CN104242716B - 高可靠无开关损耗型非隔离逆变器及其开关控制时序 - Google Patents

高可靠无开关损耗型非隔离逆变器及其开关控制时序 Download PDF

Info

Publication number
CN104242716B
CN104242716B CN201410387704.9A CN201410387704A CN104242716B CN 104242716 B CN104242716 B CN 104242716B CN 201410387704 A CN201410387704 A CN 201410387704A CN 104242716 B CN104242716 B CN 104242716B
Authority
CN
China
Prior art keywords
power
auxiliary
power switch
switch pipe
switching tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410387704.9A
Other languages
English (en)
Other versions
CN104242716A (zh
Inventor
肖华锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410387704.9A priority Critical patent/CN104242716B/zh
Publication of CN104242716A publication Critical patent/CN104242716A/zh
Application granted granted Critical
Publication of CN104242716B publication Critical patent/CN104242716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公开了一种高可靠无开关损耗型非隔离逆变器及其开关控制时序,其中,逆变器包括直流电容支路、高频主开关单元、谐振网络和低频续流单元。本发明通过加入两组由全控开关、谐振电容和谐振电感组成的谐振网络以及辅助续流箝位二极管构成实现所有功率器件无开关损耗运行的辅助支路,配合开关控制时序,可以实现第一功率开关管S1、第二功率开关管S2、第三功率开关管S3和第四功率开关管S4的零电流开通和零电流关断条件、实现辅助续流功率二极管Da1的零电压开通和零电流关断,以及消除低频续流单元二极管D5和D6的反向恢复问题,从而可以实现非隔离并网逆变器的高频化、小型化。

Description

高可靠无开关损耗型非隔离逆变器及其开关控制时序
技术领域
本发明属于高效并网逆变器拓扑技术领域,涉及一种非隔离光伏并网逆变器的软开关技术。
背景技术
非隔离型光伏并网逆变器电路结构简单、变换效率高在业界得到大量应用。图1是一种典型的硬开关工作方式的逆变器电路,这种结构均工作在硬开关方式,仅能运行在较低的开关频率(10~20kHz)下才能达到理想的效率,而且还需要比较大的滤波电感和滤波电容,这样既增加了并网逆变器的体积重量,又增加了成本。
限制非隔离并网逆变器变换效率进一步提高的最主要因素是开关器件的损耗,包括导通损耗和开关损耗两部分。其中,导通损耗由电路拓扑结构和器件发展水平决定;开关损耗可以通过采用软开关技术来减小甚至消除。
若能基于拥有最小导通损耗的电路拓扑实现功率器件的无开关损耗运行必能达到最有竞争力的效率。若能进一步减小或消除其开关损耗,必将受到工业界的欢迎。
发明内容
发明目的:一个目的是构建一种无开关损耗型非隔离逆变器及其相应的开关控制时序,以解决现有技术的上述问题。
技术方案:一种高可靠无开关损耗型非隔离逆变器,包括直流电容支路、高频主开关单元、谐振网络和低频续流单元;直流电容支路由直流电容Cdc组成;
高频主开关单元由第一功率开关管S1和第一功率二极管D1的并联组合、第二功率开关管S2和第二功率二极管D2的并联组合、第三功率开关管S3和第三功率二极管D3的并联组合和第四功率开关管S4和第四功率二极管D4的并联组合构成;
谐振网络由第一辅助功率开关管S1a和第一辅助功率二极管D1a的并联组合、第二辅助功率开关管S2a和第二辅助功率二极管D2a的并联组合、第三辅助功率开关管S3a和第三辅助功率二极管D3a的并联组合、第四辅助功率开关管S4a和第四辅助功率二极管D4a的并联组合、第一辅助谐振电容C1a、第一辅助谐振电感L1a、第二辅助功率开关管S2a和第二辅助功率二极管D2a的并联组合和第一辅助续流功率二极管Da1构成;
低频续流单元4由第五功率开关管S5和第五功率二极管D5的并联组合、第六功率开关管S6和第六功率二极管D6的并联组合组成;
所述第一功率开关管S1、第二功率开关管S2、第三功率开关管S3、第四功率开关管S4、第五功率开关管S5、第六功率开关管S6、第一辅助功率开关管S1a、第二辅助功率开关管S2a、第三辅助功率开关管S3a、第四辅助功率开关管S4a为全控型器件;
所述直流电容Cdc的正端分别连接太阳能电池正输出端、第一功率开关管S1和第三功率开关管S3的集电极、第一功率二极管D1和第三功率二极管D3的阴极以及第一辅助谐振电容C1a的第一端;直流电容Cdc的负端分别连接太阳能电池负输出端、第二功率开关管S2和第四功率开关管S4的发射极、第二功率二极管D2和第四功率二极管D4的阳极以及第二辅助谐振电容C2a的第一端;
所述第一功率开关管S1的发射极分别与第一功率二极管D1的阳极、第一辅助功率开关管S1a的源极、第一辅助功率二极管D1a的阳极、第二功率开关管S2的集电极、第二功率二极管D2的阴极、第二辅助功率开关管S2a的漏极、第二辅助功率二极管D2a的阴极、第六功率开关管S6的发射极和第六功率二极管D6的阳极相连接,以及连接第一进网滤波电感L1的一端;第三功率开关管S3的发射极分别与第三功率二极管D3的阳极、第三辅助功率开关管S3a的源极、第三辅助功率二极管D3a的阳极、第四功率开关管S4的集电极、第四功率二极管D4的阴极、第四辅助功率开关管S4a的漏极、第四辅助功率二极管D4a的阴极、第五功率开关管S5的发射极和第五功率二极管D5的阳极相连接,以及连接第二进网滤波电感L2的一端;
所述第五功率开关管S5的集电极和第五功率二极管D5的阴极、第六功率开关管S6的集电极和第六功率二极管D6的阴极相连接;
所述第一辅助功率开关管S1a的漏极分别与第一辅助功率二极管D1a的阴极、第三辅助功率开关管S3a的漏极、第三辅助功率二极管D3a的阴极和第一辅助谐振电感L1a的第一端相连接;第二辅助功率开关管S2a的源极分别与第二辅助功率二极管D2a的阳极、第四辅助功率开关管S4a的源极、第四辅助功率二极管D4a的阳极和第二辅助谐振电感L2a的第一端相连接;
所述第一辅助谐振电容C1a的第二端与第一辅助谐振电感L1a的第二端、第一辅助续流功率二极管Da1的阴极相连接;第二辅助谐振电容C2a的第二端与第二辅助谐振电感L2a的第二端、第一辅助续流功率二极管Da1的阳极相连接;
所述第一功率开关管S1的发射极分别连接第二功率开关管S2的集电极、第一功率二极管D1的阳极和第二功率二极管D2的阴极,以及连接第一进网滤波电感L1的一端。
一种基于上述高可靠无开关损耗型非隔离逆变器的开关控制时序,具体过程如下:
第一功率开关管S1和第四功率开关管S4具有相同的驱动时序,并按单极性SPWM方式高频动作,在进网电流正半周一直工作,在负半周停止工作;
第二功率开关管S2和第三功率开关管S3具有相同的驱动时序,并按单极性SPWM方式高频动作,在进网电流负半周一直工作,在正半周停止工作;
第五功率开关管S5在进网电流正半周一直导通,第六功率开关管S6在进网电流负半周一直导通,而且第五功率开关管S5与第六功率开关管S6的驱动信号互补,并加入死区时间;
第一辅助功率开关管S1a和第四辅助功率开关管S4a具有相同的驱动时序并按与第一功率开关管S1和第四功率开关管S4准互补的方式高频动作,在进网电流正半周一直工作,
在负半周停止工作,而且第一辅助开关S1a的导通开始阶段与第一功率开关管S1的导通末尾阶段有交叠区、第四辅助开关S4a的导通末尾阶段与第四功率开关管S4的导通开始阶段有交叠区;第二辅助功率开关管S2a和第三辅助功率开关管S3a具有相同的驱动时序并按与第二功率开关管S2和第三功率开关管S3准互补的方式高频动作,在进网电流负半周一直工作,在正半周停止工作,而且第二辅助开关S2a的导通开始阶段与第二功率开关管S2的导通末尾阶段有交叠区、第三辅助开关S3a的导通末尾阶段与第三功率开关管S3的导通开始阶段有交叠区。
有益效果:本发明通过加入两组由全控开关、谐振电容和谐振电感组成的谐振网络以及辅助续流箝位二极管构成实现所有功率器件无开关损耗运行的辅助支路,配合上述开关控制时序,可以实现第一功率开关管S1、第二功率开关管S2、第三功率开关管S3和第四功率开关管S4的零电流开通和零电流关断条件、实现第一辅助功率开关管S1a、第二辅助功率开关管S2a、第三辅助功率开关管S3a和第四辅助功率开关管S4a的零电流开通和零电流关断条件、实现辅助续流功率二极管Da1的零电压开通和零电流关断,以及消除低频续流单元二极管D5和D6的反向恢复问题,从而可以实现非隔离并网逆变器的高频化、小型化。
附图说明
图1是现有技术中的一种非隔离光伏并网逆变电路的电路示意图,为硬开关工作方 式。
图2是本发明实施例一提供的主电路示意图,采用IGBT和MOSFET组合的电路图。
图3是本发明实施例一提供的驱动信号时序。
图4(a)至图4(i)是本发明实施例一在进网电流正半周时高频开关周期刻度的等效工作模态图,其中,图4(a)为模态1的示意图;图4(b)为模态2的示意图;图4(c)为模态3的示意图;图4(d)为模态4的示意图;图4(e)为模态5的示意图;图4(f)为模态6的示意图;图4(g)为模态7的示意图;图4(h)为模态8的示意图;图4(i)为模态9的示意图。
图5是本发明实施例一中谐振网络工作波形图。
图6(a)至图6(e)是本发明实施例一中主要功率器件的工作波形图,其中,图6(a)主开关S1的工作波形;图6(b)辅助开关S1a和S3a的工作波形;图6(c)辅助续流二极管Da1的工作波形;图6(d)低频开关S5在电网频率刻度的工作波形;图6(e)低频开关S5在开关频率刻度的工作波形。
图7是本发明实施例二提供的主电路示意图。
图8是本发明实施例三提供的主电路示意图。
上述附图的主要符号及标号名称:Cdc1、Cdc2——直流电容;S1~S6、S1a~S6a——功率开关管及驱动信号;D1~D6、D1a~D6a——功率二极管;Da1、Da2——辅助续流箝位功率二极管;Grid,ug——电网电压;Upv——太阳能电池板输出电压;L1、L2——进网滤波电感;C1——进网滤波电容;ig——进网电流。
具体实施方式
如图2所示,无开关损耗型非隔离逆变器相比图1所示硬开关电路多了几组谐振网络,帮助实现功率器件开通关断过程的软化,以消除或者减弱硬开关产生的开关损耗和电磁干扰等问题,本发明实施例提供的无开关损耗型全桥非隔离逆变器均实现了功率器件的软开关。
实施例一
图2描述了本发明实施例一的主电路的构成方式,由直流电容Cdc组成基本单元1;由第一功率开关管S1和第一功率二极管D1并联组合、第二功率开关管S2和第二功率二极管D2并联组合、第三功率开关管S3和第三功率二极管D3并联组合和第四功率开关管S4和第四功率二极管D4并联组合组成基本单元2;由第一辅助功率开关管S1a和第一辅 助功率二极管D1a并联组合、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合、第三辅助功率开关管S3a和第三辅助功率二极管D3a并联组合、第四辅助功率开关管S4a和第四辅助功率二极管D4a并联组合、第一辅助谐振电容C1a、第一辅助谐振电感L1a、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合和第一辅助续流功率二极管Da1组成基本单元3;由第五功率开关管S5和第五功率二极管D5并联组合、第六功率开关管S6和第六功率二极管D6并联组合组成基本单元4。
图3是本发明实施例一的驱动信号时序,第一功率开关管S1和第四功率开关管S4具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流正半周一直工作,在负半周停止工作;第二功率开关管S2和第三功率开关管S3具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流负半周一直工作,在正半周停止工作;第五功率开关管S5在进网电流正半周一直导通,第六功率开关管S6在进网电流负半周一直导通,而且第五功率开关管S5与第六功率开关管S6的驱动信号互补,并加入死区时间;第一辅助功率开关管S1a和第四辅助功率开关管S4a具有相同的驱动时序并按与第一功率开关管S1和第四功率开关管S4准互补的方式高频动作,在进网电流正半周一直工作,在负半周停止工作,而且第一辅助开关S1a的导通开始阶段与第一功率开关管S1的导通末尾阶段有交叠区、第四辅助开关S4a的导通末尾阶段与第四功率开关管S4的导通开始阶段有交叠区;第二辅助功率开关管S2a和第三辅助功率开关管S3a具有相同的驱动时序并按与第二功率开关管S2和第三功率开关管S3准互补的方式高频动作,在进网电流负半周一直工作,在正半周停止工作,而且第二辅助开关S2a的导通开始阶段与第二功率开关管S2的导通末尾阶段有交叠区、第三辅助开关S3a的导通末尾阶段与第三功率开关管S3的导通开始阶段有交叠区。
图4(a)-(i)是本发明实施例一在进网电流正半周时开关周期刻度的等效工作模态图。本实施例一的一个具体实例如下:电池板电压Upv=400V、电网电压Ugrid=220VRMS、电网频率fgrid=50Hz、额定功率PN=1kW;直流母线电容Cdc1=Cdc2=470μF;滤波电感L1=L2=0.5mH;滤波电容C1=6μF;电池板对地寄生电容Cpv1=Cpv2=0.15μF;开关频率f=50kHZ、谐振参数Lr=23μH、Cr=39.5nF。
从实施结果可以看出,在图2所示电路结构配合图3所示驱动时序的情况下,可以实现第一功率开关管S1、第二功率开关管S2、第三功率开关管S3和第四功率开关管S4的零电流开通和零电流关断、实现第一辅助功率开关管S1a、第二辅助功率开关管S2a、 第三辅助功率开关管S3a和第四辅助功率开关管S4a的零电流开通和零电流关断、实现辅助续流功率二极管Da1的零电压开通和零电流关断,以及消除低频续流单元二极管D5和D6的反向恢复问题。
实施例二
图7描述了本发明实施例二的主电路的构成方式,由直流电容Cdc组成基本单元71;由第一功率开关管S1和第一功率二极管D1并联组合、第二功率开关管S2和第二功率二极管D2并联组合、第三功率开关管S3和第三功率二极管D3并联组合和第四功率开关管S4和第四功率二极管D4并联组合组成基本单元72;由第一辅助功率开关管S1a和第一辅助功率二极管D1a并联组合、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合、第三辅助功率开关管S3a和第三辅助功率二极管D3a并联组合、第四辅助功率开关管S4a和第四辅助功率二极管D4a并联组合、第一辅助谐振电容C1a、第一辅助谐振电感L1a、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合和第一辅助续流功率二极管Da1组成基本单元73。
本发明实施例二的驱动信号时序,第一功率开关管S1和第四功率开关管S4具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流正半周一直工作,在负半周停止工作;第二功率开关管S2和第三功率开关管S3具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流负半周一直工作,在正半周停止工作;第一辅助功率开关管S1a和第四辅助功率开关管S4a具有相同的驱动时序并按与第一功率开关管S1和第四功率开关管S4准互补的方式
高频动作,在进网电流正半周一直工作,在负半周停止工作,而且第一辅助开关S1a的导通开始阶段与第一功率开关管S1的导通末尾阶段有交叠区、第四辅助开关S4a的导通末尾阶段与第四功率开关管S4的导通开始阶段有交叠区;第二辅助功率开关管S2a和第三辅助功率开关管S3a具有相同的驱动时序并按与第二功率开关管S2和第三功率开关管S3准互补的方式高频动作,在进网电流负半周一直工作,在正半周停止工作,而且第二辅助开关S2a的导通开始阶段与第二功率开关管S2的导通末尾阶段有交叠区、第三辅助开关S3a的导通末尾阶段与第三功率开关管S3的导通开始阶段有交叠区。
在图7所示电路结构配合图3所示驱动时序的情况下,可以实现第一功率开关管S1、第二功率开关管S2、第三功率开关管S3和第四功率开关管S4的零电流开通和零电流关断、实现第一辅助功率开关管S1a、第二辅助功率开关管S2a、第三辅助功率开关管 S3a和第四辅助功率开关管S4a的零电流开通和零电流关断、实现辅助续流功率二极管Da1的零电压开通和零电流关断。
实施例三
图8描述了本发明实施例三的主电路的构成方式,由第一直流电容Cdc1和第二直流电容Cdc2组成基本单元81;由第一功率开关管S1和第一功率二极管D1并联组合、第二功率开关管S2和第二功率二极管D2并联组合、第三功率开关管S3和第三功率二极管D3并联组合和第四功率开关管S4和第四功率二极管D4并联组合组成基本单元82;由第一辅助功率开关管S1a和第一辅助功率二极管D1a并联组合、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合、第三辅助功率开关管S3a和第三辅助功率二极管D3a并联组合、第四辅助功率开关管S4a和第四辅助功率二极管D4a并联组合、第一辅助谐振电容C1a、第一辅助谐振电感L1a、第二辅助功率开关管S2a和第二辅助功率二极管D2a并联组合和第一辅助续流功率二极管Da1、第二辅助续流功率二极管Da2组成基本单元83。由第五功率开关管S5和第五功率二极管D5并联组合、第六功率开关管S6和第六功率二极管D6并联组合组成基本单元84。
本发明实施例三的驱动信号时序,第一功率开关管S1和第四功率开关管S4具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流正半周一直工作,在负半周停止工作;第二功率开关管S2和第三功率开关管S3具有相同的驱动时序并按单极性SPWM方式高频动作,在进网电流负半周一直工作,在正半周停止工作;第五功率开关管S5在进网电流正半周一直导通,第六功率开关管S6在进网电流负半周一直导通,而且第五功率开关管S5与第六功率开关管S6的驱动信号互补,并加入死区时间;第一辅助功率开关管S1a和第四辅助功率开关管S4a具有相同的驱动时序并按与第一功率开关管S1和第四功率开关管S4准互补的方式高频动作,在进网电流正半周一直工作,在负半周停止工作,而且第一辅助开关S1a的导通开始阶段与第一功率开关管S1的导通末尾阶段有交叠区、第四辅助开关S4a的导通末尾阶段与第四功率开关管S4的导通开始阶段有交叠区;第二辅助功率开关管S2a和第三辅助功率开关管S3a具有相同的驱动时序并按与第二功率开关管S2和第三功率开关管S3准互补的方式高频动作,在进网电流负半周一直工作,在正半周停止工作,而且第二辅助开关S2a的导通开始阶段与第二功率开关管S2的导通末尾阶段有交叠区、第三辅助开关S3a的导通末尾阶段与第三功率开关管S3的导通开始阶段有交叠区。
在图8所示电路结构配合图3所示驱动时序的情况下,可以实现第一功率开关管S1、第二功率开关管S2、第三功率开关管S3和第四功率开关管S4的零电流开通和零电流关断、实现第一辅助功率开关管S1a、第二辅助功率开关管S2a、第三辅助功率开关管S3a和第四辅助功率开关管S4a的零电流开通和零电流关断、实现第一辅助续流功率二极管Da1、第二辅助续流功率二极管Da2的零电压开通和零电流关断,以及消除低频续流单元二极管D5和D6的反向恢复问题,并保证逆变器在功率传输、谐振阶段和续流阶段时共模电压恒处于二分之一的电池电压。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (2)

1.一种高可靠无开关损耗型非隔离逆变器,其特征在于:包括直流电容支路(1)、高频主开关单元(2)、谐振网络(3)和低频续流单元(4);
直流电容支路(1)由直流电容(Cdc)组成;
高频主开关单元(2)由第一功率开关管(S1)和第一功率二极管(D1)的并联组合、第二功率开关管(S2)和第二功率二极管(D2)的并联组合、第三功率开关管(S3)和第三功率二极管(D3)的并联组合和第四功率开关管(S4)和第四功率二极管(D4)的并联组合构成;
谐振网络(3)由第一辅助功率开关管(S1a)和第一辅助功率二极管(D1a)的并联组合、第二辅助功率开关管(S2a)和第二辅助功率二极管(D2a)的并联组合、第三辅助功率开关管(S3a)和第三辅助功率二极管(D3a)的并联组合、第四辅助功率开关管(S4a)和第四辅助功率二极管(D4a)的并联组合、第一辅助谐振电容(C 1a)、第一辅助谐振电感(L 1a)、第二辅助谐振电容(C 2a)、第二辅助谐振电感(L 2a)和第一辅助续流功率二极管(Da1)构成;
低频续流单元(4)由第五功率开关管(S5)和第五功率二极管(D5)的并联组合、第六功率开关管(S6)和第六功率二极管(D6)的并联组合组成;
所述第一功率开关管(S1)、第二功率开关管(S2)、第三功率开关管(S3)、第四功率开关管(S4)、第五功率开关管(S5)、第六功率开关管(S6)、第一辅助功率开关管(S1a)、第二辅助功率开关管(S2a)、第三辅助功率开关管(S3a)、第四辅助功率开关管(S4a)为全控型器件;
所述直流电容(Cdc)的正端分别连接太阳能电池正输出端、第一功率开关管(S1)和第三功率开关管(S3)的集电极、第一功率二极管(D1)和第三功率二极管(D3)的阴极以及第一辅助谐振电容(C 1a)的第一端;直流电容(Cdc)的负端分别连接太阳能电池负输出端、第二功率开关管(S2)和第四功率开关管(S4)的发射极、第二功率二极管(D2)和第四功率二极管(D4)的阳极以及第二辅助谐振电容(C 2a)的第一端;
所述第一功率开关管(S1)的发射极分别与第一功率二极管(D1)的阳极、第一辅助功率开关管(S1a)的源极、第一辅助功率二极管(D1a)的阳极、第二功率开关管(S2)的集电极、第二功率二极管(D2)的阴极、第二辅助功率开关管(S2a)的漏极、第二辅助功率二极管(D2a)的阴极、第六功率开关管(S6)的发射极和第六功率二极管(D6)的阳极相连接,以及连接第一进网滤波电感(L 1)的一端;第三功率开关管(S3)的发射极分别与第三功率二极管(D3)的阳极、第三辅助功率开关管(S3a)的源极、第三辅助功率二极管(D3a)的阳极、第四功率开关管(S4)的集电极、第四功率二极管(D4)的阴极、第四辅助功率开关管(S4a)的漏极、第四辅助功率二极管(D4a)的阴极、第五功率开关管(S5)的发射极和第五功率二极管(D5)的阳极相连接,以及连接第二进网滤波电感(L 2)的一端;
所述第五功率开关管(S5)的集电极和第五功率二极管(D5)的阴极、第六功率开关管(S6)的集电极和第六功率二极管(D6)的阴极相连接;
所述第一辅助功率开关管(S1a)的漏极分别与第一辅助功率二极管(D1a)的阴极、第三辅助功率开关管(S3a)的漏极、第三辅助功率二极管(D3a)的阴极和第一辅助谐振电感(L 1a)的第一端相连接;第二辅助功率开关管(S2a)的源极分别与第二辅助功率二极管(D2a)的阳极、第四辅助功率开关管(S4a)的源极、第四辅助功率二极管(D4a)的阳极和第二辅助谐振电感(L 2a)的第一端相连接;
所述第一辅助谐振电容(C 1a)的第二端与第一辅助谐振电感(L 1a)的第二端、第一辅助续流功率二极管(Da1)的阴极相连接;第二辅助谐振电容(C 2a)的第二端与第二辅助谐振电感(L 2a)的第二端、第一辅助续流功率二极管(Da1)的阳极相连接。
2.一种基于权利要求1所述高可靠无开关损耗型非隔离逆变器的开关控制时序,其特征在于:具体过程如下:
在正半周,第一功率开关管(S1)和第四功率开关管(S4)具有相同的驱动时序,并按单极性SPWM方式高频动作;在负半周,将第一功率开关管(S1)和第四功率开关管(S4)一直关断;
在负半周,第二功率开关管(S2)和第三功率开关管(S3)具有相同的驱动时序,并按单极性SPWM方式高频动作;在正半周,将第二功率开关管(S2)和第三功率开关管(S3)一直关断;
第五功率开关管(S5)在进网电流正半周一直导通,第六功率开关管(S6)在进网电流负半周一直导通,而且第五功率开关管(S5)与第六功率开关管(S6)的驱动信号互补,并加入死区时间;
第一辅助功率开关管(S1a)和第四辅助功率开关管(S4a)具有相同的驱动时序并按与第一功率开关管(S1)和第四功率开关管(S4)准互补的方式高频动作,在进网电流正半周一直工作,在负半周停止工作,而且第一辅助开关(S1a)的导通开始阶段与第一功率开关管(S1)的导通末尾阶段有交叠区、第四辅助开关(S4a)的导通末尾阶段与第四功率开关管(S4)的导通开始阶段有交叠区;第二辅助功率开关管(S2a)和第三辅助功率开关管(S3a)具有相同的驱动时序并按与第二功率开关管(S2)和第三功率开关管(S3)准互补的方式高频动作,在进网电流负半周一直工作,在正半周停止工作,而且第二辅助开关(S2a)的导通开始阶段与第二功率开关管(S2)的导通末尾阶段有交叠区、第三辅助开关(S3a)的导通末尾阶段与第三功率开关管(S3)的导通开始阶段有交叠区。
CN201410387704.9A 2014-08-07 2014-08-07 高可靠无开关损耗型非隔离逆变器及其开关控制时序 Active CN104242716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410387704.9A CN104242716B (zh) 2014-08-07 2014-08-07 高可靠无开关损耗型非隔离逆变器及其开关控制时序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410387704.9A CN104242716B (zh) 2014-08-07 2014-08-07 高可靠无开关损耗型非隔离逆变器及其开关控制时序

Publications (2)

Publication Number Publication Date
CN104242716A CN104242716A (zh) 2014-12-24
CN104242716B true CN104242716B (zh) 2017-01-11

Family

ID=52230236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410387704.9A Active CN104242716B (zh) 2014-08-07 2014-08-07 高可靠无开关损耗型非隔离逆变器及其开关控制时序

Country Status (1)

Country Link
CN (1) CN104242716B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212573B (zh) * 2019-05-27 2022-05-13 东南大学 一种功率因数可调零电流型非隔离并网逆变器及其开关控制时序
CN110198131B (zh) * 2019-06-06 2020-10-09 东南大学 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN111900894B (zh) * 2020-06-17 2021-09-21 东南大学 可全功率因数运行零电压转换非隔离并网逆变器的开关控制方法
CN116683787B (zh) * 2023-08-02 2023-10-03 国网江苏省电力有限公司电力科学研究院 一种可零开关损耗运行的软开关非隔离并网逆变电路
CN116667692B (zh) * 2023-08-02 2023-10-03 国网江苏省电力有限公司电力科学研究院 一种无开关损耗零电流转换全桥型非隔离逆变电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971019A2 (de) * 2007-03-13 2008-09-17 SMA Solar Technology AG Schaltungsvorrichtung zum transformatorlosen Umwandeln einer Gleichspannung in eine Wechselspannung mittels zweier DC/DC Wandler und einem AC/DC Wandler
CN101783611A (zh) * 2010-01-15 2010-07-21 南京航空航天大学 分裂电感三电平光伏并网逆变器及其控制方法
CN102361408A (zh) * 2011-10-20 2012-02-22 东南大学 一种非隔离光伏并网逆变器及其开关控制时序
CN102684530A (zh) * 2012-06-07 2012-09-19 上海美科新能源股份有限公司 一种具有无功补偿功能的无变压器型逆变器的控制方法
CN103199727A (zh) * 2013-04-17 2013-07-10 东南大学 一种零电流转换全桥型非隔离光伏并网逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971019A2 (de) * 2007-03-13 2008-09-17 SMA Solar Technology AG Schaltungsvorrichtung zum transformatorlosen Umwandeln einer Gleichspannung in eine Wechselspannung mittels zweier DC/DC Wandler und einem AC/DC Wandler
CN101783611A (zh) * 2010-01-15 2010-07-21 南京航空航天大学 分裂电感三电平光伏并网逆变器及其控制方法
CN102361408A (zh) * 2011-10-20 2012-02-22 东南大学 一种非隔离光伏并网逆变器及其开关控制时序
CN102684530A (zh) * 2012-06-07 2012-09-19 上海美科新能源股份有限公司 一种具有无功补偿功能的无变压器型逆变器的控制方法
CN103199727A (zh) * 2013-04-17 2013-07-10 东南大学 一种零电流转换全桥型非隔离光伏并网逆变器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
非隔离型光伏并网逆变器漏电流分析模型研究;肖华锋等;《中国电机工程学报》;20100625;第30卷(第18期);第9-14页 *
高可靠型非隔离三电平光伏并网逆变器;肖华锋等;《电力自动化设备》;20130831;第33卷(第8期);第114-119页 *

Also Published As

Publication number Publication date
CN104242716A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104242719B (zh) 无开关损耗型全桥非隔离光伏并网逆变器及开关控制时序
CN103051233B (zh) 一种非隔离型单相光伏并网逆变器及其开关控制时序
CN103199727B (zh) 一种零电流转换全桥型非隔离光伏并网逆变器
CN102185514B (zh) 一种单相三电平逆变器
CN101980437B (zh) 一种五电平并网逆变器
CN103178739B (zh) 一种零电压转换全桥型非隔离光伏并网逆变器
CN104377982B (zh) 一种零电压开关Heric型非隔离光伏并网逆变器
CN102005954B (zh) 单相非隔离型光伏并网逆变器及控制方法
CN202535290U (zh) 一种光伏逆变电路
CN104242716B (zh) 高可靠无开关损耗型非隔离逆变器及其开关控制时序
CN102751895A (zh) 一种多电平电路、并网逆变器及其调制方法
CN105119496A (zh) 一种宽输入范围的三电平llc谐振变换器及电平切换控制方法
CN102361408A (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN107204717A (zh) 一种无桥升压型cuk pfc电路
CN102255544A (zh) Dc/ac逆变电路
CN103916040A (zh) 一种逆变器拓扑电路、逆变方法及一种逆变器
CN103236796B (zh) 一种逆变器和控制逆变器的方法
CN102611347A (zh) 一种单相非隔离太阳能并网逆变器
CN105262361A (zh) 一种两级式非隔离光伏并网逆变器及其控制方法
CN109149952A (zh) 一种电流谐振型软开关推挽直流变换器
CN110198131A (zh) 一种可全功率因数运行的无开关损耗型非隔离逆变器
CN102195507A (zh) 无变压器并网逆变电路
CN109412446A (zh) 具有恒定共模电压的软开关逆变器电路
CN201726334U (zh) 一种光伏并网逆变器
CN102801292A (zh) 采用llcl型滤波器的限制反向恢复电流的准谐振变流器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant