CN103198167A - 半导体量子点平衡组份的计算方法 - Google Patents

半导体量子点平衡组份的计算方法 Download PDF

Info

Publication number
CN103198167A
CN103198167A CN2012100011755A CN201210001175A CN103198167A CN 103198167 A CN103198167 A CN 103198167A CN 2012100011755 A CN2012100011755 A CN 2012100011755A CN 201210001175 A CN201210001175 A CN 201210001175A CN 103198167 A CN103198167 A CN 103198167A
Authority
CN
China
Prior art keywords
quantum dot
model
component
quantum
dot model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100011755A
Other languages
English (en)
Other versions
CN103198167B (zh
Inventor
王东林
周帅
俞重远
刘玉敏
叶寒
赵龙
芦鹏飞
韩利红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201210001175.5A priority Critical patent/CN103198167B/zh
Publication of CN103198167A publication Critical patent/CN103198167A/zh
Application granted granted Critical
Publication of CN103198167B publication Critical patent/CN103198167B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了一种半导体量子点平衡组份的计算方法,包括:建立衬底和量子点模型;采用精细网格将所述建立的衬底和量子点模型网格化,将量子点模型简化为多个体积元组合,并用量子点模型中的网格节点来替代所述体积元;给量子点模型中的每个网格节点赋予组份值,并将其作为计算变量;设量子点的平均组份固定不变,通过有限元方法计算量子点模型的吉布斯自由能、所述吉布斯自由能大小对量子点组份分布的灵敏度以及量子点平均组分对量子点组份分布的灵敏度;根据量子点的吉布斯自由能、量子点平均组份和吉布斯自由能的组份以及上述灵敏度信息得到量子点模型的吉布斯自由能最小时量子点的组份分布。本发明提高了量子点平衡组份分布的计算效率。

Description

半导体量子点平衡组份的计算方法
技术领域
本发明涉及量子点技术领域,尤其涉及一种半导体量子点平衡组份的计算方法。
背景技术
量子点材料的结构及应用是国际上最为前沿的研究领域之一。量子点是在把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。电子运动在三维空间都受到了限制使其在光电领域有许多独特的性能。如:量子效应、表面效应、限域效应、尺寸效应、量子隧穿,极大地拓展了半导体材料的应用领域。由于量子点中低的态密度和能级的尖锐化,使其结构对其中的载流子产生三维量子限制效应,从而使其电学性能和光学性能发生变化。这些性质使其在单电子器件、存贮器、单光子激光器、探测器等光电器件方面有极为广泛的应用。量子点的出现使量子光通信及其量子信息处理是实现成为可能,是促进信息与通信技术快速发展的关键因素。
量子点的光电特性与量子点的材料、形状、内部应力以及组份分布息息相关。量子点的组份分布是用于体现量子点材料组成与分布的,它主要与量子点的生长温度、沉积速率、退火环境等有关,而且与量子点内部晶格的失配、材料的扩散等有很大关联。换句话说,量子点的组份分布是量子点生长中热力学和动力学因素共同作用的结果。但是由于目前实验条件的限制,实验上获得准确的组份分布是很困难的。而量子点的组份分布在精确分析和预测量子点材料特性时是必不可少的一部分。所以理论上的组份分布计算对于预测量子点材料特性、指导和解释实验等有很重要的意义。
针对理论计算量子点组份分布的问题,目前主要的计算方法有蒙特卡洛方法,二次规划方法或蒙特卡洛方法与有限元方法结合的方法。其中蒙特卡洛方法计算每一个原子的位置,计算精度相对较高,但是计算量非常大。而通过有限元方法的网格划分来简化量子点中的分子组合大大的减小了计算量,但是二次规划方法或蒙特卡洛方法在搜寻最优的组份分布时计算速度较慢,虽然计算结果能与实验结果吻合,但是计算效率没有得到很大提高。综上所述,提出一种更加高效的量子点平衡组份分布的计算方法,得到与实验相吻合的量子点平衡组份分布是精确分析和预测量子点材料的光电特性,指导实验实施迫切需要解决的问题。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:提供一种半导体量子点平衡组份的计算方法,以解决现有技术中计算量子点平衡组份分布方法计算效率低的问题。
(二)技术方案
为解决上述问题,本发明提供了一种半导体量子点平衡组份的计算方法,包括以下步骤:
S1:建立衬底和量子点模型;
S2:采用精细网格将所述建立的衬底和量子点模型网格化,将量子点模型简化为多个体积元组合,并用网格化所述量子点模型得到的量子点模型中的网格节点来替代所述体积元;
S3:给量子点模型中的每个网格节点赋予组份值,并将量子点模型中每个网格节点上的组份值作为计算变量;
S4:设量子点的平均组份固定不变,通过有限元方法计算量子点模型的吉布斯自由能和所述吉布斯自由能大小对量子点组份分布的灵敏度;
S5:通过有限元方法计算出量子点平均组分对量子点组份分布的灵敏度;
S6:根据量子点的吉布斯自由能、量子点平均组份和量子点模型网格节点的吉布斯自由能的组份以及步骤S4和S5中的灵敏度信息得到量子点模型的吉布斯自由能最小时量子点的组份分布。
优选地,所述步骤S1中,所述量子点模型为InxGa1-xAs截顶金字塔形量子点;所述衬底模型为GaAs衬底。
优选地,所述步骤S4中量子点模型的吉布斯自由能G包括量子点模型的焓和熵的贡献:
G=H-TS
其中:H和S分别表示量子点模型的焓和熵,T为量子点模型的生长温度。
优选地,所述量子点模型的熵对吉布斯自由能的贡献表示为:
TS≈-nkT[cln(c)+(1-c)ln(1-c)]
其中n为原子个数,k为波耳兹曼常数,c为量子点组份分布。
优选地,所述量子点模型的焓对吉布斯自由能的贡献表示为:
H=Echemical+Eelastic+Esurf+Elin
其中Echemical为量子点模型的化学混合能,Eelastic为量子点模型的应变能,Esurf为量子点模型的表面能,Elin量子点模型的线维度能。
优选地,所述量子点模型的化学混合能Echemical=nΩc(1-c),其中Ω为化学反应参数。
优选地,所述量子点模型的应变能其中σ为量子点模型的应力,ε为量子点模型的应变,ε0为量子点模型中晶格失配引起的应变分布;所述应力σ和应变ε分量由量子点模型材料的劲度矩阵D来计算;所述晶格失配引起的应变分布ε0=εmc,εm为量子点与衬底晶格失配引起的初始应变。
优选地,截顶金字塔形量子点模型的表面能Esurf为:
Esurf=4b2(1-rtan-1θ)(sin-1θ-rtan-1θ)γ
其中,b为截顶金字塔形量子点模型的底侧边宽度,r为截顶金字塔形量子点模型的高宽比,θ为截顶金字塔形量子点模型侧面与地面夹角,γ为截顶金字塔形量子点模型表面能密度。
优选地,所述步骤S6中,通过移动渐进线方法得到量子点模型的吉布斯自由能最小时量子点的平衡组份分布。
(三)有益效果
1)本发明通过采用有限元方法简化计算模型减少优化变量,提高计算效率;
2)本发明通过采用移动渐进线方法快速搜寻最优解,提高计算效率;
3)本发明的计算结果能与其它方法和实验结果相吻合,对指导实验有重要意义。
附图说明
图1为根据本发明实施例计算方法的步骤流程图;
图2为根据本发明实施例量子点与衬底模型的示意图;
图3为根据本发明实施例有限元精细网格结构示意图;
图4a为根据本发明实施例最优量子点组份分布俯视图;
图4b为图4a中A-A处的剖面图;
图4c为图4a和4b中图面灰度与量子点组份值的对比条示意图;
图5为根据本发明实施例吉布斯自由能随循环次数变化的关系示意图。
具体实施方式
下面结合附图及实施例对本发明进行详细说明如下。
量子点组份分布与量子点的材料、形状、生长的温度、沉积速率、退火环境、量子点内部晶格的失配、材料的扩散等因素有很大关联。在本实施例中,忽略量子点生长时的沉积速率,以及量子点与衬底之间的材料扩散等动力学因素的影响。
如图1所示,本实施例记载了一种半导体量子点平衡组份的计算方法,包括以下步骤:
S1:建立衬底和量子点模型。
本实施例中选定实验中常见的InxGa1-xAs截顶金字塔形量子点作为量子点模型;长方体的GaAs衬底为衬底模型。通过有限元方法建立InxGa1-xAs/GaAs量子点体系模型(如图2所示),为了与实验条件接近,减小衬底对量子点的影响,本发明选取较大的衬底模型(300nm×300nm×100nm),且衬底侧边采用周期边界条件,衬底底部固定,衬底顶面及量子点各个面都为自由边界条件。量子点模型截顶金字塔形,其底侧边宽度b为80nm,高宽比r为0.2,侧面113为等腰梯形。
S2:如图3所示,采用精细网格将所述建立的衬底和量子点模型网格化,将量子点模型简化为多个体积元组合,并用网格化所述量子点模型得到的量子点模型中的网格节点来替代所述体积元;可以通过精细网格来减小与实际情况的差别。
S3:给量子点模型中的每个网格节点赋予组份值,并将量子点模型中每个网格节点上的组份值作为计算变量。
本实施例中只选取量子点模型中的网格节点并赋予组份值,并将这些节点上的组份值作为计算变量;而衬底模型中的网格节点不参与组份计算,只参与整个模型体系中应变的释放以及能量的演化计算。
S4:设量子点的平均组份固定不变,通过有限元方法计算量子点模型的吉布斯自由能和所述吉布斯自由能大小对量子点组份分布的灵敏度。
本实施例需要通过调整量子点组份分布来得到体系最小吉布斯自由能,为了简化计算过程中量子点形状的变化以及材料的沉积对组份的影响,因此本实施例将“量子点的平均组份不变”设为限定条件。
量子点的形成过程中伴随着应变的释放、化学能量的混合以及熵的演化,因此本实施例中量子点模型的吉布斯自由能G包括量子点模型的焓和熵的贡献:
G=H-TS
其中:H和S分别表示量子点模型的焓和熵,T为量子点模型的生长温度。
所述量子点模型的熵对吉布斯自由能的贡献表示为:
TS≈-nkT[cln(c)+(1-c)ln(1-c)]
其中n为原子个数,k为波耳兹曼常数,c为量子点组份分布。
所述量子点模型的焓对吉布斯自由能的贡献表示为:
H=Echemical+Eelastic+Esurf+Elin
其中Echemical为量子点模型的化学混合能,Eelastic为量子点模型的应变能,Esurf为量子点模型的表面能,Elin量子点模型的线维度能。
所述量子点模型的化学混合能Echemical=nΩc(1-c),其中Ω为化学反应参数。
所述量子点模型的应变能
Figure BDA0000128585740000061
其中σ为量子点模型的应力,ε为量子点模型的应变,ε0为量子点模型中晶格失配引起的应变分布;所述应力σ和应变ε分量由量子点模型材料的劲度矩阵D来计算;所述晶格失配引起的应变分布ε0=εmc,εm为量子点与衬底晶格失配引起的初始应变。
量子点的表面能主要与量子点形状有关,本实施例中简化设定表面密度能与方向无关,则本实施例截顶金字塔形量子点模型的表面能Esurf为:
Esurf=4b2(1-rtan-1θ)(sin-1θ-rtan-1θ)γ
其中,b为截顶金字塔形量子点模型的底侧边宽度,r为截顶金字塔形量子点模型的高宽比,θ为截顶金字塔形量子点模型侧面与地面夹角,γ为截顶金字塔形量子点模型表面能密度。
量子点模型的线维度能Elin主要分布在量子点边界线上,对组份分布影响很小,在本实施例中不予计算。
本实施例中,所述量子点的材料参数、表面能密度和化学反应参数可由下面的表1给出。
Figure BDA0000128585740000071
表1量子点材料体系的材料参数,表面能系数以及化学反应参数。
通过步骤S4的分析和计算,可以得到给定组份分布的量子点模型的吉布斯自由能大小,下面将量子点模型的吉布斯自由能作为优化的目标函数,并求其最小值。
S5:通过有限元方法计算出量子点平均组分对量子点组份分布的灵敏度。
本实施例在步骤S4和S5中引入的灵敏度信息可以加快搜寻吉布斯自由能最小时的组份分布的速度,提高计算效率。
S6:将所述量子点的吉布斯自由能、量子点平均组份和量子点模型网格节点的吉布斯自由能的组份以及上述灵敏度信息代入到移动渐进线方法(method of moving asymptotes)中,得到量子点模型的吉布斯自由能最小时量子点的平衡组份分布。平衡组份分布是指:体系能量最低时的组份分布,也就是体系稳定时的组份分布。
其中,所述移动渐进线方法基于一阶泰勒展开,通过凸函数方程来取代原函数。即原函数(隐函数)被分离成一系列的凸函数(显函数)的组合,最终的优化问题就简化成计算一些列显函数的子问题。在显函数中,两个参数L和U被称为移动渐近线,被用于定义当前循环优化变量新的上下限。在循环之前k=0,1令L(k)=x(k)-(xup-xlow)和U(k)=x(k)+(xup-xlow),当循环开始后k>1且x(k)-x(k-1)和x(k-1)-x(k-2)符号相反,则L(k)=x(k)-η(x(k-1)-L(k-1))和U(k)=x(k)+η(U(k-1)-x(k-1)),当k>1且x(k)-x(k-1)和x(k-1)-x(k-2)符号相同时,则取L(k)=x(k)-(x(k-1)-L(k-1))/η和U(k)=x(k)+(U(k-1)-x(k-1))/η。其中η是松弛系数。的那个移动渐进线优化过程是单调的,渐进线远离当前的变量来加速优化,如果优化过程出现摆动,渐渐线则移向稳定的状态。所述移动渐进线方法通过调整渐进线来加速搜寻最优值,应用在本实施例算法中能加速计算过程,提高计算效率。
通过本实施例的计算方法得到的InxGa1-xAs/GaAs量子点体系模型中InxGa1-xAs量子点的组份分布如图4a-4c所示。由于量子点形成过程中伴随着应变能的释放以及化学能和熵的混合作用。应变的释放会导致组份的分离,为了减小体系中的应变能,晶格较大的In原子会聚集在量子点顶端,而晶格较小的Ga原子会聚集在量子点底部。而化学能和熵是作用是使体系变的无序,从而使组份混合;这种作用与温度有关,温度越高混合作用越明显,组份分布越均匀,温度越低混合作用越不明显,而应变释放的分离作用就越明显。正是两种作用共同作用才导致了如图4a-4c所示的组份分布。通过与实验结果对比发现本发明方法的计算结果能与实验结果吻合的很好。
本实施例中目标函数变化与循环次数示意图如图5所示,目标函数迅速下降并逐渐趋于稳定。整个优化过程仅需20步循环即可完成。相比其他计算方法上百次的循环,本发明方法能大大提高计算效率。
综上所述,本发明中优化量子点中的平衡组份分布能大大减小计算量,提高计算效率。且方法计算的结果和精度与现有计算方法一致,且能与实验结果吻合的很好;为今后量子点平衡组份分布的计算,精确分析和预测量子点材料的光电特性研究提供了一种更有效的方法。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (9)

1.一种半导体量子点平衡组份的计算方法,其特征在于,包括以下步骤:
S1:建立衬底和量子点模型;
S2:采用精细网格将所述建立的衬底和量子点模型网格化,将量子点模型简化为多个体积元组合,并用网格化所述量子点模型得到的量子点模型中的网格节点来替代所述体积元;
S3:给量子点模型中的每个网格节点赋予组份值,并将量子点模型中每个网格节点上的组份值作为计算变量;
S4:设量子点的平均组份固定不变,通过有限元方法计算量子点模型的吉布斯自由能和所述吉布斯自由能大小对量子点组份分布的灵敏度;
S5:通过有限元方法计算出量子点平均组分对量子点组份分布的灵敏度;
S6:根据量子点的吉布斯自由能、量子点平均组份和量子点模型网格节点的吉布斯自由能的组份以及步骤S4和S5中的灵敏度信息得到量子点模型的吉布斯自由能最小时量子点的组份分布。
2.如权利要求1所述的半导体量子点平衡组份的计算方法,其特征在于,所述步骤S1中,所述量子点模型为InxGa1-xAs截顶金字塔形量子点;所述衬底模型为GaAs衬底。
3.如权利要求1所述的半导体量子点平衡组份的计算方法,其特征在于,所述步骤S4中量子点模型的吉布斯自由能G包括量子点模型的焓和熵的贡献:
G=H-TS
其中:H和S分别表示量子点模型的焓和熵,T为量子点模型的生长温度。
4.如权利要求3所述的半导体量子点平衡组份的计算方法,其特征在于,所述量子点模型的熵对吉布斯自由能的贡献表示为:
TS≈-nkT[cln(c)+(1-c)ln(1-c)]
其中n为原子个数,k为波耳兹曼常数,c为量子点组份分布。
5.如权利要求4所述的半导体量子点平衡组份的计算方法,其特征在于,所述量子点模型的焓对吉布斯自由能的贡献表示为:
H=Echemical+Eelastic+Esurf+Elin
其中Echemical为量子点模型的化学混合能,Eelastic为量子点模型的应变能,Esurf为量子点模型的表面能,Elin量子点模型的线维度能。
6.如权利要求5所述的半导体量子点平衡组份的计算方法,其特征在于,所述量子点模型的化学混合能Echemical=nΩc(1-c),其中Ω为化学反应参数。
7.如权利要求5所述的半导体量子点平衡组份的计算方法,其特征在于,所述量子点模型的应变能
Figure FDA0000128585730000021
其中σ为量子点模型的应力,ε为量子点模型的应变,ε0为量子点模型中晶格失配引起的应变分布;所述应力σ和应变ε分量由量子点模型材料的劲度矩阵D来计算;所述晶格失配引起的应变分布ε0=εmc,εm为量子点与衬底晶格失配引起的初始应变。
8.如权利要求5所述的半导体量子点平衡组份的计算方法,其特征在于,截顶金字塔形量子点模型的表面能Esurf为:
Esurf=4b2(1-rtan-1θ)(sin-1θ-rtan-1θ)γ
其中,b为截顶金字塔形量子点模型的底侧边宽度,r为截顶金字塔形量子点模型的高宽比,θ为截顶金字塔形量子点模型侧面与地面夹角,γ为截顶金字塔形量子点模型表面能密度。
9.如权利要求1所述的半导体量子点平衡组份的计算方法,其特征在于,所述步骤S6中,通过移动渐进线方法得到量子点模型的吉布斯自由能最小时量子点的平衡组份分布。
CN201210001175.5A 2012-01-04 2012-01-04 半导体量子点平衡组份的计算方法 Expired - Fee Related CN103198167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210001175.5A CN103198167B (zh) 2012-01-04 2012-01-04 半导体量子点平衡组份的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210001175.5A CN103198167B (zh) 2012-01-04 2012-01-04 半导体量子点平衡组份的计算方法

Publications (2)

Publication Number Publication Date
CN103198167A true CN103198167A (zh) 2013-07-10
CN103198167B CN103198167B (zh) 2015-10-14

Family

ID=48720724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210001175.5A Expired - Fee Related CN103198167B (zh) 2012-01-04 2012-01-04 半导体量子点平衡组份的计算方法

Country Status (1)

Country Link
CN (1) CN103198167B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914430A (zh) * 2014-04-16 2014-07-09 贵州师范学院 一种流体相混合体系多重化学平衡计算系统
CN105158561A (zh) * 2015-09-25 2015-12-16 南京大学 基于无氧铜矩形谐振腔的可调传输子量子比特系统
CN106529012A (zh) * 2016-10-28 2017-03-22 上海空间电源研究所 复杂化合物半导体器件的自适应性网格移动方法
CN111598246A (zh) * 2020-04-22 2020-08-28 北京百度网讯科技有限公司 量子吉布斯态生成方法、装置及电子设备
CN112578082A (zh) * 2020-12-08 2021-03-30 武汉大学 基于多各项同性材料各向异性同一化的处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109586A1 (ja) * 2004-05-11 2005-11-17 Japan Science And Technology Agency リトロー型外部共振器半導体レーザーにおける光軸のずれの補正方法および装置
CN101251485A (zh) * 2008-04-02 2008-08-27 中国科学院上海技术物理研究所 一种利用荧光光谱测量半导体量子点尺寸分布的方法
CN101375425A (zh) * 2005-12-16 2009-02-25 普林斯顿大学理事会 具有隧穿势垒嵌在有机基质中的量子点的中能带光敏器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109586A1 (ja) * 2004-05-11 2005-11-17 Japan Science And Technology Agency リトロー型外部共振器半導体レーザーにおける光軸のずれの補正方法および装置
CN101375425A (zh) * 2005-12-16 2009-02-25 普林斯顿大学理事会 具有隧穿势垒嵌在有机基质中的量子点的中能带光敏器件
CN101251485A (zh) * 2008-04-02 2008-08-27 中国科学院上海技术物理研究所 一种利用荧光光谱测量半导体量子点尺寸分布的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914430A (zh) * 2014-04-16 2014-07-09 贵州师范学院 一种流体相混合体系多重化学平衡计算系统
CN105158561A (zh) * 2015-09-25 2015-12-16 南京大学 基于无氧铜矩形谐振腔的可调传输子量子比特系统
CN106529012A (zh) * 2016-10-28 2017-03-22 上海空间电源研究所 复杂化合物半导体器件的自适应性网格移动方法
CN106529012B (zh) * 2016-10-28 2020-02-04 上海空间电源研究所 复杂化合物半导体器件的自适应性网格移动方法
CN111598246A (zh) * 2020-04-22 2020-08-28 北京百度网讯科技有限公司 量子吉布斯态生成方法、装置及电子设备
CN112578082A (zh) * 2020-12-08 2021-03-30 武汉大学 基于多各项同性材料各向异性同一化的处理方法
CN112578082B (zh) * 2020-12-08 2022-02-11 武汉大学 基于多各项同性材料各向异性同一化的处理方法

Also Published As

Publication number Publication date
CN103198167B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
US11443217B2 (en) Information processing apparatus and information processing method
Gránásy et al. Phase-field modeling of polycrystalline solidification: from needle crystals to spherulites—a review
Sander et al. Diffusion-limited aggregation as a deterministic growth process
Sadigh et al. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys
CN103198167A (zh) 半导体量子点平衡组份的计算方法
Chan et al. Swarm Intelligence: focus on ant and particle swarm optimization
CN104598565B (zh) 一种基于随机梯度下降算法的k均值大规模数据聚类方法
Griffiths The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion
Flierl et al. Hamiltonian–Dirac simulated annealing: application to the calculation of vortex states
CN109408939A (zh) 一种兼顾应力和位移约束的薄板结构加强筋分布优化的改进方法
Zhou et al. Fast gradient‐based distributed optimisation approach for model predictive control and application in four‐tank benchmark
Sozza et al. Large-scale confinement and small-scale clustering of floating particles in stratified turbulence
Barmak et al. An entropy based theory of the grain boundary character distribution
CN104680235A (zh) 圆形微带天线谐振频率设计方法
Gan et al. Extended Bose-Hubbard model on a honeycomb lattice
Liao et al. A fast optimal Latin hypercube design for Gaussian process regression modeling
Dong et al. Perturbative critical behavior from spacetime dependent couplings
Baldassi A method to reduce the rejection rate in Monte Carlo Markov chains
Lumb et al. Dynamics of particle in confined-harmonic potential in external static electric field and strong laser field
Papanikolaou et al. First-order versus unconventional phase transitions in three-dimensional dimer models
Abbas et al. Quantum artificial bee colony algorithm for numerical function optimization
CN102708241B (zh) 一种用于油藏历史拟合的快速粒子群方法
Dempster Sequential importance sampling algorithms for dynamic stochastic programming
Poulton A Density Functional Theory Study on the properties of Dopants in Silicon Nanostructures
Cho Chaos and Fractal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151014

CF01 Termination of patent right due to non-payment of annual fee