CN103197290A - 一种穿墙雷达多径杂波抑制方法 - Google Patents

一种穿墙雷达多径杂波抑制方法 Download PDF

Info

Publication number
CN103197290A
CN103197290A CN2013101142876A CN201310114287A CN103197290A CN 103197290 A CN103197290 A CN 103197290A CN 2013101142876 A CN2013101142876 A CN 2013101142876A CN 201310114287 A CN201310114287 A CN 201310114287A CN 103197290 A CN103197290 A CN 103197290A
Authority
CN
China
Prior art keywords
multipath
target
range delay
wall
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101142876A
Other languages
English (en)
Other versions
CN103197290B (zh
Inventor
孔令讲
贾勇
张鹏
刘剑刚
杨晓波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310114287.6A priority Critical patent/CN103197290B/zh
Publication of CN103197290A publication Critical patent/CN103197290A/zh
Application granted granted Critical
Publication of CN103197290B publication Critical patent/CN103197290B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

一种穿墙雷达多径杂波的抑制方法,属于穿墙雷达技术领域。本发明首先采用运动目标显示(MTI)滤波抑制墙体回波等强静止杂波,凸显运动目标的回波并且进行单元平均恒虚警(CA-CFAR)检测;其次在距离向上凝聚提取检测后真实目标与多径杂波的距离延迟信息;然后,利用墙体位置信息及检测后的目标距离延迟预测相对应的多径信道的距离延迟;最后,通过所预测的多径信道的距离延迟范围对检测后的目标进行分离,甄别出多径杂波并对其进行抑制。本发明基于单发单收天线配置对穿墙雷达的回波数据进行检测,提取运动目标的距离信息,同时抑制多径杂波对雷达系统的干扰,能够显著提高雷达系统的检测性能,抑制多径杂波对雷达系统的影响。

Description

一种穿墙雷达多径杂波抑制方法
技术领域
本发明属于穿墙雷达技术领域,特别涉及穿墙雷达成像中多径杂波抑制技术。
背景技术
多径杂波指的是无线电信号从发射天线经过多个不同的信道路径抵达接收天线的传播现象。由于穿墙雷达需要对墙体障碍物后的封闭建筑物进行透视探测,受到建筑物墙体反射电磁波的干扰,存在严重的多径杂波。多径杂波会在两个方面对穿墙雷达的探测性能产生影响,第一,多径杂波会造成目标回波能量衰弱,降低目标回波信噪比;第二,多径杂波会产生虚假目标,干扰雷达系统的正常工作。因此,穿墙雷达中多径杂波抑制能够有效提高雷达探测性能,是穿墙雷达技术的一个重要研究方向。
目前,穿墙雷达多径杂波抑制方法是在图像域中实现的,通过处理多径杂波形成的多径幻象达到对多径杂波的抑制。第一,根据多径杂波的形成特点,对多径杂波进行直接的抑制,消除其对雷达系统的影响。美国维拉诺瓦大学采用多视角图像融合算法对多径杂波实现了良好抑制,因为雷达在不同的位置对目标区域成像所形成的多径杂波信道不同,所以在图像域中多径杂波所形成的虚假目标的位置不同,通过多视角成像及图像融合的方式对多径杂波进行盲处理,但多视角探测存在操作复杂、易引入测量误差等问题,而且实际探测环境通常不具备多视角探测的条件。第二,对运动目标相应多径杂波进行复用,这样不仅消除了多径杂波的影响,而且会降低多径信道衰落的影响,提高目标回波的信噪比。对人体多径回波造成的图像散焦问题,法国尼斯大学采用TRM(时间反转镜像)技术对多径回波进行重聚焦,解决图像散焦问题,实验测试对图像散焦的抑制效果有限。美国的维拉诺瓦大学通过复用多径杂波达到提高信噪比的作用,甚至可以复用多径杂波用单发单收雷达对目标进行定位,但是容易造成真实目标的丢失,在实际工程应用中效果有限。综上所述,基于成像的多径杂波处理方法在实际应用中具有很大的局限性。
发明内容
本发明提供一种穿墙雷达多径杂波的抑制方法。根据墙体和雷达的相对位置关系,分析并预测任何位置目标所产生的多径杂波在回波上所处的距离延迟范围,以甄别距离向上的多径杂波和真实目标,最终达到降低虚警概率,提高雷达探测性能的作用。
本发明基于单发单收天线配置对穿墙雷达的回波数据进行检测,提取运动目标的距离信息,同时抑制多径杂波对雷达系统的干扰,提高雷达系统的探测性能。因此,本发明首先采用运动目标显示(MTI)滤波抑制墙体回波等强静止杂波的干扰,凸显运动目标的回波并且进行单元平均恒虚警(CA-CFAR)检测;其次在距离向上凝聚提取检测后真实目标与多径杂波的距离延迟信息;然后,利用墙体位置信息及检测后的目标距离延迟预测相对应的多径信道的距离延迟;最后,通过所预测的多径信道的距离延迟范围对检测后的目标进行分离,甄别出多径杂波并对其进行抑制。通过以上操作能够显著提高雷达系统的检测性能,抑制多径杂波对雷达系统的影响。
本发明技术方案如下:
一种穿墙雷达多径杂波的抑制方法,处理流程如图1所示,包括以下步骤:
步骤1:MTI滤波。
对回波距离向平面进行MTI(运动目标显示)滤波,即将多普勒频率分量在零附近的回波信号滤除掉,得到抑制包括墙体在内的固定目标杂波后任意一个周期内距离向的数据向量A(M),其中M为距离单元总数。
步骤2:恒虚警检测。
对数据向量A(M)进行单元平均恒虚警检测(CA-CFAR)。其中,待测数据单元对应的检测门限为α=q(pfa -1q-1),pfa为恒虚警概率,q为待测数据单元周围参考单元的个数,形成二值化的数据向量Det(M)。
步骤3:距离延迟提取。
提取数据向量Det(M)中每个真实目标回波和其对应多径杂波的距离延迟信息。首先对数据向量Det(M)进行中值滤波,去除检测后的高频噪点;然后对数值为1的相邻距离单元进行凝聚(距离单元相邻或十分相近的目标视为一个目标),估计出目标和其相应多径杂波的距离延迟,得到距离向量R(N),其中N表示检测出的目标个数。
步骤4:距离延迟预测。
预测距离向量R(N)中每一个元素作为目标时相应的多径信道距离延迟的范围;具体包括以下步骤:
步骤4-1:距离向量R(N)中的任意一个目标元素距离延迟为rn(n=1,……,N),则该目标应当位于以收发天线为焦点、焦距2c为收发天线的间距、定长2a=rn的近似椭圆上的任意位置。如果以收发天线的中点作为原点建立直角坐标系,则该椭圆的方程为x2/a2+y2/(a2-c2)=1(其中(x,y)属于探测场景内的点)。
步骤4-2:假设电磁波在墙壁处的反射为镜面反射并且利用先验的墙体位置信息,由电磁波传播的几何原理可以预测运动目标在场景任意位置处的多径信道距离延迟。因此步骤4-1中目标元素在每个椭圆位置对应的多径信道距离延迟为ln(x,y)(ln(x,y)是关于x和y的一个函数)。
步骤4-3:预测目标多径信道的距离延迟ln(x,y)的取值范围,就是对含有约束条件x2/a2+y2/(a2-c2)=1的目标函数ln(x,y)求解最大最小值。由于约束条件和目标函数都是解析函数,能够通过拉格朗日乘数法求得目标对应多径信道距离延迟的最大值
Figure BDA00003007549600033
和最小值
Figure BDA00003007549600034
,因此,目标对应多径信道距离延迟的估计范围在
Figure BDA00003007549600035
Figure BDA00003007549600036
之间。
步骤4-4:对该距离向量R(N)中每一个元素重复步骤4-1至步骤4-3,则可以得到预测任意目标对应多径信道距离延迟范围的两个向量Lmax(N)和Lmin(N)。
步骤5:多径杂波分离与剔除。
根据所预测的目标对应多径信道距离延迟范围的向量Lmax(N)和Lmin(N),将距离向量R(N)中的多径杂波进行分离:首先通过先验的墙体位置信息,去除距离向量R(N)中位于探测场景之外的多径杂波;然后将距离向量R(N)中某个元素ri之后满足的元素rj认定是对应于ri的多径干扰,并将其剔除,其中i=1,2,…N,且j>i;(因元素rj满足
Figure BDA00003007549600032
则元素rj落在ri对应的多径信道距离延迟之内,故可以认定rj是对应于ri的多径干扰);在距离向量R(N)中所有和多径干扰全部剔除后,得到剩余真实目标的距离延迟向量R'(N'),其中N'为剩余真实目标个数。
本发明的有益效果是:
本发明联合应用MTI对消抑制固定杂波、一维平均恒虚警检测CA-CFAR检测、距离向凝聚提取回波距离延迟信息、预测多径信道的距离延迟、对检测后的目标和多径杂波进行分离并且剔除多径杂波,抑制了墙体等强固定杂波,增强了雷达对目标的测距能力,消除了多径杂波对雷达系统检测性能的影响,从而提高了雷达系统对真实目标的检测概率。因此,本发明具有抗干扰性强和提高雷达检测概率的优势,具有很强的实用性。
附图说明
图1为本发明的流程图。
图2为典型的穿墙雷达运动人体探测场景示意图。
图3距离向平面MTI平均对消结果。
图4一维恒虚警检测后的距离向平面图。
图5中值滤波后距离向平面图。
图6凝聚之后每个周期回波距离延迟图。
图7多径杂波的回波信道模型示意图。
图8认定为目标的距离延迟图。
具体实施方式
下面结合一个典型实验例子给出本发明的具体实施方式。
穿墙雷达对运动人体目标探测的实验场景图如图2所示,穿墙雷达系统采用单发单收介质天线,收发天线间距为0.5m,发射信号为1GHz~2GHz的步进频率连续波信号,运动人体目标在第二堵墙之后做往返运动,接收天线共采集200个步进频率脉冲回波信号,墙体为普通粘土砖墙,墙体厚度为50cm,每堵墙的宽度为2m,相邻两堵墙的间距为5m。
对快慢时间数据矩阵进行MTI平均对消抑制固定杂波,输出结果如图3所示,墙体回波等固定杂波得到较好抑制。通过MTI滤波处理,能够较为明显地观察到运动人体回波信号,场景中只有一个运动人体,但是却有三条很明显的运动人体回波,可以初步断定其中存在着运动目标多径干扰的影响,会使雷达系统的检测性能降低。
接下来,采用虚警概率为10-3的CA-CFAR检测器进行检测处理,并进行二值化处理。其中,CA-CFAR检测器的保护数据单元为检测数据单元两端的40个数据单元,参考数据单元为保护单元周围的200个数据单元。得到如图4所示的检测后的结果。
然后,对检测后的数据矩阵进行9×9的中值滤波,去除椒盐噪声提高图像质量。得到如图5所示的图像。对权值为一且相邻近的距离单元进行凝聚,估计出每个回波的距离延迟,得到每个周期目标的距离延迟矩阵R(200,4),如图6所示。
然后,利用墙体位置信息和电磁波在墙壁处的反射为镜面反射建立场景中目标在任意位置处多径回波的模型(如图7所示),path-B为场景中任意位置目标多径回波信道,此时可以对目标的多径杂波距离延迟进行预测。
最后,根据目标多径信道距离延迟范围的预测结果,对距离矩阵R(200,4)中的多径杂波进行分离,将被认定为多径杂波的对其进行剔除,得到如图8所示检测后的结果。
综上所述,本方法能够有效消除多径杂波的干扰,提高穿墙雷达系统的检测性能,适于应用在实际穿墙雷达运动人体探测中。

Claims (1)

1.一种穿墙雷达多径杂波的抑制方法,包括以下步骤:
步骤1:MTI滤波;
对回波距离向平面进行运动目标显示的MTI滤波,即将多普勒频率分量在零附近的回波信号滤除掉,得到抑制包括墙体在内的固定目标杂波后任意一个周期内距离向的数据向量A(M),其中M为距离单元总数;
步骤2:恒虚警检测;
对数据向量A(M)进行单元平均恒虚警检测;其中,待测数据单元对应的检测门限为α=q(pfa -1q-1),pfa为恒虚警概率,q为待测数据单元周围参考单元的个数,形成二值化的数据向量Det(M);
步骤3:距离延迟提取;
提取数据向量Det(M)中每个真实目标回波和其对应多径杂波的距离延迟信息;首先对数据向量Det(M)进行中值滤波,去除检测后的高频噪点;然后对数值为1的相邻距离单元进行凝聚,估计出目标和其相应多径杂波的距离延迟,得到距离向量R(N),其中N表示检测出的目标个数;
步骤4:距离延迟预测;
预测距离向量R(N)中每一个元素作为目标时相应的多径信道距离延迟的范围;具体包括以下步骤:
步骤4-1:距离向量R(N)中的任意一个目标元素距离延迟为rn(n=1,……,N),则该目标应当位于以收发天线为焦点、焦距2c为收发天线的间距、定长2a=rn的近似椭圆上的任意位置;如果以收发天线的中点作为原点建立直角坐标系,则该椭圆的方程为x2/a2+y2/(a2-c2)=1,其中(x,y)属于探测场景内的点;
步骤4-2:假设电磁波在墙壁处的反射为镜面反射并且利用先验的墙体位置信息,由电磁波传播的几何原理可以预测运动目标在场景任意位置处的多径信道距离延迟;因此步骤4-1中目标元素在每个椭圆位置对应的多径信道距离延迟为ln(x,y),其中ln(x,y)是关于x和y的一个函数;
步骤4-3:预测目标多径信道的距离延迟ln(x,y)的取值范围,就是对含有约束条件x2/a2+y2/(a2-c2)=1的目标函数ln(x,y)求解最大最小值;由于约束条件和目标函数都是解析函数,能够通过拉格朗日乘数法求得目标对应多径信道距离延迟的最大值
Figure FDA00003007549500021
和最小值
Figure FDA00003007549500022
因此,目标对应多径信道距离延迟的估计范围在
Figure FDA00003007549500023
Figure FDA00003007549500024
之间;
步骤4-4:对该距离向量R(N)中每一个元素重复步骤4-1至步骤4-3,则可以得到预测任意目标对应多径信道距离延迟范围的两个向量Lmax(N)和Lmin(N);
步骤5:多径杂波分离与剔除;
根据所预测的目标对应多径信道距离延迟范围的向量Lmax(N)和Lmin(N),将距离向量R(N)中的多径杂波进行分离:首先通过先验的墙体位置信息,去除距离向量R(N)中位于探测场景之外的多径杂波;然后将距离向量R(N)中某个元素ri之后满足的元素rj认定是对应于ri的多径干扰,并将其剔除,其中i=1,2,…N,且j>i;在距离向量R(N)中所有和多径干扰全部剔除后,得到剩余真实目标的距离延迟向量R'(N'),其中N'为剩余真实目标个数。
CN201310114287.6A 2013-04-03 2013-04-03 一种穿墙雷达多径杂波抑制方法 Expired - Fee Related CN103197290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310114287.6A CN103197290B (zh) 2013-04-03 2013-04-03 一种穿墙雷达多径杂波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310114287.6A CN103197290B (zh) 2013-04-03 2013-04-03 一种穿墙雷达多径杂波抑制方法

Publications (2)

Publication Number Publication Date
CN103197290A true CN103197290A (zh) 2013-07-10
CN103197290B CN103197290B (zh) 2014-10-15

Family

ID=48719967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310114287.6A Expired - Fee Related CN103197290B (zh) 2013-04-03 2013-04-03 一种穿墙雷达多径杂波抑制方法

Country Status (1)

Country Link
CN (1) CN103197290B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675811A (zh) * 2013-12-17 2014-03-26 中国人民解放军国防科学技术大学 基于阵列雷达的扩展动目标穿墙成像方法
CN106019245A (zh) * 2016-08-01 2016-10-12 合肥佳瑞林电子技术有限公司 一种抗干扰雷达
CN106291483A (zh) * 2016-10-17 2017-01-04 山东省科学院自动化研究所 抑制超宽带穿墙雷达信号多径干扰的方法
CN106371093A (zh) * 2016-08-16 2017-02-01 电子科技大学 基于建筑物透视雷达成像的多目标检测定位方法
CN107589407A (zh) * 2017-08-29 2018-01-16 电子科技大学 多发多收穿墙雷达成像后前后墙振荡一次多径抑制方法
CN107612879A (zh) * 2017-07-21 2018-01-19 山东省科学院自动化研究所 基于WiFi安全通信的穿墙雷达远程协助系统及方法
CN107884761A (zh) * 2017-11-22 2018-04-06 中南大学 基于能量算子的多普勒穿墙雷达定位方法
CN108318864A (zh) * 2018-02-06 2018-07-24 成都纳雷科技有限公司 一种用于雷达目标检测中消除多径目标的方法及装置
CN109061622A (zh) * 2018-06-22 2018-12-21 电子科技大学 一种基于毫米波雷达的隐蔽目标多径探测方法
CN109298418A (zh) * 2018-09-30 2019-02-01 湖南华诺星空电子技术有限公司 基于建筑物内部结构特征的雷达检测虚警抑制方法及装置
CN109597065A (zh) * 2018-12-11 2019-04-09 湖南华诺星空电子技术有限公司 一种用于穿墙雷达检测的虚警抑制方法、装置
CN109683160A (zh) * 2019-03-19 2019-04-26 长沙深之瞳信息科技有限公司 一种适用于穿墙雷达的目标检测方法
CN110109092A (zh) * 2019-04-24 2019-08-09 西安电子科技大学 多径环境下基于时间反演的雷达测速方法
CN110398719A (zh) * 2019-06-12 2019-11-01 四川九洲防控科技有限责任公司 基于杂波图原理的雷达杂波信号抑制方法和雷达探测系统
CN110507293A (zh) * 2019-07-26 2019-11-29 中国电子科技集团公司第三十八研究所 一种超宽带穿墙雷达人体呼吸及心跳检测方法及系统
CN111157958A (zh) * 2019-12-30 2020-05-15 西安电子科技大学 一种新型自适应海杂波滤器的实时控制系统
CN111208516A (zh) * 2018-11-06 2020-05-29 通用汽车环球科技运作有限责任公司 车辆雷达系统中的静止干扰的自适应缓解
CN111398922A (zh) * 2020-04-27 2020-07-10 厦门大学 一种改进的cfar检测方法
CN112213725A (zh) * 2020-09-28 2021-01-12 森思泰克河北科技有限公司 车载雷达的多径虚警抑制方法、装置及终端设备
CN112611097A (zh) * 2020-11-30 2021-04-06 青岛海信日立空调系统有限公司 一种空调器和控制方法
CN113341408A (zh) * 2021-06-02 2021-09-03 中国人民解放军海军航空大学 一种基于穿墙雷达杂波抑制的成像方法及系统
CN113820707A (zh) * 2021-09-18 2021-12-21 石家庄铁道大学 基于trm的穿墙雷达探测器
US11221393B2 (en) 2019-01-16 2022-01-11 Nxp Usa, Inc. Method and processor for determining spatial information regarding a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949368A (en) * 1997-12-31 1999-09-07 Northrop Grumman Corporation Adaptive constant false alarm rate circuit with extremely low loss
US6771209B1 (en) * 2002-09-06 2004-08-03 Maurice Wayne Long Automatic radar target detector
US20060181451A1 (en) * 2005-02-14 2006-08-17 Honeywell International Inc. System and method for combining displaced phase center antenna and space-time adaptive processing techniques to enhance clutter suppression in radar on moving platforms
CN101907709A (zh) * 2010-06-25 2010-12-08 武汉大学 一种穿墙探测雷达对运动人体目标搜索定位的方法
CN102243303A (zh) * 2011-04-13 2011-11-16 电子科技大学 一种基于呼吸特征的静止人体穿墙定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949368A (en) * 1997-12-31 1999-09-07 Northrop Grumman Corporation Adaptive constant false alarm rate circuit with extremely low loss
US6771209B1 (en) * 2002-09-06 2004-08-03 Maurice Wayne Long Automatic radar target detector
US20060181451A1 (en) * 2005-02-14 2006-08-17 Honeywell International Inc. System and method for combining displaced phase center antenna and space-time adaptive processing techniques to enhance clutter suppression in radar on moving platforms
CN101907709A (zh) * 2010-06-25 2010-12-08 武汉大学 一种穿墙探测雷达对运动人体目标搜索定位的方法
CN102243303A (zh) * 2011-04-13 2011-11-16 电子科技大学 一种基于呼吸特征的静止人体穿墙定位方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675811B (zh) * 2013-12-17 2016-02-03 中国人民解放军国防科学技术大学 基于阵列雷达的扩展动目标穿墙成像方法
CN103675811A (zh) * 2013-12-17 2014-03-26 中国人民解放军国防科学技术大学 基于阵列雷达的扩展动目标穿墙成像方法
CN106019245A (zh) * 2016-08-01 2016-10-12 合肥佳瑞林电子技术有限公司 一种抗干扰雷达
CN106371093B (zh) * 2016-08-16 2018-11-20 电子科技大学 基于建筑物透视雷达成像的多目标检测定位方法
CN106371093A (zh) * 2016-08-16 2017-02-01 电子科技大学 基于建筑物透视雷达成像的多目标检测定位方法
CN106291483A (zh) * 2016-10-17 2017-01-04 山东省科学院自动化研究所 抑制超宽带穿墙雷达信号多径干扰的方法
CN107612879B (zh) * 2017-07-21 2023-12-01 山东省科学院自动化研究所 基于WiFi安全通信的穿墙雷达远程协助系统及方法
CN107612879A (zh) * 2017-07-21 2018-01-19 山东省科学院自动化研究所 基于WiFi安全通信的穿墙雷达远程协助系统及方法
CN107589407A (zh) * 2017-08-29 2018-01-16 电子科技大学 多发多收穿墙雷达成像后前后墙振荡一次多径抑制方法
CN107589407B (zh) * 2017-08-29 2020-06-26 电子科技大学 多发多收穿墙雷达成像后前后墙振荡一次多径抑制方法
CN107884761A (zh) * 2017-11-22 2018-04-06 中南大学 基于能量算子的多普勒穿墙雷达定位方法
CN108318864A (zh) * 2018-02-06 2018-07-24 成都纳雷科技有限公司 一种用于雷达目标检测中消除多径目标的方法及装置
CN109061622A (zh) * 2018-06-22 2018-12-21 电子科技大学 一种基于毫米波雷达的隐蔽目标多径探测方法
CN109061622B (zh) * 2018-06-22 2022-11-08 电子科技大学 一种基于毫米波雷达的隐蔽目标多径探测方法
CN109298418A (zh) * 2018-09-30 2019-02-01 湖南华诺星空电子技术有限公司 基于建筑物内部结构特征的雷达检测虚警抑制方法及装置
CN109298418B (zh) * 2018-09-30 2022-08-05 湖南华诺星空电子技术有限公司 基于建筑物内部结构特征的雷达检测虚警抑制方法及装置
CN111208516A (zh) * 2018-11-06 2020-05-29 通用汽车环球科技运作有限责任公司 车辆雷达系统中的静止干扰的自适应缓解
CN111208516B (zh) * 2018-11-06 2024-03-29 通用汽车环球科技运作有限责任公司 车辆雷达系统中的静止干扰的自适应缓解
CN109597065B (zh) * 2018-12-11 2022-09-09 湖南华诺星空电子技术有限公司 一种用于穿墙雷达检测的虚警抑制方法、装置
CN109597065A (zh) * 2018-12-11 2019-04-09 湖南华诺星空电子技术有限公司 一种用于穿墙雷达检测的虚警抑制方法、装置
US11221393B2 (en) 2019-01-16 2022-01-11 Nxp Usa, Inc. Method and processor for determining spatial information regarding a vehicle
CN109683160B (zh) * 2019-03-19 2019-06-18 长沙深之瞳信息科技有限公司 一种适用于穿墙雷达的目标检测方法
CN109683160A (zh) * 2019-03-19 2019-04-26 长沙深之瞳信息科技有限公司 一种适用于穿墙雷达的目标检测方法
CN110109092A (zh) * 2019-04-24 2019-08-09 西安电子科技大学 多径环境下基于时间反演的雷达测速方法
CN110398719A (zh) * 2019-06-12 2019-11-01 四川九洲防控科技有限责任公司 基于杂波图原理的雷达杂波信号抑制方法和雷达探测系统
CN110398719B (zh) * 2019-06-12 2021-05-07 四川九洲防控科技有限责任公司 基于杂波图原理的雷达杂波信号抑制方法和雷达探测系统
CN110507293A (zh) * 2019-07-26 2019-11-29 中国电子科技集团公司第三十八研究所 一种超宽带穿墙雷达人体呼吸及心跳检测方法及系统
CN111157958B (zh) * 2019-12-30 2023-03-24 西安电子科技大学 一种新型自适应海杂波滤器的实时控制系统
CN111157958A (zh) * 2019-12-30 2020-05-15 西安电子科技大学 一种新型自适应海杂波滤器的实时控制系统
CN111398922A (zh) * 2020-04-27 2020-07-10 厦门大学 一种改进的cfar检测方法
CN112213725A (zh) * 2020-09-28 2021-01-12 森思泰克河北科技有限公司 车载雷达的多径虚警抑制方法、装置及终端设备
CN112213725B (zh) * 2020-09-28 2022-10-25 森思泰克河北科技有限公司 车载雷达的多径虚警抑制方法、装置及终端设备
CN112611097A (zh) * 2020-11-30 2021-04-06 青岛海信日立空调系统有限公司 一种空调器和控制方法
CN113341408A (zh) * 2021-06-02 2021-09-03 中国人民解放军海军航空大学 一种基于穿墙雷达杂波抑制的成像方法及系统
CN113820707A (zh) * 2021-09-18 2021-12-21 石家庄铁道大学 基于trm的穿墙雷达探测器

Also Published As

Publication number Publication date
CN103197290B (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
CN103197290B (zh) 一种穿墙雷达多径杂波抑制方法
CN102243303B (zh) 一种基于呼吸特征的静止人体穿墙定位方法
US9098116B2 (en) Object and movement detection
CN103885057B (zh) 自适应变滑窗多目标跟踪方法
CN101907709B (zh) 一种穿墙探测雷达对运动人体目标搜索定位的方法
US20180164406A1 (en) Probabilistic signal, detection, and track processing architecture and system
Li et al. Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar
DK2610633T3 (en) Method of Filtering Interference with Scan-to-Scan Correlation Using the Doppler Information
Jia et al. A novel approach to target localization through unknown walls for through-the-wall radar imaging
EP2631671A1 (en) Apparatus and method for traffic lane detection
KR101426226B1 (ko) 레이더의 신호 처리 방법
CN105589061A (zh) 一种岸基雷达的信号处理算法
WO2012170135A1 (en) Method and apparatus for mitigating an effect of user movement in motion detecting radar
DK2610634T3 (en) Method of Determining an Estimate of the Radial Velocity of Radar Echoes Using Doppler Information
CN103969647A (zh) 基于图像域滤波的稀疏阵列建筑布局成像方法
CN108008374B (zh) 基于能量中值的海面大型目标检测方法
Setsu et al. Super-resolution Doppler velocity estimation by Gaussian-kernel based range-Doppler conversion for UWB radar
CN105929390B (zh) 一种多目标检测前跟踪方法
CN110940977B (zh) 一种适配海况变化的恒虚警检测器及恒虚警检测方法
Chen et al. Clutter reduction based on coefficient of variation in through-wall radar imaging
Li et al. A modified parameter model-based spectrum estimation method for incoherent scatter radar
Hong et al. Single-channel UWB SAR ground moving targets detection method using change detection based on single-pass sub-aperture images
CN110726988A (zh) Pd雷达探测高超声速目标的距离和速度模糊互解方法
Urdzık et al. Shadowing effect analysis at multiple moving persons tracking by UWB radar
Tian et al. Motion Targets Identification for Bistatic Through-the-wall Radar

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141015

Termination date: 20150403

EXPY Termination of patent right or utility model