CN103199727A - 一种零电流转换全桥型非隔离光伏并网逆变器 - Google Patents

一种零电流转换全桥型非隔离光伏并网逆变器 Download PDF

Info

Publication number
CN103199727A
CN103199727A CN2013101343837A CN201310134383A CN103199727A CN 103199727 A CN103199727 A CN 103199727A CN 2013101343837 A CN2013101343837 A CN 2013101343837A CN 201310134383 A CN201310134383 A CN 201310134383A CN 103199727 A CN103199727 A CN 103199727A
Authority
CN
China
Prior art keywords
power
switch pipe
power switch
auxiliary
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101343837A
Other languages
English (en)
Other versions
CN103199727B (zh
Inventor
肖华锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201310134383.7A priority Critical patent/CN103199727B/zh
Publication of CN103199727A publication Critical patent/CN103199727A/zh
Application granted granted Critical
Publication of CN103199727B publication Critical patent/CN103199727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明提供一种可高频软开关工作、低漏电流的非隔离型光伏并网逆变器机器开关控制时序,包括分压电容支路(1)、高频主开关单元(2)、谐振网络(3)、箝位支路(4)和低频换向开关单元(5)。本发明在单相六开关全桥逆变电路(俗称‘H6’拓扑)的基础上分别加入两支可控开关管、一只二极管和两组电感电容串联支路构成谐振网络为主开关单元提供零电流关断工作条件,实现了高频开关的软开关工作,可大幅降低开关损耗;配合开关时序同样可保证功率传递阶段、谐振阶段和续流阶段时共模电压均为同一恒定的电压值,从而消除非隔离并网逆变器的漏电流;本发明可实现非隔离光伏并网逆变器的高频化,有利于大幅降低并网逆变器的体积、重量和成本。

Description

一种零电流转换全桥型非隔离光伏并网逆变器
技术领域
本发明涉及一种非隔离光伏并网逆变器的软开关技术,属于高效并网逆变器拓扑技术领域。
背景技术
非隔离型光伏并网逆变器相比隔离型结构拥有效率高、体积小、重量轻和成本低等优势。但由于电池板对地寄生电容的存在,使得并网逆变器开关器件的开关动作可能产生高频时变电压作用在寄生电容之上,由此诱发的漏电流可能超出允许范围。高频漏电流的产生会带来传导和辐射干扰、进网电流谐波及损耗的增加,甚至危及设备和人员安全。
双极性SPWM全桥并网逆变器可以有效消除漏电流,能直接用于非隔离应用场合,但其差模特性较差;单极性SPWM全桥并网逆变器的差模特性优良,但存在开关频率脉动的共模电压(其幅值为输入直流电压)。为了消除单极性SPWM全桥并网逆变器中的开关频率共模电压,已有大量专利产生,如专利EP 1369985 A2(简称Heric拓扑)、专利US 7411802 B2(简称H5拓扑)、专利CN101814856A(已完成实质性审查和修回,待批准)等,这些专利技术使得中、小功率单相并网逆变器的效率大幅提供,最高可达98.8%。但是,在现阶段技术水平下,这些逆变器一般工作在10~20kHz的开关频率,还需要比较大的滤波电感和滤波电容,这样既增加了并网逆变器的体积重量,又增加了成本。
限制非隔离并网逆变器开关频率提升的主要因素是高频开关的开关损耗问题,随着逆变器开关频率的提升,开关损耗大幅增加,导致逆变器效率快速下降和需要更大的散热器。可见,若能降低现有非隔离并网逆变器的开关损耗,实现高频开关的软开关工作,就能大幅提高并网逆变器的工作频率,减小滤波器体积,从而实现了并网逆变器的高频化、小型化。
发明内容
本发明的目的是克服上述现有技术的缺陷,提供一种可实现高频开关软开关工作的零电流转换全桥型非隔离光伏并网逆变器及其开关控制时序。
为实现上述目的,本发明所述非隔离光伏并网逆变器可采用如下技术方案:
一种零电流转换全桥型非隔离光伏并网逆变器,包括分压电容支路、高频主开关单元、谐振网络、箝位支路和低频换向开关单元;分压电容支路由第一分压电容Cdc1、第二分压电容Cdc2组成;高频主开关单元由第五功率开关管S5/第五功率二极管D5并联组合、第六功率开关管S6/第六功率二极管D6并联组合构成;谐振网络由第五辅助功率开关管S5a/第五辅助功率二极管D5a并联组合、第五辅助谐振电感L 5a、第五辅助谐振电容C 5a、第六辅助功率开关管S6a/第六辅助功率二极管D6a并联组合、第六辅助谐振电感L 6a、第六辅助谐振电容C 6a和辅助功率二极管Da构成;箝位支路由第七功率二极管D7、第八功率二极管D8组成;低频换向开关单元由第一功率开关管S1/第一功率二极管D1并联组合、第二功率开关管S2/第二功率二极管D2并联组合、第三功率开关管S3/第三功率二极管D3并联组合、第四功率开关管S4/第四功率二极管D4并联组合组成。
上述第一功率开关管S1、第二功率开关管S2、第三功率开关管S3、第四功率开关管S4、第五功率开关管S5、第六功率开关管S6、第五辅助功率开关管S5a、第六辅助功率开关管S6a可以为IGBT或MOSFET等全控型器件,本发明以第一功率开关管S1、第二功率开关管S2、第三功率开关管S3、第四功率开关管S4、第五功率开关管S5、第六功率开关管S6选用IGBT,第五辅助功率开关管S5a、第六辅助功率开关管S6a选用MOSFET为例进行描述和实施。
上述第一分压电容Cdc1的正端分别连接太阳能电池正输出端、第五功率开关管S5的集电极和第五辅助功率开关管S5a的漏极、第五功率二极管D5和第五辅助功率二极管D5a的阴极;第一分压电容Cdc1的负端分别连接第二分压电容Cdc2的正端、第七功率二极管(S7)的阳极和第八功率二极管(S8)的阴极;第二分压电容Cdc2的负端分别连接太阳能电池负输出端、第六功率开关管S6的发射极和第六辅助功率开关管S6a的源极、第六功率二极管D6和第六辅助功率二极管D6a的阳极;
上述第五功率开关管S5的发射极分别与第五功率二极管D5的阳极、第五辅助谐振电感L 5a的第一端、第七功率二极管D7的阴极、第一功率开关管S1和第三功率开关管S3的集电极、第一功率二极管D1和第三功率开关管D3的阴极相连接;第六功率开关管S6的集电极分别与第六功率二极管D6的阴极、第六辅助谐振电感L 6a的第一端、第八功率二极管D8的阳极、第二功率开关管S2和第四功率开关管S4的发射极、第二功率二极管D2和第四功率二极管D4的阳极相连接。
上述第五辅助功率开关管S5a的源极分别与第五辅助功率二极管D5a的阳极、第五辅助谐振电容C 5a的第一端、辅助功率二极管Da的阴极相连接;第五辅助谐振电容C 5a
第二端与第五辅助谐振电感L 5a的第二端相连接;第六辅助功率开关管S6a的漏极分别与第六辅助功率二极管D6a的阴极、第六辅助谐振电容C 6a的第一端、辅助功率二极管Da的阳极相连接;第六辅助谐振电容C 6a的第二端与第六辅助谐振电感L 6a的第二端相连接。
上述第七功率二极管D7的阳极分别与第八功率二极管D8的阴极、第一分压电容Cdc1的阴极、第二分压电容Cdc2的阳极相连接。
上述第一功率开关管S1的发射极分别连接第二功率开关管S2的集电极、第一功率二极管D1的阳极和第二功率二极管D2的阴极,以及连接第一进网滤波电感L 1的一端;
上述第三功率开关管S3的发射极分别连接第四功率开关管S4的集电极、第三功率二极管D3的阳极和第四功率二极管D4的阴极,以及连接第二进网滤波电感L2的一端。
本发明所述开关控制时序可以基于上述非隔离光伏并网逆变器中的功率开关管来实现,具体过程如下:
将第一功率开关管S1和第四功率开关管S4同时开通关断,在进网电流正半周一直导通,负半周关断;
将第二功率开关管S2和第三功率开关管S3同时开通关断,在进网电流负半周一直导通,正半周关断;
第一功率开关管S1与第二功率开关管S2的驱动信号互补,并加入死区时间;
第五功率开关管S5和第六功率开关管S6同时开通关断并按单极性SPWM方式高频动作,第五辅助开关S5a的开通阶段与第五功率开关管S5的关断阶段有交叠区;第六辅助开关S6a的开通阶段与第六功率开关管S6的关断阶段有交叠区。
本发明在六开关全桥电路(俗称H6拓扑)的基础上加入两组由全控开关、谐振电容和谐振电感组成的谐振网络以及辅助二极管构成零电流转换支路,配合上诉开关控制时序,可以实现第五功率开关管S5和第六功率开关管S6的零电流关断条件,并保证逆变器在功率传输、谐振阶段和续流阶段时共模电压恒处于二分之一的电池电压来消除漏电流。从而可以实现非隔离并网逆变器的高频化、小型化。
附图说明
图1是本发明主电路拓扑采用IGBT和MOSFET组合的电路图。
图2是本发明的驱动信号产生逻辑。
图3是本发明在进网电流正半周时高频开关周期刻度的工作波形图。
图4(a)- (i)是本发明在进网电流正半周时高频开关周期刻度的等效工作模态图,其中
图4(a)模态1[t 0t 1];
图4(b)模态2[t 1t 2];
图4(c)模态3[t 2t 3);
图4(d)模态4[t 3];
图4(e)模态5(t 3t 4];
图4(f)模态6[t 4t 5];
图4(g)模态7[t 5t 6];
图4(h)模态8[t 6t 7];
图4(i)模态9[t 7t 8];
图5(a)- (b)是本发明在一个电网周期的电网电压、进网电流和差模、共模电压波形图,其中
图5(a)共模电压和差模电压波形;
图5(b)共模电压和差模电压波形细节图;
图6是本发明中谐振网络工作波形图。
图7(a)- (e)是本发明中主要功率器件在高频开关周期刻度的工作波形图,其中
图7(a)主开关S5的工作波形;
图7(b)辅助开关S5a的工作波形;
图7(c)辅助二极管Da的工作波形;
图7(d)低频开关S1的工作波形;
图7(e)低频开关S2的工作波形;
上述附图的主要符号及标号名称:C dc1C dc2——分压电容;S1~S6、S5a、S6a——功率开关管及驱动信号;D1~ D 6、D 5a、D 6a——功率二极管;Grid, u g——电网电压;U pv——太阳能电池板输出电压;L 1L 2——进网滤波电感;C 1——进网滤波电容;i g——进网电流;v DM——逆变器产生的差模电压;v CM——逆变桥产生的共模电压。
具体实施方式
下面结合附图对本发明的技术方案进行详细说明:
图1描述了本发明的主电路的构成方式,由第一分压电容Cdc1和第二分压电容Cdc2组成基本单元1;由第五功率开关管S5/第五功率二极管D5并联组合、第六功率开关管
S6/第六功率二极管D6并联组合组成基本单元2;由第五辅助功率开关管S5a/第五辅助功率二极管D5a并联组合、第五辅助谐振电感L 5a、第五辅助谐振电容C 5a、第六辅助功率开关管S6a/第六辅助功率二极管D6a并联组合、第六辅助谐振电感L 6a、第六辅助谐振电容C 6a和辅助功率二极管Da构成组成基本单元3;由第七功率二极管D7、第八功率二极管D8组成基本单元4;由第一功率开关管S1/第一功率二极管D1并联组合、第二功率开关管S2/第二功率二极管D2并联组合、第三功率开关管S3/第三功率二极管D3并联组合、第四功率开关管S4/第四功率二极管D4并联组合组成基本单元5。
图2是本发明的驱动信号产生逻辑,第一功率开关管S1和第四功率开关管S4在进网电流正半周同时开通、在负半周同时关断;第二功率开关管S2和第三功率开关管S3在进网电流正半周同时关断、在负半周同时开关;为了保证可靠换流,在过零阶段所有功率开关管均关断。第五功率开关管S5和第六功率开关管S6同时按单极性SPWM方式高频动作,第五辅助功率开关管S5a和第六辅助功率开关管S6a同时高频开关动作,他们的载波为有一定相移的反向三角波构成,保证了第五辅助开关S5a的开通阶段与第五功率开关管S5的关断阶段有交叠区;第六辅助开关S6a的开通阶段与第六功率开关管S6的关断阶段有交叠区。
图3是本发明在进网电流正半周时开关周期刻度的工作波形图。
图4(a)- (i)是本发明在进网电流正半周时开关周期刻度的等效工作模态图。
本发明的一个具体实例如下:电池板电压U pv=400V、电网电压U grid=220VRMS、电网频率f grid=50Hz、额定功率P N=3kW;直流母线电容Cdc1=Cdc2=470μF;滤波电感L 1=L 2=0.5mH;滤波电容C 1=6μF;电池板对地寄生电容C pv1=C pv2=0.15μF;开关频率f=50kHZ、谐振参数L r=1.2μH、C r=765nF。
图5(a)- (b)是本发明在一个电网周期的电网电压、进网电流和差模、共模电压波形图,可以看出,差模电压为单极性SPWM方式产生,共模电压为恒定值,与理论分析一致。
图6是本发明中谐振网络工作波形图,谐振网络能可靠的谐振工作,保证了主开关管的零电流关断条件。
图7(a)- (e)是本发明中主要功率器件在开关周期刻度的工作波形图,与图3中的理论分析一致。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干可以预期的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种零电流转换全桥型非隔离光伏并网逆变器,其包括分压电容支路(1)、高频主开关单元(2)、谐振网络(3)、箝位支路(4)和低频换向开关单元(5);其中所述分压电容支路(1)由第一分压电容(Cdc1)、第二分压电容(Cdc2)组成;所述高频主开关单元(2)包括第五功率开关管(S5)和第五功率二极管(D5)并联组合以及第六功率开关管(S6)和第六功率二极管(D6)并联组合;所述谐振网络(3)由第五辅助功率开关管(S5a)和第五辅助功率二极管(D5a)并联组合、第五辅助谐振电感(L 5a)、第五辅助谐振电容(C 5a)、第六辅助功率开关管(S6a)和第六辅助功率二极管(D6a)并联组合、第六辅助谐振电感(L 6a)、第六辅助谐振电容(C 6a)和辅助功率二极管(Da)构成;所述箝位支路(4)由第七功率二极管(D7)、第八功率二极管(D8)组成;所述低频换向开关单元(5)包括第一功率开关管(S1)和第一功率二极管(D1)并联组合、第二功率开关管(S2)和第二功率二极管(D2)并联组合、第三功率开关管(S3)和第三功率二极管(D3)并联组合、第四功率开关管(S4)/第四功率二极管(D4)并联组合,其特征在于:
所述第一功率开关管(S1)、第二功率开关管(S2)、第三功率开关管(S3)、第四功率开关管(S4)、第五功率开关管(S5)、第六功率开关管(S6)、第五辅助功率开关管(S5a)、第六辅助功率开关管(S6a)为IGBT或MOSFET全控型器件;
所述第一分压电容(Cdc1)的正端分别连接太阳能电池正输出端、第五功率开关管(S5)的集电极和第五辅助功率开关管(S5a)的漏极、第五功率二极管(D5)和第五辅助二极开关管(D5a)的阴极;所述第一分压电容(Cdc1)的负端分别连接第二分压电容(Cdc2)的正端、第七功率二极管(S7)的阳极和第八功率二极管(S8)的阴极;所述第二分压电容(Cdc2)的负端分别连接太阳能电池负输出端、第六功率开关管(S6)的发射极和第六辅助功率开关管(S6a)的源极、第六功率二极管(D6)和第六辅助功率二极管(D6a)的阳极;
所述第五功率开关管(S5)的发射极分别与第五功率二极管(D5)的阳极、第五辅助谐振电感(L 5a)的第一端、第七功率二极管(D7)的阴极、第一功率开关管(S1)和第三功率开关管(S3)的集电极、第一功率二极管(D1)和第三功率开关管(D3)的阴极相连接;第六功率开关管(S6)的集电极分别与第六功率二极管(D6)的阴极、第六辅助谐振电感(L 6a)的第一端、第八功率二极管(D8)的阳极、第二功率开关管(S2)和第四功率开关管(S4)的发射极、第二功率二极管(D2)和第四功率二极管(D4)的阳极相连接;
所述第五辅助功率开关管(S5a)的源极分别与第五辅助功率二极管(D5a)的阳极、第五辅助谐振电容(C 5a)的第一端、辅助功率二极管(Da)的阴极相连接;所述第五辅助谐振电容(C 5a)的第二端与第五辅助谐振电感(L 5a)的第二端相连接;所述第六辅助功率开关管(S6a)的漏极分别与第六辅助功率二极管(D6a)的阴极、第六辅助谐振电容(C 6a)的第一端、辅助功率二极管(Da)的阳极相连接;所述第六辅助谐振电容(C 6a)的第二端与第六辅助谐振电感(L 6a)的第二端相连接;
所述第七功率二极管(D7)的阳极分别与第八功率二极管(D8)的阴极、所述第一分压电容(Cdc1)的阴极、第二分压电容(Cdc2)的阳极相连接;
所述第一功率开关管(S1)的发射极分别连接第二功率开关管(S2)的集电极、第一功率二极管(D1)的阳极和第二功率二极管(D2)的阴极,以及连接第一进网滤波电感(L 1)的一端;
所述第三功率开关管(S3)的发射极分别连接第四功率开关管(S4)的集电极、第三功率二极管(D3)的阳极和第四功率二极管(D4)的阴极,以及连接第二进网滤波电感(L 2)的一端。
2.一种如权利要求1所述零电流转换全桥型非隔离光伏并网逆变器的开关控制时序方法,其特征在于:
将所述第一功率开关管(S1)和第四功率开关管(S4)同时开通关断,在进网电流正半周一直导通,负半周关断;
将第二功率开关管(S2)和第三功率开关管(S3)同时开通关断,在进网电流负半周一直导通,正半周关断;
第一功率开关管(S1)与第二功率开关管(S2)的驱动信号互补,并加入死区时间;
第五功率开关管(S5)和第六功率开关管(S6)同时开通关断并按单极性SPWM方式高频动作,第五辅助开关(S5a)的开通阶段与第五功率开关管(S5)的关断阶段有交叠区;第六辅助开关(S6a)的开通阶段与第六功率开关管(S6)的关断阶段有交叠区。
CN201310134383.7A 2013-04-17 2013-04-17 一种零电流转换全桥型非隔离光伏并网逆变器 Active CN103199727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310134383.7A CN103199727B (zh) 2013-04-17 2013-04-17 一种零电流转换全桥型非隔离光伏并网逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310134383.7A CN103199727B (zh) 2013-04-17 2013-04-17 一种零电流转换全桥型非隔离光伏并网逆变器

Publications (2)

Publication Number Publication Date
CN103199727A true CN103199727A (zh) 2013-07-10
CN103199727B CN103199727B (zh) 2015-03-25

Family

ID=48722120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310134383.7A Active CN103199727B (zh) 2013-04-17 2013-04-17 一种零电流转换全桥型非隔离光伏并网逆变器

Country Status (1)

Country Link
CN (1) CN103199727B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944411A (zh) * 2014-04-10 2014-07-23 重庆瑜欣平瑞电子有限公司 发电机变频器
CN104242719A (zh) * 2014-08-07 2014-12-24 东南大学 无开关损耗型全桥非隔离光伏并网逆变器及开关控制时序
CN104377982A (zh) * 2014-11-25 2015-02-25 东南大学 一种零电压开关Heric型非隔离光伏并网逆变器
WO2016082255A1 (zh) * 2014-11-25 2016-06-02 东北大学 一种双辅助谐振极型三相软开关逆变电路及其调制方法
TWI556559B (zh) * 2015-11-26 2016-11-01 A Bidirectional DC - DC Converter with Adaptive Phase Shift Angle Control Mechanism
CN104242716B (zh) * 2014-08-07 2017-01-11 东南大学 高可靠无开关损耗型非隔离逆变器及其开关控制时序
CN107872093A (zh) * 2016-09-26 2018-04-03 晓星电力有限责任公司 应用多相交错法通过太阳能提供混合动力的设备
CN110198131A (zh) * 2019-06-06 2019-09-03 东南大学 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN110212573A (zh) * 2019-05-27 2019-09-06 东南大学 一种功率因数可调零电流型非隔离并网逆变器及其开关控制时序
CN113348615A (zh) * 2019-06-25 2021-09-03 华为技术有限公司 Dc-dc功率变换器
CN117477974A (zh) * 2023-12-27 2024-01-30 南京云海光电科技有限公司 一种共地型开关电容五电平逆变器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135045A1 (en) * 2008-10-15 2010-06-03 Hitoshi Inoue Sine Wave Inverter
CN102005928A (zh) * 2010-12-06 2011-04-06 山东大学 光伏高频隔离升压软开关dc/dc变换器及其控制方法
US20110139771A1 (en) * 2009-12-11 2011-06-16 Honeywell Asca Inc. Series-Parallel Resonant Inverters
CN102231600A (zh) * 2011-07-08 2011-11-02 南京航空航天大学 应用于弧焊逆变电源的新型全桥软开关电路
CN202231632U (zh) * 2011-09-14 2012-05-23 梁雪芹 单相非隔离型低共模电流光伏并网逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135045A1 (en) * 2008-10-15 2010-06-03 Hitoshi Inoue Sine Wave Inverter
US20110139771A1 (en) * 2009-12-11 2011-06-16 Honeywell Asca Inc. Series-Parallel Resonant Inverters
CN102005928A (zh) * 2010-12-06 2011-04-06 山东大学 光伏高频隔离升压软开关dc/dc变换器及其控制方法
CN102231600A (zh) * 2011-07-08 2011-11-02 南京航空航天大学 应用于弧焊逆变电源的新型全桥软开关电路
CN202231632U (zh) * 2011-09-14 2012-05-23 梁雪芹 单相非隔离型低共模电流光伏并网逆变器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG-GOO CHO,等: "Zero-Voltage and Zero-Current-Switching Full Bridge PWM Converter for High-Power Applications", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 11, no. 4, 31 July 1996 (1996-07-31), XP011042978 *
肖华锋,等: "非隔离型光伏并网逆变器漏电流分析模型研究", 《中国电机工程学报》, vol. 30, no. 18, 25 June 2010 (2010-06-25) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944411A (zh) * 2014-04-10 2014-07-23 重庆瑜欣平瑞电子有限公司 发电机变频器
CN104242719A (zh) * 2014-08-07 2014-12-24 东南大学 无开关损耗型全桥非隔离光伏并网逆变器及开关控制时序
CN104242719B (zh) * 2014-08-07 2016-11-09 东南大学 无开关损耗型全桥非隔离光伏并网逆变器及开关控制时序
CN104242716B (zh) * 2014-08-07 2017-01-11 东南大学 高可靠无开关损耗型非隔离逆变器及其开关控制时序
US9673730B2 (en) 2014-11-25 2017-06-06 Northeastern University Double auxiliary resonant commutated pole three-phase soft-switching inverter circuit and modulation method
CN104377982A (zh) * 2014-11-25 2015-02-25 东南大学 一种零电压开关Heric型非隔离光伏并网逆变器
WO2016082255A1 (zh) * 2014-11-25 2016-06-02 东北大学 一种双辅助谐振极型三相软开关逆变电路及其调制方法
CN104377982B (zh) * 2014-11-25 2017-02-22 东南大学 一种零电压开关Heric型非隔离光伏并网逆变器
TWI556559B (zh) * 2015-11-26 2016-11-01 A Bidirectional DC - DC Converter with Adaptive Phase Shift Angle Control Mechanism
CN107872093A (zh) * 2016-09-26 2018-04-03 晓星电力有限责任公司 应用多相交错法通过太阳能提供混合动力的设备
CN110212573A (zh) * 2019-05-27 2019-09-06 东南大学 一种功率因数可调零电流型非隔离并网逆变器及其开关控制时序
CN110212573B (zh) * 2019-05-27 2022-05-13 东南大学 一种功率因数可调零电流型非隔离并网逆变器及其开关控制时序
CN110198131A (zh) * 2019-06-06 2019-09-03 东南大学 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN110198131B (zh) * 2019-06-06 2020-10-09 东南大学 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN113348615A (zh) * 2019-06-25 2021-09-03 华为技术有限公司 Dc-dc功率变换器
CN117477974A (zh) * 2023-12-27 2024-01-30 南京云海光电科技有限公司 一种共地型开关电容五电平逆变器
CN117477974B (zh) * 2023-12-27 2024-03-29 南京云海光电科技有限公司 一种共地型开关电容五电平逆变器

Also Published As

Publication number Publication date
CN103199727B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN103199727B (zh) 一种零电流转换全桥型非隔离光伏并网逆变器
CN103178739B (zh) 一种零电压转换全桥型非隔离光伏并网逆变器
CN103051233B (zh) 一种非隔离型单相光伏并网逆变器及其开关控制时序
CN101814856B (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN107070215B (zh) 一种三电平boost共地系统及其控制方法
CN102005954B (zh) 单相非隔离型光伏并网逆变器及控制方法
CN104242719B (zh) 无开关损耗型全桥非隔离光伏并网逆变器及开关控制时序
CN104377982B (zh) 一种零电压开关Heric型非隔离光伏并网逆变器
CN103001526A (zh) 一种非隔离型逆变器及其控制方法
CN102361408A (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN102163852A (zh) 一种中点箝位非隔离光伏并网逆变器
CN205647288U (zh) 一种非隔离型光伏并网逆变器
CN104638971A (zh) 一种光伏并网逆变器及其控制方法
CN103956927A (zh) 一种电压有源箝位的无变压器型单相光伏逆变器
CN104242716B (zh) 高可靠无开关损耗型非隔离逆变器及其开关控制时序
CN103916040A (zh) 一种逆变器拓扑电路、逆变方法及一种逆变器
CN201536328U (zh) 一种并网逆变器
CN102684530A (zh) 一种具有无功补偿功能的无变压器型逆变器的控制方法
CN102611347A (zh) 一种单相非隔离太阳能并网逆变器
CN110198131B (zh) 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN102195507A (zh) 无变压器并网逆变电路
CN105656077A (zh) 一种高效低漏电流的七开关光伏并网逆变电路及其调制方法
CN105262361A (zh) 一种两级式非隔离光伏并网逆变器及其控制方法
CN104065293A (zh) 一种电压混合钳位的无变压器型单相光伏逆变器
CN104682762B (zh) 一种低漏电流并网逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant