CN103226642A - 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法 - Google Patents

基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法 Download PDF

Info

Publication number
CN103226642A
CN103226642A CN2013101776195A CN201310177619A CN103226642A CN 103226642 A CN103226642 A CN 103226642A CN 2013101776195 A CN2013101776195 A CN 2013101776195A CN 201310177619 A CN201310177619 A CN 201310177619A CN 103226642 A CN103226642 A CN 103226642A
Authority
CN
China
Prior art keywords
contact pressure
contact
parameter
contactor
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101776195A
Other languages
English (en)
Other versions
CN103226642B (zh
Inventor
梁慧敏
周志凯
彭飞
李哲
马晋川
翟国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Zhenhua Qunying Electrical Appliances Co.,Ltd.
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310177619.5A priority Critical patent/CN103226642B/zh
Publication of CN103226642A publication Critical patent/CN103226642A/zh
Application granted granted Critical
Publication of CN103226642B publication Critical patent/CN103226642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,属于接触器检测技术领域。本发明解决了现有接触器设计过程中对接触压力参数进行检验的方法存在的需要加工制作样品导致设计和测试成本高和设计周期长的问题。本发明根据接触器设计文件确定对接触压力有影响的三种参数设计值及上下限、采用独立同分布的中心极限定理利用MATLAB产生N组参数组合;然后根据该N组参数组合获得N组接触压力特性参数;进而获得接触压力参数的分布特性;最后根据该分布特性和接触器的触头接触压力设计参数利用Simpson法则获得接触器接触压力合格率。本发明适用于在接触器的设计环节对接触器接触压力的合格率进行预测分析,进而为接触器的设计者提供修正设计参数的依据。

Description

基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法
技术领域
本发明属于接触器领域,涉及一种触头接触压力合格率计算方法,具体说就是基于蒙特卡洛模拟的接触器触头接触压力合格率分析方法。
背景技术
触头接触压力是接触器最重要的基本参数,是决定接触器通断电流能力的重要因素,可直接根据该参数决定接触器是否合格。但在实际的产品开发中,由于现实机构的复杂性,各种参数包括尺寸参数、设计参数和调整参数都会对接触压力产生一定的影响,因此需要在设计阶段确定影响该参数的主要因素,并能通过一定的方式方法在实际产品生产前就模拟计算其接触压力的合格率,从而通过改变部分因素的容差范围控制接触压力的合格率,使接触器的生产效益达到最大。
在现有接触器的设计过程中,是在接触器的设计图纸处理来之后,根据设计图纸加工制作出多个样品,然后对制作出来的多个样品采用测试设备进行触头接触压力的测试,进而才能够验证设计的参数是否合理,如果不合理,就需要修改图纸,然后重新加工制作样品、再做实验,这就导致了设计周期延长以及设计和测试成本比较高。
发明内容
本发明的目的在于解决现有接触器的设计过程中,需要根据设计图纸将样品制作出来才能够对触头接触压力的参数进行检验的方法存在设计周期长以及加工制作样品导致设计和测试成本高的问题,本发明提供一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法。
本发明所述的基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的步骤如下:
步骤一:根据设计文件和工艺图纸获得接触器的尺寸参数设计值、设计参数设计值和调整参数设计值及每个参数的容差范围,根据独立同分布的中心极限定理利用MATLAB产生N组在容差范围内变化并符合正态分布的尺寸参数、设计参数和调整参数三类参数组合,参数N为大于等于1000的整数;
步骤二:将以上N组三类参数组合依次作为接触器触头接触压力获取模块的输入参数,获得N组触头接触压力特性参数;
步骤三:对获得的N组触头接触压力参数进行分析,计算获得概率密度函数、参数期望和均方差,进而获得N组触头接触压力参数的分布特性;
步骤四:根据接触器的设计参数中的性能指标要求确定触头接触压力判别界限,利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率。
所述接触器触头接触压力获取模块采用软件技术实现,该模块的工作过程包括如下为步骤:
步骤A、设置接触器模型计算参数初始化特性参数;
步骤B、由前一时刻线圈电压、电流和磁链积分获得当前时刻磁链;
步骤C、由线圈磁链、衔铁位移查对照表获得线圈电流;
步骤D、由步骤C获得的线圈电流、衔铁位移查对照表获得电磁吸力;
步骤E、由衔铁位移计算机械弹簧反力
f=k·x+cd·v
公式中k、cd分别表示弹簧刚度和弹簧阻尼,x、v分别表示弹簧的衔铁位移和衔铁速度;
步骤F、采用四阶龙格-库塔法求解机械运动微分方程组,所述机械运动微分方程组为:
Y n + 1 = Y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) K 1 = G ( t n , Y n ) K 2 = G ( t n + 1 2 h , Y n + h 2 K 1 ) K 3 = G ( t n + 1 2 h , Y n + h 2 K 2 ) K 4 = G ( t n + h , Y n + hK 3 )
所述Y表示衔铁位移、速度列向量,表达式为Y=(x,v)T;下脚标n表示采样时刻;
tn表示n时刻对应的时间;
G表示衔铁速度、加速度列向量,表达式为v表示衔铁速度,F表示电磁吸力;f表示反力;m表示衔铁质量;
G(tn,Yn)中tn和Yn为上述表达式的自变量;
h表示计算时间步长;
步骤G、保存步骤F的计算结果数据、并从所述计算结果数据中提取触头接触压力特性参数,并根据设计文件中的触头接触压力的允许范围获得触头接触压力合格率。
所述对照表是接触器的线圈磁链关于线圈电流和衔铁位移的二维表,该对照表是通过下述步骤获得的:
步骤H、根据接触器的电磁机构的设计图纸在UG软件中建立电磁机构三维模型;
步骤I、通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链;
步骤J、根据步骤I获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链参数构建对照表。
步骤I所述的通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈磁链、线圈电流和衔铁位移的过程为:
步骤I1、采用有限元软件FLUX根据电磁机构的三维模型建立几何模型,并对该几何模型划分有限元网格;
步骤I2、根据电磁机构的实际物理特性设置步骤I1中各个有限元网格的物理属性;
步骤I3、对设置完物理属性的几何模型进行静态特性仿真,仿真时输入多组的线圈电流值和对应的尺寸参数,所述电流值由电压除以接触器的设计参数中的线圈电阻获得;通过仿真获得每组线圈电流值和尺寸参数对应的衔铁位移、电磁吸力和磁链。
步骤四中所述的利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率的过程为:首先计算得到N组触头接触压力数据的期望和方差,然后根据已有的触头接触压力合格范围确定Simpson法则计算所需上下限值,最后采用所述法则在上下限值内积分获得接触器触头接触压力合格率。
本发明的方法应用于接触器的设计环节,能够在设计环节就对其参数的合理性进行定量的评估和判断,在缩短试制周期、降低测试成本的同时,提高产品的可靠性。
本发明所述的方法适用于在接触器设计阶段对接触器触头接触压力的合格率进行预测分析,进而为接触器的设计者提供修正设计参数的依据。
本方法是基于蒙特卡洛模拟而提出的,蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量,进而研究其分布特征的方法。蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
本发明在接触器的设计阶段,根据工艺图纸提供的尺寸参数、设计参数和调整参数容差范围,利用蒙特卡洛模拟法的思想近似得到接触器触头接触压力合格率,可以让生产企业对接触器的制造有一个全局的把握,同时为进一步提高接触器合格率奠定基础。
附图说明
图1为本发明所述方法的原理图;图2为接触器触头接触压力获取模块的工作原理图;图3为某型号接触器结构示意图,其中1为外壳,2为连杆,3为线圈,4为衔铁,5为反力弹簧,6为铁芯,7为轭铁,8为回跳弹簧,9为动触头,10为静触头;图4为某型号接触器触头接触压力分布曲线及判别界限,其中垂直于横坐标的竖线为判别界限。图5是本发明计算获得触头接触压力合格率的原理图。
具体实施方式
具体实施方式一、参见图1说明本实施方式。本实施方式所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,该方法包括如下步骤:
步骤一:根据设计文件和工艺图纸获得接触器的尺寸参数设计值、设计参数设计值和调整参数设计值及每个参数的容差范围,根据独立同分布的中心极限定理利用MATLAB产生N组在容差范围内变化并符合正态分布的尺寸参数、设计参数和调整参数三类参数组合,参数N为大于等于1000的整数;
步骤二:将以上N组三类参数组合依次作为接触器触头接触压力获取模块的输入参数,获得N组触头接触压力特性参数;
步骤三:对获得的N组触头接触压力参数进行分析,计算获得概率密度函数、参数期望和均方差,进而获得N组触头接触压力参数的分布特性;
步骤四:根据接触器的设计参数中的性能指标要求确定触头接触压力判别界限,利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率。
步骤一所述的独立同分布的中心极限定理,即列维一林德伯格定理,是统计学中的中心极限定理的一种特殊形式,在实际中有较广泛应用。
上述独立同分布的中心极限定理在MATLAB中的具体实现方法是在MATLAB中,通过限定期望值和方差的方式,采用随机变量函数Random生成N组数,则该N组数值直接满足列维一林德伯格定理。其中,期望值为设计中心值,而方差则由设计的容差范围确定。
具体实施方式二、参见图2说明本实施方式。本实施方式与具体实施方式一所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的区别在于,所述接触器触头接触压力获取模块采用软件技术实现,该模块的工作过程包括如下为步骤:
步骤A、设置接触器模型计算参数初始化特性参数;
步骤B、由前一时刻线圈电压、电流和磁链积分求当前时刻磁链;
步骤C、由线圈磁链、衔铁位移查对照表获得线圈电流;
步骤D、由步骤C获得的线圈电流、衔铁位移查对照表获得电磁吸力;
步骤E、由衔铁位移计算机械弹簧反力
f=k·x+cd·v
公式中k、cd分别表示弹簧刚度和弹簧阻尼,x、v分别表示弹簧的衔铁位移和衔铁速度;;
步骤F、采用四阶龙格-库塔法求解机械运动微分方程组,所述机械运动微分方程组为:
Y n + 1 = Y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) K 1 = G ( t n , Y n ) K 2 = G ( t n + 1 2 h , Y n + h 2 K 1 ) K 3 = G ( t n + 1 2 h , Y n + h 2 K 2 ) K 4 = G ( t n + h , Y n + hK 3 )
所述Y表示衔铁位移、速度列向量,表达式为Y=(x,v)T;下脚标n表示采样时刻;
tn表示n时刻对应的时间;
G表示衔铁速度、加速度列向量,表达式为
Figure BDA00003187967600052
v表示衔铁速度,F表示电磁吸力;f表示反力;m表示衔铁质量;
G(tn,Yn)中tn和Yn为上述表达式的自变量;
h表示计算时间步长;
步骤G、保存步骤F的计算结果数据、并从所述计算结果数据中提取触头接触压力特性参数,并根据设计文件中的触头接触压力的允许范围获得触头接触压力合格率。
具体实施方式三、本实施方式与具体实施方式二所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的区别在于,所述对照表是接触器的线圈磁链关于线圈电流和衔铁位移的二维表,该对照表是通过下述步骤获得的:
步骤H、根据接触器的电磁机构的设计图纸在UG软件中建立电磁机构三维模型;
步骤I、通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链;
步骤J、根据步骤I获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链参数构建对照表。
具体实施方式四、本实施方式与具体实施方式三所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的区别在于,步骤I所述的通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈磁链、线圈电流和衔铁位移的过程为:
步骤I1、采用有限元软件FLUX根据电磁机构的三维模型建立几何模型,并对该几何模型划分有限元网格;
步骤I2、根据电磁机构的实际物理特性设置步骤I1中各个有限元网格的物理属性;
步骤I3、对设置完物理属性的几何模型进行静态特性仿真,仿真时输入多组的线圈电流值和对应的尺寸参数,所述电流值由电压除以接触器的设计参数中的线圈电阻获得;通过仿真获得每组线圈电流值和尺寸参数对应的衔铁位移、电磁吸力和磁链。
具体实施方式五、本实施方式与具体实施方式一所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的区别在于,步骤四中所述的利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率的过程为:首先计算得到N组触头接触压力数据的期望和方差,然后根据已有的触头接触压力合格范围确定Simpson法则计算所需上下限值,最后采用所述法则在上下限值内积分获得接触器触头接触压力合格率。
参见图5说明本实施方式计算获得触头接触压力合格率的原理,图5中,曲线表示触头接触压力特性曲线,横坐标表示触头接触压力,纵坐标表示概率密度,竖直线表示界限,则根据公式
R = P ( x < y ) = P ( x < x 0 ) = &Integral; - &infin; x 0 F ( x ) dx
即可获得触头接触压力的概率。
具体实施方式六、本实施方式是本发明所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法的一个具体案例,本案例中,所述步骤如下:
步骤一:根据图3所示的某型号接触器结构的设计文件和工艺图纸获得接触器的尺寸参数设计值、设计参数设计值和调整参数设计值及每个参数的容差范围的参数参见表1所示:
表1
代号 意义 范围 设计值
x1 线圈电阻(Ω) 5.50±0.55 5.50
x2 触头开距(mm) 1.30±0.13 1.3
x3 衔铁行程(mm) 2.20±0.06 2.20
x4 回跳弹簧压缩量(mm) 0.45±0.03 0.45
x5 反力弹簧压缩量(mm) 8.54±0.10 8.54
x6 回跳弹簧刚度(kN/m) 16.27±0.30 16.27
x7 反力弹簧刚度(kN/m) 0.250±0.019 0.250
x8 动触头质量(g) 7.74±0.74 7.74
x9 衔铁质量(g) 8.88±0.18 8.88
x10 触头碰撞刚度(109N/m) 4.20±0.84 4.20
x11 触头碰撞惩罚深度(mm) 0.10±0.01 0.10
x12 触头碰撞阻尼(104Ns/m) 3.5±0.7 3.5
根据独立同分布的中心极限定理利用MATLAB产生N组在容差范围内变化并符合正态分布的尺寸参数、设计参数和调整参数三类参数组合,参数N为大于等于1000的整数;
步骤二:将以上N组三类参数组合依次作为接触器触头接触压力获取模块的输入参数,获得N组触头接触压力特性参数;步骤三:对获得的N组触头接触压力参数进行分析,计算获得概率密度函数、参数期望和均方差,进而获得N组触头接触压力参数的分布特性为N(20.3375,16);
步骤四:根据接触器的设计参数中的性能指标要求确定触头接触压力判别界限为大于10N的为合格产品,利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率,如图4所示,图中曲线为触头吸和时间分布曲线,与横坐标垂直的竖线为压力为10N的判别界限,利用Simpson法则计算接触器触头接触压力合格率为99.51%。

Claims (5)

1.一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,其特征在于该方法包括如下步骤:
步骤一:根据设计文件和工艺图纸获得对接触器的触头接触压力有影响的尺寸参数设计值、设计参数设计值和调整参数设计值及每个参数的容差范围,根据独立同分布的中心极限定理利用MATLAB产生N组在容差范围内变化并符合正态分布的尺寸参数、设计参数和调整参数三类参数组合,参数N为大于等于1000的整数;
步骤二:将以上N组三类参数组合依次作为接触器触头接触压力获取模块的输入参数,获得N组触头接触压力特性参数;
步骤三:对获得的N组触头接触压力参数进行分析,计算获得概率密度函数、参数期望和均方差,进而获得N组触头接触压力参数的分布特性;
步骤四:根据接触器的设计参数中的性能指标要求确定触头接触压力判别界限,利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率。
2.根据权利要求1所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,其特征在于,所述接触器触头接触压力获取模块采用软件技术实现,该模块的工作过程包括如下为步骤:
步骤A、设置接触器模型计算参数初始化特性参数;
步骤B、由前一时刻线圈电压、电流和磁链积分求当前时刻磁链;
步骤C、由线圈磁链、衔铁位移查对照表获得线圈电流;
步骤D、由步骤C获得的线圈电流、衔铁位移查对照表获得电磁吸力;
步骤E、由衔铁位移计算机械弹簧反力
f=k·x+cd·v
公式中k、cd分别表示弹簧刚度和弹簧阻尼,x、v分别表示弹簧的衔铁位移和衔铁速度;
步骤F、采用四阶龙格-库塔法求解机械运动微分方程组,所述机械运动微分方程组为:
Y n + 1 = Y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) K 1 = G ( t n , Y n ) K 2 = G ( t n + 1 2 h , Y n + h 2 K 1 ) K 3 = G ( t n + 1 2 h , Y n + h 2 K 2 ) K 4 = G ( t n + h , Y n + hK 3 )
所述Y表示衔铁位移、速度列向量,表达式为Y=(x,v)T;下脚标n表示采样时刻;
tn表示n时刻对应的时间;
G表示衔铁速度、加速度列向量,表达式为F表示电磁吸力;m表示衔铁质量;
G(tn,Yn)中tn和Yn为上述表达式的自变量;
h表示计算时间步长;
步骤G、保存步骤F的计算结果数据、并从所述计算结果数据中提取触头接触压力特性参数,完成触头接触压力特性参数的获取。
3.根据权利要求2所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,其特征在于,所述对照表是接触器的线圈磁链关于线圈电流和衔铁位移的二维表,该对照表是通过下述步骤获得的:
步骤H、根据接触器的电磁机构的设计图纸在UG软件中建立电磁机构三维模型;
步骤I、通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链;
步骤J、根据步骤I获得多组接触器的线圈电流、衔铁位移、电磁吸力和磁链参数构建对照表。
4.根据权利要求3所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,其特征在于,步骤I所述的通过软件有限元软件FLUX根据电磁机构的三维模型,计算获得多组接触器的线圈磁链、线圈电流和衔铁位移的过程为:
步骤I1、采用有限元软件FLUX根据电磁机构的三维模型建立几何模型,并对该几何模型划分有限元网格;
步骤I2、根据电磁机构的实际物理特性设置步骤I1中各个有限元网格的物理属性;
步骤I3、对设置完物理属性的几何模型进行静态特性仿真,仿真时输入多组的线圈电流值和对应的尺寸参数,所述电流值由电压除以接触器的设计参数中的线圈电阻获得;通过仿真获得每组线圈电流值和尺寸参数对应的衔铁位移、电磁吸力和磁链。
5.根据权利要求1所述的一种基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法,其特征在于,步骤四中所述的利用Simpson法则根据步骤三获得的N组触头接触压力参数的分布特性计算接触器触头接触压力合格率的过程为:
首先计算得到N组触头接触压力数据的期望和方差,然后根据已有的触头接触压力合格范围确定Simpson法则计算所需上下限值,最后采用所述法则在上下限值内积分获得接触器触头接触压力合格率。
CN201310177619.5A 2013-05-14 2013-05-14 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法 Active CN103226642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310177619.5A CN103226642B (zh) 2013-05-14 2013-05-14 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310177619.5A CN103226642B (zh) 2013-05-14 2013-05-14 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法

Publications (2)

Publication Number Publication Date
CN103226642A true CN103226642A (zh) 2013-07-31
CN103226642B CN103226642B (zh) 2016-02-03

Family

ID=48837087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310177619.5A Active CN103226642B (zh) 2013-05-14 2013-05-14 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法

Country Status (1)

Country Link
CN (1) CN103226642B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604544A (zh) * 2013-11-30 2014-02-26 河北工业大学 一种交流接触器触头接触压力动态测试装置及其测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038639A1 (en) * 2003-08-15 2005-02-17 Intersil Americas Inc. Multiple variable monte carlo simulation
CN101984441A (zh) * 2010-10-27 2011-03-09 哈尔滨工业大学 基于eda技术的电子系统多目标可靠性容差设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038639A1 (en) * 2003-08-15 2005-02-17 Intersil Americas Inc. Multiple variable monte carlo simulation
CN101984441A (zh) * 2010-10-27 2011-03-09 哈尔滨工业大学 基于eda技术的电子系统多目标可靠性容差设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张永文: "直动式交流接触器触头压力误差的分析及其误差测量方法评估", 《电气制造》 *
梁慧敏等: "参数波动影响下电磁继电器输出的分布特征研究", 《低压电器》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604544A (zh) * 2013-11-30 2014-02-26 河北工业大学 一种交流接触器触头接触压力动态测试装置及其测试方法
CN103604544B (zh) * 2013-11-30 2015-10-07 河北工业大学 一种交流接触器触头接触压力动态测试装置及其测试方法

Also Published As

Publication number Publication date
CN103226642B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN105653794B (zh) 一种含初始缺陷矩形板结构的时变可靠性设计方法
CN103617816B (zh) 反应堆堆芯功率分布的测量方法
CN103902785A (zh) 一种基于多元不确定性的结构有限元模型修正方法
CN103246821B (zh) 一种基于仿真的多应力小样本加速寿命试验方案设计优化方法
US9122822B2 (en) Three-dimensional fluid simulation method
CN107862127A (zh) 一种基于分段线性动力学方程的接触器动态特性计算方法
CN107563053B (zh) 一种航空发动机轮盘疲劳寿命非局部概率设计方法
CN104850750A (zh) 一种核电站反应堆保护系统可靠性分析方法
CN108038292A (zh) 一种基于双代理技术的高效自适应采样方法
CN103366056A (zh) 基于有限元分析的机械零件圆柱度误差的测量方法
CN103294853B (zh) 基于蒙特卡洛模拟的接触器吸合时间合格率预测方法
CN103235866B (zh) 基于蒙特卡洛模拟的接触器吸合电压合格率预测方法
CN103246777A (zh) 基于蒙特卡洛模拟的接触器动触头超程时间合格率预测方法
CN105260499A (zh) 一种三维柔性梁系统力学的运动仿真方法及系统
CN102384849B (zh) 汽车座椅零件动静态等效试验方法
CN102620980B (zh) 一种利用神经网络预报板材成形性能的方法
CN103226642A (zh) 基于蒙特卡洛模拟的接触器触头接触压力合格率预测方法
CN103235865B (zh) 基于蒙特卡洛模拟的接触器的动触头闭合速度合格率预测方法
CN103246776B (zh) 基于蒙特卡洛模拟的接触器触头分断速度合格率预测方法
CN103218502B (zh) 基于蒙特卡洛模拟的接触器释放电压合格率预测方法
CN103258096B (zh) 基于蒙特卡洛模拟的接触器回跳时间合格率预测方法
CN103136415A (zh) 用于优化具有不均匀组织的铸件的方法
CN103218503A (zh) 基于蒙特卡洛模拟的接触器释放时间合格率预测方法
CN104483085B (zh) 振动设备力传递率专用测试基座设计方法
CN105700381A (zh) 一种受到单方向控制限制的磁悬浮小球控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: GUIZHOU ZHENHUA QUNYING ELECTRICAL APPLIANCES CO.,

Effective date: 20131108

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20131108

Address after: 150001 Harbin, Nangang, West District, large straight street, No. 92

Applicant after: Harbin Institute of Technology

Applicant after: Guizhou Zhenhua Qunying Electrical Appliances Co.,Ltd.

Address before: 150001 Harbin, Nangang, West District, large straight street, No. 92

Applicant before: Harbin Institute of Technology

C14 Grant of patent or utility model
GR01 Patent grant