑕疵检测。
更进一步的,所述主控模块包括配置是否启用印花瑕疵检测、印花特征提取、印花特征识别等功能。
更进一步的,在检测人员发现系统出现误检,可以通过继续检测功能接口通知监控系统继续进行检测,主控模块通过控制接口通知产线继续生产并立刻结束报警。所述继续检测功能接口可以通过外接按键实现,也可以通过主控制模块的配置功能模块进行控制。
优选的,所述主控模块主要通过网络接口、无线接口和USB接口实现系统的配置功能;在信号处理模块中,提供训练学习功能接口。
相对于现有技术,本发明的基于机器视觉的在线织物瑕疵检测与报警系统,具有以下有益的技术效果:
本发明的一种基于机器视觉的在线织物瑕疵检测与报警系统,主要采用智能视频处理方法在织物生产线上进行在线的实时织物瑕疵检测。当发现有织物存在瑕疵时,立刻停止织物生产并报警等待处理,从而将损失降到最小。注意,系统应具有一定的容错性,即当出现误检时,可以恢复生产,误检率要控制在1%以下。
1)在织物瑕疵检测方法中,引入在线视频检测的方法,在生产过程中及时发现织物瑕疵,及时停止织物产线生产,从而降低织物次品率。
2)系统采用多模式自适应瑕疵检测方式,可以自适应的检测各种常见织物瑕疵,并可以进行印花瑕疵检测,提高瑕疵识别效率,降低次品率。
3)引入织物印花的训练和识别功能,可以识别织物印花的瑕疵,可以识别织物印花的瑕疵率,从而降低织物次品率。
4)在训练和识别功能中,具有自主学习和辅助学习两种功能,可以在系统通用功能的基础上,根据具体问题进行自主学习和辅助学习,提高系统的专用性,最终提高系统的瑕疵识别效率,降低织物次品率。
附图说明
图1为本发明的一种基于机器视觉的在线织物瑕疵检测与报警系统的织物瑕疵在线检测系统框图。
    图2为本发明的一种基于机器视觉的在线织物瑕疵检测与报警系统的系统
硬件模块示意图。
具体实施方式
以下结合附图详细描述本发明的基于机器视觉的在线织物瑕疵检测与报警系统的体系结构,但不构成对本发明的限制。
本发明的一种基于机器视觉的在线织物瑕疵检测与报警系统如图1所示。在织物布匹正在生产的过程中,选用高清晰度和高速的摄像头获取织物在线视频。获取的在线视频通过视频AD数字化处理后,由视频处理器进行采集和预处理,并可以通过视频处理器输出到视频终端,如液晶显示器等。采集的视频由主处理器进行智能视频处理,主要包括视频特征提取,常见瑕疵检测(采用多模式自适应瑕疵检测方法),印花瑕疵检测等功能。为提高系统识别的准确率,系统提供辅助学习能力,即可以人工将要检测的瑕疵作为输入进行训练学习,在原有的通用瑕疵知识的基础上加入特定情况的瑕疵知识,从而使系统具有专用化特征。如果发现存在瑕疵,主处理器将通知控制设备停止机器生产,并通过报警模块向生产人员进行报警。如果出现误检,可以通过系统的人机交互接口界面通知织物生产设备继续生产,否则停止生产来减少出现瑕疵物品的量,从而提高产品质量和合格率、降低残次品总量(长度减少)。系统具有自主学习能力,将根据用户的操作(确认瑕疵或拒绝误检)将经验知识进行训练学习,从而提高瑕疵的识别率和降低瑕疵误检率。
为了实现在线的织物瑕疵检测与监控系统系统,其硬件系统方案设计主要如图2所示。系统主要采用高速摄像头进行视频获取,转换成数字视频后由视频预处理模块进行预处理,主要包括图像颜色空间转换、图像隔行/逐行扫描转换、图像增强、直方图计算、感兴趣区域提取等处理。主控模块对预处理的视频进行采集,一方面可以进行视频输出,一方面可以将数据暂存于双口DARAM中,从而实现与信号处理模块共享采集的视频。信号处理模块可以进行常见的织物瑕疵检测,主要包括破洞、跳花或跳纱、经缩、双经等等常见瑕疵的检测,同时可以进行印花瑕疵的检测。在进行印花瑕疵检测之前,必须对印花进行训练和识别,然后才能根据印花特征进行印花瑕疵检测。是否启用印花瑕疵检测、印花特征提取、印花特征识别功能需要由主控制模块进行配置生效。主控制模块也可以配置信号处理模块对输入视频进行压缩处理,然后进行存储或传输。如果发现瑕疵,信号处理模块将实时通知主控制模块,主控制模块将通过控制接口通知织物产线暂停生产工作,同时通过报警模块进行报警。如果检测人员发现系统出现误检,可以通过“继续检测功能接口”通知监控系统继续进行检测,此时主控制模块会通过控制接口通知产线继续生产并立刻结束报警。“继续检测功能接口”可以通过外接按键实现,也可以通过主控制模块的配置功能模块进行控制。主控制模块主要通过网络接口、无线接口和USB接口实现系统的配置功能。在信号处理模块中,提供训练学习功能接口,可以实现辅助学习和自主学习功能,即可以训练学习瑕疵特征,提高瑕疵识别率, 又可以训练学习瑕疵误检时的特征,降低瑕疵误检率,从而在整体上提高系统的瑕疵识别速度和运行效率。
为实现基于视频的在线织物瑕疵检测与监控系统,采用如下软件设计流程:当启动系统后,系统自动载入存储的配置信息,并可以通过人机交互界面输入信息实时更新配置信息。
如果用户配置要求进行训练,系统进入辅助学习功能模块。用户选择进行常见瑕疵训练和印花训练两种辅助学习模式。如果用户配置要求进行花布印花训练,用户会根据视频进行花布印花检测和印花特征提取,存储于用户自定义的印花特征库中。如果用户配置进行常见瑕疵的辅助学习,则系统会根据用户输入信息进行常见瑕疵的特征提取,并存储于用户的自定义常见瑕疵特征库中。
当用户启动系统运行时,系统会根据用户配置信息(是否进行花布印花瑕疵检测)进行功能选择,即如果用户要求进行花布瑕疵检测,则系统会根据最新训练的花布印花特征进行印花是否存在瑕疵的检测。同时,系统将进行常见的织物瑕疵检测。如果检测发现存在瑕疵(常见瑕疵、印花瑕疵),系统将通过控制接口通知织物生产设备暂停织物生产,并同时通过报警模块进行报警。系统等待用户输入进行相应的处理,在处理时将根据用户输入进行自主训练学习,从而提高整个系统的瑕疵识别效率。即如果发现误检,则用户可以通过用户配置接口或者按键(通知继续检测功能接口)通知系统继续进行进行检测,不影响生产。此时,系统将进行自主学习,将误检的特征提取,以备下次遇到同类情况可以排除瑕疵可能性,提高织物生产效率。如果确定存在瑕疵,停止产线生产有助于减少损失,此时系统会进一步进行训练学习,从而增强瑕疵知识库,提高系统的瑕疵识别效率。用户可以配置重新开始进行在线织物瑕疵检测与监控系统。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (5)

1.一种基于机器视觉的在线织物瑕疵检测与报警系统,其特征在于,选用高清晰度和高速的摄像头获取织物在线视频,获取的在线视频通过视频AD数字化处理后,由视频处理器进行采集和预处理,并通过视频处理器输出到视频终端;采集的视频由主处理器进行智能视频处理,采用多模式自适应瑕疵检测方法进行瑕疵的检测;如果发现存在瑕疵,主处理器通知控制设备停止机器生产,并通过报警模块向生产人员进行报警;如果出现误检,通过系统的人机交互接口界面通知织物生产设备继续生产,否则停止生产来减少出现瑕疵的织物量;所述检测与报警系统主要采用高速摄像头进行视频获取,转换成数字视频后由视频预处理模块进行预处理,主要包括图像颜色空间转换、图像隔行/逐行扫描转换、图像增强、直方图计算、感兴趣区域提取处理;然后通过主控模块对预处理后的视频进行采集,一方面可以进行视频输出,另一方面可以将数据暂存于双口DARAM中,从而实现与信号处理模块共享采集的视频;所述信号处理模块可以进行常见的织物瑕疵检测,主要包括破洞、跳花或跳纱、经缩、双经这些常见瑕疵的检测,同时可以进行印花瑕疵的检测;在进行印花瑕疵检测之前,所述信号处理模块对印花进行训练和识别,然后可以根据印花特征进行印花瑕疵检测。
2.根据权利要求 1 所述的基于机器视觉的在线织物瑕疵检测与报警系统,其特征在于,所述主控模块包括配置是否启用印花瑕疵检测、印花特征提取、印花特征识别这些功能。
3.根据权利要求1 所述的基于机器视觉的在线织物瑕疵检测与报警系统,其特征在于,在检测人员发现系统出现误检后,可以通过继续检测功能接口通知监控系统继续进行检测,主控模块通过控制接口通知产线继续生产并立刻结束报警。
4.根据权利要求 3 所述的基于机器视觉的在线织物瑕疵检测与报警系统,其特征在于,所述继续检测功能接口可以通过外接按键实现,也可以通过主控制模块的配置功能模块进行控制。
5.根据权利要求1 所述的基于机器视觉的在线织物瑕疵检测与报警系统,其特征在于,所述主控模块主要通过网络接口、无线接口和USB接口实现系统的配置功能;在信号处理模块中,提供训练学习功能接口。
CN201210294940.7A 2012-08-20 2012-08-20 一种基于机器视觉的在线织物瑕疵检测与报警系统 Expired - Fee Related CN103234980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210294940.7A CN103234980B (zh) 2012-08-20 2012-08-20 一种基于机器视觉的在线织物瑕疵检测与报警系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210294940.7A CN103234980B (zh) 2012-08-20 2012-08-20 一种基于机器视觉的在线织物瑕疵检测与报警系统

Publications (2)

Publication Number Publication Date
CN103234980A CN103234980A (zh) 2013-08-07
CN103234980B true CN103234980B (zh) 2015-07-29

Family

ID=48883031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210294940.7A Expired - Fee Related CN103234980B (zh) 2012-08-20 2012-08-20 一种基于机器视觉的在线织物瑕疵检测与报警系统

Country Status (1)

Country Link
CN (1) CN103234980B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451846B (zh) * 2013-09-13 2015-11-18 福州大学 一种基于计算机视觉的坯布断纱在线检测方法与系统
CN104749181A (zh) * 2013-12-27 2015-07-01 波司登羽绒服装有限公司 一种识别面料疵点的检验面料系统
CN104346807A (zh) * 2014-06-05 2015-02-11 苏州大学 基于机器视觉的在线织物瑕疵检测与报警系统的检测方法
CN104535573B (zh) * 2015-01-24 2018-09-28 安徽索科机电科技有限公司 一种基于机器视觉的袜品编织纹理在线检测装置和方法
CN105699392B (zh) * 2016-01-11 2018-08-21 深圳市麦克斯泰有限公司 智能验布机及其验布方法
CN105928887A (zh) * 2016-04-21 2016-09-07 广西吉然科技有限公司 通过高清摄像在线检测产品色值的系统及方法
CN107643297B (zh) * 2017-08-08 2018-07-20 广州森展纺织品有限公司 一种实时监测纺织品质量的方法
CN108760750A (zh) * 2018-05-24 2018-11-06 安徽富煌科技股份有限公司 一种多模式布匹瑕疵实时检测设备
CN110097538A (zh) * 2019-04-17 2019-08-06 江南大学 一种织机在线验布装置及疵点识别方法
CN110286131A (zh) * 2019-07-09 2019-09-27 安徽富煌科技股份有限公司 一种纺织品瑕疵自动检测分析提示系统及方法
CN111830052A (zh) * 2020-06-01 2020-10-27 涡阳县沪涡多孔矸石砖有限公司 一种用于空心砖的瑕疵检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158650A (zh) * 2007-11-09 2008-04-09 无锡东望科技有限公司 机器视觉系统对印花布瑕疵的在线检测方法
CN101315337A (zh) * 2008-07-07 2008-12-03 湖北工业大学 一种坯布表面疵点在线检测装置
CN101334367A (zh) * 2008-06-19 2008-12-31 何峰 基于计算机图形识别原理的印染产品在线品质监测方法
CN201540259U (zh) * 2009-04-24 2010-08-04 大连恒为电子有限公司 纺织品在线疵点检测仪
CN102175692A (zh) * 2011-03-17 2011-09-07 嘉兴学院 织物坯布疵点快速检测系统及方法
CN102221559A (zh) * 2011-03-05 2011-10-19 河海大学常州校区 基于机器视觉的织物疵点在线自动检测方法及其装置
CN102262093A (zh) * 2010-05-24 2011-11-30 张爱明 基于机器视觉的印花机在线检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158650A (zh) * 2007-11-09 2008-04-09 无锡东望科技有限公司 机器视觉系统对印花布瑕疵的在线检测方法
CN101334367A (zh) * 2008-06-19 2008-12-31 何峰 基于计算机图形识别原理的印染产品在线品质监测方法
CN101315337A (zh) * 2008-07-07 2008-12-03 湖北工业大学 一种坯布表面疵点在线检测装置
CN201540259U (zh) * 2009-04-24 2010-08-04 大连恒为电子有限公司 纺织品在线疵点检测仪
CN102262093A (zh) * 2010-05-24 2011-11-30 张爱明 基于机器视觉的印花机在线检测方法
CN102221559A (zh) * 2011-03-05 2011-10-19 河海大学常州校区 基于机器视觉的织物疵点在线自动检测方法及其装置
CN102175692A (zh) * 2011-03-17 2011-09-07 嘉兴学院 织物坯布疵点快速检测系统及方法

Also Published As

Publication number Publication date
CN103234980A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103234980B (zh) 一种基于机器视觉的在线织物瑕疵检测与报警系统
CN104346807A (zh) 基于机器视觉的在线织物瑕疵检测与报警系统的检测方法
CN111552243B (zh) 一种智能纺纱打包生产线故障检测系统
CN105444891A (zh) 一种基于机器视觉的纱线印染色差检测系统
CN103911702A (zh) 纱线断头监测装置
CN103605350A (zh) 一种智能冰箱远程故障提醒系统及提醒方法
CN205538710U (zh) 一种基于机器视觉的电感质量自动检测系统
CN107995255A (zh) 一种远程监控智能柜的方法及其系统
CN109881356B (zh) 基于svm图像分类的袜机织针在线检测装置及方法
CN107675308A (zh) 一种基于plc控制器的单锭监测控制系统
CN112777489B (zh) 基于ai分析的起重机起吊过程安全监测报警系统及方法
CN108803517A (zh) 一种酒类灌装机产速的智能化调节系统及其方法
CN112485263A (zh) 一种基于机器视觉的pe纤维纱线质量在线检测设备及方法
CN106093052A (zh) 一种断纱检测方法
CN112153150A (zh) 一种适用于工业互联网的工业现场监测方法
CN202700832U (zh) 一种生产过程中的残次品的动态识别装置
CN115100562A (zh) 基于视频图像及深度学习的设备线路智能监测系统及方法
CN104562331B (zh) 一种双模式纱线质量检测控制方法
CN202705616U (zh) 赛络纺巡回式纱线断头检测装置
CN110632084A (zh) 一种基于传感器的产品质量检测系统
CN204314230U (zh) 一种用于高压线缆的破损检测装置
CN201897572U (zh) 一种玻璃破边检测系统
CN102864559A (zh) 一种基于视频信号处理的断纱检测方法
CN112398219A (zh) 电厂智能监盘方法、系统及电子设备
CN207468804U (zh) 一种基于plc控制器的单锭监测控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

Termination date: 20200820

CF01 Termination of patent right due to non-payment of annual fee