CN103187938A - 一种用于低频信号检测及传输系统的差分模拟前端装置 - Google Patents

一种用于低频信号检测及传输系统的差分模拟前端装置 Download PDF

Info

Publication number
CN103187938A
CN103187938A CN2011104440435A CN201110444043A CN103187938A CN 103187938 A CN103187938 A CN 103187938A CN 2011104440435 A CN2011104440435 A CN 2011104440435A CN 201110444043 A CN201110444043 A CN 201110444043A CN 103187938 A CN103187938 A CN 103187938A
Authority
CN
China
Prior art keywords
resistance
difference
differential amplifier
differential
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104440435A
Other languages
English (en)
Other versions
CN103187938B (zh
Inventor
赵辉
沈晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nationz Technologies Inc
Original Assignee
Nationz Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nationz Technologies Inc filed Critical Nationz Technologies Inc
Priority to CN201110444043.5A priority Critical patent/CN103187938B/zh
Publication of CN103187938A publication Critical patent/CN103187938A/zh
Application granted granted Critical
Publication of CN103187938B publication Critical patent/CN103187938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

本发明所述的一种用于低频信号检测及传输系统的差分模拟前端装,包括一个磁感应模块、一个低通滤波模块、一个差分放大模块和至少一个转换比较模块,所述磁感应模块、低通滤波模块、差分放大模块和转换比较模块依次连接,所述转换比较模块包括一个数模转换器和第一差分比较器,所述差分放大模块的输出端与所述第一差分比较器的差分输入端连接,所述数模转换器的差分输出端与所述第一差分比较器的差分参考电平输入端相连接。采用本发明技术方案能够减小电路噪声和环境噪声对低频信号检测及传输系统中所接收到的低频信号的干扰,提高共模电平抑制能力,从而提高低频交变磁场距离检测和控制的精度。

Description

一种用于低频信号检测及传输系统的差分模拟前端装置
技术领域
本发明涉及一种用于低频信号检测及传输系统的差分模拟前端装置,属于通信领域。 
背景技术
如今,已经出现了在手机中的SIM(Subscriber Identity Module,用户识别模块)卡上增加射频功能(称为射频SIM卡)或者在手机主板上增加近距离通信模块来实现手机近距离通信的方法,这种方法的出现使得手机成为一个可以充值、消费、交易及身份认证的超级智能终端,极大地满足市场的迫切需求。 
其中,基于射频SIM的手机近距离解决方案以其简单、无需更改手机等优势得到广泛的关注,在该方案中,射频SIM采用UHF(Ultra High Frequency,超高频)等技术使得射频SIM卡嵌入在手机内部时射频信号仍然可以从手机中透射出来,从而实现不必对现有的手机进行任何结构改变就可使得手机具备近距离通信功能。但是,不同手机由于内部结构不同造成射频信号透射效果存在很大的差异,透射强的手机其射频SIM卡射频通信距离可能达到几米远的距离,透射弱的手机其射频SIM卡通信距离也可以达到几十厘米。在移动支付应用中,如公交地铁刷卡,通常都会对于交易距离有严格的要求以确保交易的安全,例如交易距离要求限制在10cm以下,以防止用户在不知情的情况下误刷,造成损失;另一方面,还要求在规定距离以下保证通信的可靠性,以提高交易的效率。因此,基于射频SIM的手机在增加近距离通信功能的同时,还必须能够有效控制其交易的距离范围。 
因此又提出了一种低频交变磁场近距离通讯结合RF高频通讯的系统和方法,解决了上述问题。该系统利用低频交变磁场实现距离检测和控制,并实现读卡器和卡的单向通讯,利用RF通道结合低频通讯实现终端的可靠绑定,同时利用RF通道实现读卡器和卡之间高速的数据通讯。但是,该方案中,低频信号检测及传输系统(处于卡的一方)中所接收到的低频信号夹杂着电路噪声和环境噪声,影响了距离检测和控制的精度,因此,如何有效地减小电路噪声和环境噪声对低频信号的干扰成为目前亟待解决的问题之一。 
发明内容
本发明所要解决的技术问题是提供一种减小电路噪声和环境噪声对低频信号检测及传输系统中所接收到的低频信号的干扰的用于低频信号检测及传输系统的差分模拟前端装置。 
本发明所述的一种用于低频信号检测及传输系统的差分模拟前端装,包括一个磁感应模块、一个低通滤波模块、一个差分放大模块和至少一个转换比较模块,所述磁感应模块、低通滤波模块、差分放大模块和转换比较模块依次连接,所述转换比较模块包括一个数模转换器和第一差分比较器,所述差分放大模块的输出端与所述第一差分比较器的差分输入端连接,所述数模转换器的差分输出端与所述第一差分比较器的差分参考电平输入端相连接。 
本发明的有益效果是: 
采用本发明技术方案能够减小电路噪声和环境噪声对低频信号检测及传输系统中所接收到的低频信号的干扰,提高共模电平抑制能力,从而提高低频交变磁场距离检测和控制的精度。
在上述技术方案的基础上,本发明还可以做如下改进。 
进一步,所述转换比较模块还包括一个第二差分比较器,所述转换比较模块中数模转换器的正负差分输出端分别与第一差分比较器中的正负差分参考电平输入端和第二差分比较器中的负正差分参考电平输入端相连,所述差分放大模块的输出端与所述第二差分比较器的差分输入端连接。 
进一步,所述磁感应模块为差分磁感应线圈,所述差分磁感应线圈的两个输出端与低通滤波模块的两个输入端相连接。 
进一步,所述磁感应模块包括差分霍尔器件和隔直电容,或差分巨磁阻器件和隔直电容;所述差分霍尔器件的两个输出端或差分巨磁阻器件的两个输出端分别通过隔直电容与所述低通滤波模块相连接。 
进一步,所述差分放大模块包括至少一个接成电阻负反馈网络的单级差分放大器。
进一步,所述单级差分放大器包括一个差分放大器和四个电阻,所述电阻中的两个电阻分别设于正相信号输入端与差分放大器的同相输入端之间和反向信号输入端与差分放大器的反向输入端之间,所述电阻中的第三个电阻设于差分放大器的同相输入端与反相输出端之间,所述电阻中的第四个电阻设于差分放大器的反相输入端与同相输出端之间; 
或者,所述单级差分放大器包括一个差分放大器、四个电阻和两个电容,所述电阻中的两个电阻分别设于正相信号输入端与差分放大器的同相输入端之间和反向信号输入端与差分放大器的反向输入端之间,所述电阻中的第三个电阻与一个电容并联后设于差分放大器的同相输入端与反相输出端之间,所述电阻中的第四个电阻与一个电容并联后设于差分放大器的反相输入端与同相输出端之间。
或者,所述单级差分放大器包括一个差分放大器、六个电阻和四个电容,所述其中两个电阻一端分别与正相信号输入端和反相信号输入端相连接,另一端分别与并联的两个电容相连接,所述两组并联的电容中分别有一个电容接地,另两个电容分别通过一个电阻与差分放大器的同相输入端和反相输入端相连接,所述剩余的两个电阻分别设有差分放大器的同相输入端与反相输出端之间和差分放大器的反相输入端与同相输出端之间。 
进一步,所述多级差分放大器包括第一级和至少一个单级差分放大器,所述第一级包括两个放大器和三个电阻,所述两个放大器的正相输入端分别与正相信号输入端和反相信号输入端相连接,所述两个放大器的反相输入端通过一个电阻互相连接,所述两个放大器的反相输入端分别通过一个电阻与输出端相连接,所述接正相信号的放大器的输出端与下一级接正相信号的一端相连接,所述接反相信号的放大器的输出端与下一级接反相信号的一端相连接。 
进一步,所述数模转换器为电压缩放结构,所述数模转换器的差分输出范围最大为两倍的电源地电压。 
进一步,所述差分比较器由时钟控制,所述差分比较器为采样开关式差分信号输入差分参考电平架构比较器或者快闪式差分信号输入差分参考电平架构比较器。 
附图说明
图1为本发明实施例1所述的用于低频信号检测及传输系统的差分模拟前端装置的结构图; 
图2为本发明实施例2所述的用于低频信号检测及传输系统的差分模拟前端装置的结构图;
图3为本发明实施例3所述的用于低频信号检测及传输系统的差分模拟前端装置的结构图;
图4为本发明实施例中一种全差分可编程增益放大器的结构图;
图5为本发明实施例中另一种全差分可编程增益放大器的结构图;
图6为本发明实施例中再一种全差分可编程增益放大器的结构图;
图7为本发明实施例中再一种全差分可编程增益放大器的结构图;
图8为本发明实施例中一种数模转换器的结构图;
图9.1为本发明实施例中一种比较器的结构图;
图9.2为本发明实施例中另一种比较器的结构图;
图10.1为本发明实施例中第一种磁感应模块的结构图;
图10.2为本发明实施例中第二种磁感应模块的结构图;
图10.3为本发明实施例中第三种磁感应模块的结构图;
图10.4为本发明实施例中第四种磁感应模块的结构图;
图10.5为本发明实施例中第五种磁感应模块的结构图;
图10.6为本发明实施例中第六种磁感应模块的结构图;
图10.7为本发明实施例中第七种磁感应模块的结构图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。 
如图1所示,本发明实施例1所述的用于低频信号检测及传输系统的差分模拟前端装置,包括一个磁感应模块100、一个低通滤波模块104、一个差分放大模块101、一个数模转换器102和一个用于比较差分信号的差分比较器103,其中,磁感应模块100、低通滤波模块104、放大器101顺次相连,放大器101的差分输出端与差分比较器103的差分信号输入端相连,数模转换器102的差分输出端与差分比较器103的差分参考电平输入端相连,放大器101为差分放大器,放大器101对输入的微弱信号进行预防大,数模转换器102将由数字控制器输出的数字信号转换为模拟信号,然后利用差分比较器103对两个差分信号进行比较,得到需要的数字信号,传输到数字控制器中进行处理。这里所提到的数字控制器属于低频检测及传输系统,但不属于模拟前端,其作用是根据差分比较器103输出进行差分比较器103和数模转换器102打开/关断模式的控制。 
如图2所示,本发明实施例2所述的用于低频信号检测及传输系统的差分模拟前端装置,低频信号检测及传输系统的差分模拟前端装置,包括一个磁感应模块100、一个低通滤波模块104、一个放大器101、数模转换器105和差分比较器103、差分比较器106,磁感应模块100、低通滤波模块104、放大器101顺次相连,放大器101的正向输出端分别与差分比较器103、差分比较器106的正向信号输入端INP相连,放大器101的负向输出端分别与差分比较器103、差分比较器106的负向信号输入端INN相连,数模转换器105正向输出端分别与差分比较器103负参考电平输入端REFN、差分比较器106正参考电平输入端REFP相连,数模转换器105负向输出端分别与差分比较器103正参考电平输入端REFP、差分比较器106负参考电平输入端REFN相连,数模转换器105与差分比较器103组成负参考电平比较通路,数模转换器105与差分比较器106组成正参考电平比较通路,两路组成一对,共一对。 
如图3所示,本发明实施例3所述的用于低频信号检测及传输系统的差分模拟前端装置,低频信号检测及传输系统的差分模拟前端装置,包括一个磁感应模块100、一个低通滤波模块104、一个放大器201、三个数模转换器202、203、204和六个差分比较器205、2051、206、2061、207、2071,放大器201的正向输出端分别与六个差分比较器205、2051、206、2061、207、2071的正向信号输入端INP相连,放大器201的负向输出端分别与六个差分比较器205、2051、206、2061、207、2071的负向信号输入端INN相连,数模转换器202正向输出端分别与差分比较器2051负参考电平输入端REFN、差分比较器205正参考电平输入端REFP相连,数模转换器202负向输出端分别与差分比较器2051正参考电平输入端REFP、差分比较器205负参考电平输入端REFN相连,两路组成一对,数模转换器203与差分比较器206、2061组成一对、数模转换器204与差分比较器207、2071组成一对、共三对。 
如图4所示,本发明实施例中一种全差分可编程增益放大器,所述放大器为四级级联差分放大器,该四级级联差分放大器的组成为:第一级包括第一差分放大器301、电阻Ra1、电阻Rb1、电阻Ra11、电阻Rb11、电容C1和电容C11;电阻Ra1的一端接正相信号输入端口AINP,另一端接电阻Rb1,电阻Rb1的另一端接第一差分放大301器的反向输出端,电阻Ra1和电阻Rb1的接点接第一差分放大器301的同向输入端,电容C1与电阻Rb1并联,电阻Ra11的一端接反相信号输入端口AINN,另一端接电阻Rb11,电阻Rb11的另一端接第一差分放大器301的同向输出端,电阻Ra11和电阻Rb11的接点接第一差分放大器301的反向输入端,电容C11与电阻Rb11并联;第二级包括第二差分放大器302、电阻Ra2、电阻Rb2、电阻Ra21、电阻Rb21、电容C2和电容C21;电容C2的一端接第一差分放大器301的反向输出端,另一端接电阻Ra2,电阻Ra2的另一端接第二差分放大器302的同向输入端,电阻Rb2接在第二差分放大器302的反向输入端和同向输出端之间,电容C21的一端接第一差分放大器301的同向输出端,另一端接电阻Ra21,电阻Ra21的另一端接第二差分放大器302的反向输入端,电阻Rb21接在第二差分放大器302的反向输入端和同向输出端之间;第三级包括第三差分放大器303、电阻Ra3、电阻Rb3、电阻Ra31、电阻Rb31、电容C3和电容C31;电阻Ra3接在第二差分放大器302的反向输出端和第三差分放大器303的同向输入端之间,电阻Rb3和电容C3并联在第三差分放大器303的同向输入端和反向输出端之间,电阻Ra31接在第二差分放大器302的同向输出端和第三差分放大器303的反向输入端之间,电阻Rb31和电容C31并联在第三差分放大器303的反向输入端和同向输出端之间;第四级包括第四差分放大器304、电阻Ra4、电阻Rb4、电阻Ra41、电阻Rb41、电容C4和电容C41;电容C4的一端接第三差分放大器303的反向输出端,另一端接电阻Ra4,电阻Ra4的另一端接第四差分放大器304的反向输入端,电阻Rb4接在第四差分放大器304的反向输入端和正向输出端之间,电容C41的一端接第三差分放大器303的同向输出端,另一端接电阻Ra41,电阻Ra41的另一端接第四差分放大器304的同向输入端,电阻Rb41接在第四差分放大器304的同向输入端和反向输出端之间。 
图4所示的放大器是一种全差分可编程增益放大器,其具有低通和高通滤波的功能,共分为4级,每个方框内的电路为一级,AINP为正相信号输入端口、AINP为负相信号输入端口输入端口、Voutp为信号正向输出端口、Voutn为信号反向输出端口。差分输入输出运算放大器301(也即第一差分放大器)接成电阻负反馈结构,电阻Ra1的值和电阻Ra11的值相等,电阻Rb1的值和电阻Rb11的值相等,其闭环增益由Rb1和Ra1的比值确定,Rb1和Ra1的比值可调;第一级同时具有低通功能,电容C1和电阻Rb1决定低通截止频率,电容C1的值和电容C11的值相等。电容C2具有隔直的作用,隔断第一级电路的失调电压传到第二级;运算放大器302(也即第二差分放大器)接成电阻负反馈结构,电阻Ra2的值和电阻Ra21的值相等,电阻Rb2的值和电阻Rb21的值相等,其闭环增益由Rb2和Ra2的比值确定,第二级的增益一般为单位增益或增益较低,Rb2和Ra2的比值可调;第二级同时具有高通功能,电容C2和电阻Ra2决定高通截止频率,电容C2的值和电容C21的值相等。运算放大器303(也即第三差分放大器)接成电阻负反馈结构,其闭环增益由Rb3和Ra3的比值确定,Rb3和Ra3的比值可调,电阻Ra3的值和电阻Ra31的值相等,电阻Rb3的值和电阻Rb31的值相等。电容C4具有隔直的作用,隔断前面电路的失调电压传到最后一级;运算放大器304(也即第四差分放大器),增益较低或为单位增益。差分输出信号可以有效提高共模电平抑制能力,整个PGA(Programmable Gain Amplifier,可编程增益放大器)的失调电压只有最后一级的失调电压。 
如图5所示,本发明实施例中另一种全差分可编程增益放大器,放大器为四级级联差分放大器,该四级级联差分放大器的组成为:第一级包括第一差分放大器301、电阻Ra1、电阻Rb1、电阻Ra11和电阻Rb11;电阻Ra1的一端接正相信号输入端口AINP,另一端接电阻Rb1,电阻Rb1的另一端接第一差分放大器301的反向输出端,电阻Ra1和电阻Rb1的接点接第一差分放大器301的同向输入端,电阻Ra11的一端接反相信号输入端口AINN,另一端接电阻Rb11,电阻Rb11的另一端接第一差分放大器301的同向输出端,电阻Ra11和电阻Rb11的接点接第一差分放大器301的反向输入端;第二级包括第二差分放大器302、电阻Ra2、电阻Rb2、电阻Ra21、电阻Rb21、电阻Rc1、电阻Rc11、电容 C1 、电容C2、电容C11和电容C21;电阻Rc1 、电容C2和电阻Ra2顺次串联在接第一差分放大器301的反向输出端和第二差分放大器302的同向输入端之间,电容 C1接在电阻Rc1 和电容C2的接点与地之间,电阻Rb2接在第二差分放大器302的同向输入端和反向输出端之间,电阻Rc11 、电容C21和电阻Ra21顺次串联在接第一差分放大器301的同向输出端和第二差分放大器302的反向输入端之间,电容 C11接在电阻Rc1 和电容C21的接点与地之间,电阻Rb21接在第二差分放大器302的反向输入端和同向输出端之间;第三级包括第三差分放大器303、电阻Ra3、电阻Rb3、电阻Ra31和电阻Rb31;电阻Ra3的一端接第二差分放大器302的反向输出端,另一端接电阻Rb3,电阻Rb3的另一端接第三差分放大器303的反向输出端,电阻Ra3和电阻Rb3的接点接第三差分放大器303的同向输入端,电阻Ra31的一端接第二差分放大器302的同向输出端,另一端接电阻Rb31,电阻Rb31的另一端接第三差分放大器303的同向输出端,电阻R31和电阻Rb31的接点接第三差分放大器303的反向输入端;第四级包括第四差分放大器304、电阻Ra4、电阻Rb4、电阻Ra41、电阻Rb41、电阻Rc2、电阻Rc21、电容 C3 、电容C4、电容C31和电容C41;电阻Rc2 、电容C4和电阻Ra4顺次串联在第三差分放大器303的反向输出端和第四差分放大器304的反向输入端之间,电容 C3接在电阻Rc2 和电容C4的接点与地之间,电阻Rb4接在第四差分放大器304的反向输入端和正向输出端之间,电阻Rc21 、电容C41和电阻Ra41顺次串联在第三差分放大器303的同向输出端和第四差分放大器304的同向输入端之间,电容 C31接在电阻Rc21 和电容C41的接点与地之间,电阻Rb41接在第四差分放大器304的同向输入端和反向输出端之间。 
图5所示的放大器也是一种可编程增益放大器,其与图4中结构的唯一区别为把图4中低通放在第一级的后面和第三级的后面。 
如图6所示,本发明实施例中再一种全差分可编程增益放大器,所述放大器为四级级联差分放大器,该四级级联差分放大器的组成为:第一级包括第一放大器301、第二放大器3011、电阻Ra1、电阻Rb1和电阻Rc1;第一放大器的正向输入端301接正相信号输入端口AINP,电阻Ra1的一端接第一放大器的输出端,另一端接电阻Rb1和第一放大器301的负向输入端,电阻Rb1的另一端接电阻Rc1和第二放大器3011的负向输入端,电阻Rc1的另一端接第二放大器3011的输出端,第二放大器3011的正向输入端接反相信号输入端口AINN;第二级包括第三差分放大器302、电阻Ra2、电阻Rb2、电阻Ra21、电阻Rb21、电阻Rc1、电阻Rc11、电容 C1、电容C2、电容C11和电容C21;电阻Rc1 、电容C2和电阻Ra2顺次串联在所述第三差分放大器302的反向输出端和所述第四差分放大器303的同向输入端之间,电容 C1接在电阻Rc1 和电容C2的接点与地之间,电阻Rb2接在所述第四差分放大器303的同向输入端和反向输出端之间,电阻Rc11 、电容C21和电阻Ra21顺次串联在所述第三差分放大器302的同向输出端和所述第四差分放大器303的反向输入端之间,电容 C11接在电阻Rc1 和电容C21的接点与地之间,电阻Rb21接在所述第四差分放大器303的反向输入端和同向输出端之间;第三级包括第四差分放大器303、电阻Ra3、电阻Rb3、电阻Ra31和电阻Rb31;电阻Ra3的一端接所述第三差分放大器302的反向输出端,另一端接电阻Rb3,电阻Rb3的另一端接所述第四差分放大器303的反向输出端,电阻Ra3和电阻Rb3的接点接所述第四差分放大器303的同向输入端,电阻Ra31的一端接所述第三差分302放大器的同向输出端,另一端接电阻Rb31,电阻Rb31的另一端接所述第四差分放大器303的同向输出端,电阻R31和电阻Rb31的接点接所述第四差分放大器303的反向输入端;第四级包括第五差分放大器304、电阻Ra4、电阻Rb4、电阻Ra41、电阻Rb41、电阻Rc2、电阻Rc21、电容 C3 、电容C4、电容C31和电容C41;电阻Rc2 、电容C4和电阻Ra4顺次串联在所述第四差分放大器303的反向输出端和所述第五差分放大器304的反向输入端之间,电容 C3接在电阻Rc2 和电容C4的接点与地之间,电阻Rb4接在所述第五差分放大器304的反向输入端和正向输出端之间,电阻Rc21 、电容C41和电阻Ra41顺次串联在所述第四差分放大器303的同向输出端和所述第五差分放大器304的同向输入端之间,电容 C31接在电阻Rc21 和电容C41的接点与地之间,电阻Rb41接在所述第五差分放大器304的同向输入端和反向输出端之间。 
图6所示的放大器也是一种可编程增益放大器,其与图5中结构的唯一区别为把图5中第一级差分放大器用两个差分输入单端输出的放大器实现差分放大功能。 
如图7所示,本发明实施例中再一种全差分可编程增益放大器,所述放大器为三级级联差分放大器,该三级级联差分放大器的组成为:第一级包括第一差分放大器401、电阻Ra1、电阻Rb1、电阻Ra11、电阻Rb11、电容C1和电容C11;电阻Ra1的一端接正相信号输入端口AINP,另一端接电阻Rb1,电阻Rb1的另一端接第一差分放大器401的反向输出端,电阻Ra1和电阻Rb1的接点接第一差分放大器401的同向输入端,电容C1与电阻Rb1并联,电阻Ra11的一端接反向信号输入端口AINN,另一端接电阻Rb11,电阻Rb11的另一端接差分放大器401的同向输出端,电阻Ra11和电阻Rb11的接点接差分放大器401的同向输入端,电容C11与电阻Rb11并联;第二级包括第二差分放大器402、电阻Ra2、电阻Rb2、电阻Ra21、电阻Rb21、电容C2、电容C3 、电容C21和电容C31;电容C2和电阻Ra2顺次串联在第一差分放大器401的反向输出端和第二差分放大器402的同向输入端之间,电容C3和电阻Rb2并联在第二差分放大器402的同向输入端和反向输出端之间,电容C21和电阻Ra21顺次串联在第一差分放大器401的反向输出端和第二差分放大器402的同向输入端之间,电容C31和电阻Rb21并联在差分放大器402的同向输入端和反向输出端之间;第三级包括第三差分放大器403、电阻Ra3、电阻Rb3、电阻Ra31、电阻Rb31、电容C4和电容C41;电容C4和电阻Ra3顺次串联在第二差分放大器402的反向输出端和第三差分放大器403的同向输入端之间,电容C41和电阻Ra31顺次串联在第二差分放大器402的同向输出端和第三差分放大器403的反向输入端之间,电阻Rb3接在第三差分放大器403的同向输入端和输出端之间,电阻Rb31接在第三差分放大器403的反向输入端和地之间。 
图7所示的放大器也是一种可编程增益放大器,其与图4中结构的唯一区别为把图4中第二级和第三级合并成图7的第二级。 
这里,我们再给出数模转换器的一种实例。 
如图8所示,本发明实施例中一种数模转换器,数模转换器采用电压缩放结构实现数字到模拟的转换,并且差分输出范围最大为二倍电源地电压。其中包括电阻R1至R255共255个分压电阻、S1至S256共256个开关和一个8位转256的译码电路501。R1一端连接参考电平的最高电平VREF+和,另一端接R2和S2,R2另一端接R3和S3,以此类推,最后一个电阻R255一端接R254和S255,另一端接参考电平的最低电平VREF-;S1至S256的控制信号与译码电路501相连,另一端与数模转换器的输出端口REFP、REFN相连。依照本发明参考电平需求,可使用相应连接方式产生对应的最高电平和最低电平。 
图8所示的一种数模转换器为一种电压缩放结构,利用堤255个分压电阻产生256个参考电平,利用8位转256的译码器电路控制256个开关,产生所需要的模拟信号,实现数字/模拟的转换。其中输出的模拟信号可以是单端输出,也可以差分输出,模拟信号输出范围由最高电平和最低电平确定。 
这里,我们还给出两种差分比较器的实例。 
如图9.1所示,本发明实施例中一种差分比较器,所述差分比较器包括六个时钟控制的开关,S1至S6,三个Nmos管Mn0至Mn2、两个Pmos管Mp1和Mp2、两个采样电容C1和C2、一个差分放大电路601。其中S1一端接信号输入正端Vin+、另一端接采样电容C1,S2一端为参考电平输入正端REFP、另一端接采样电容C1,S4一端为信号输入负端Vin-、另一端接采样电容C2,S3一端为参考电平输入负端REFN、另一端接采样电容C2,S5、S6一端相连并接共模电品端Vcom,另一端分别接C1、Mn1的栅端和C2、Mn2的栅端。Mn1和Mn2的源端相接并与Mn0的漏端相接,Mn0源端接地、栅端接一个偏执电压电位Vbn,Mn1和Mn2的漏端分别接Mp1和Mp2的漏端和栅端和差分比较器差分输出o1和o2端,差分放大电路601的两个输入分别接o1和o2,输出端Vo为差分差分比较器的最终输出端。 
图9.1所示为一个开关电容型差分输入差分比较器,工作过程如下:当CK为负电平时,S2、S3、S5、S6导通,S1和S4断开,电容采集参考差分电平在电容上,当CK为正电平时,S2、S3、S5、S6断开,S1和S4导通,电容采集信号,差分比较器进行比较, o1和o2输出差分的比较结果,并经过差分放大电路601放大,得到最终的比较结果并由Vo输出。 
如图9.2所示,本发明实施例中另一种差分比较器,所述差分比较器包括四个PMOS管Mp1、Mp2、Mp3、Mp4和八个NMOS管Mn1至Mn8以及一个差分放大电路601,四PMOS管Mp0的源极接电源Vcc,Mp1与Mp4 栅极接时钟信号CK,漏极接PMOS管Mp2和Mp3的漏极相连,Mp3栅极与Mp2的漏极相连接并接差分比较器差分输出o2端,Mp2栅极与Mp3的漏极相连并接差分比较器差分输出o1端,PMOS管Mp1和Mp2漏极与NMOS管Mn7的漏极相连,PMOS管Mp3和Mp4漏极与NMOS管Mn8的漏极相连,NMOS管Mn7和Mn8的栅极接时钟信号CK,Mn7和Mn8的源端分别接Mn5和Mn6的漏端,Mn5和Mn6的栅分别接o1和o2、源端分别接Mn1、Mn2和Mn3、Mn4的漏端,Mn1、Mn2、 Mn3和Mn4的栅分别接差分比较器差分输入正端Vin+、参考电平正端REFP、差分输入负端Vin-和参考电平负端REFN,Mn1、Mn2和Mn3、Mn4的源端接地。差分比较器差分输出o1端和o2端为差分放大电路601的输入端,差分放大电路601的输出端Vos是差分差分比较器601的最终输出端。 
图9.2所示为一个flash型差分输入差分比较器,工作过程如下:当时钟信号CK为低电平时,o1和o2为高电平,差分比较器处于置位状态,不进行比较工作;当时钟信号CK为低电平时,Mp1和Mp4截止,其余MOS管形成一个正反馈电路,o1和o2电平输出由差分信号输入和参考电平比较后得到,并且经过差分放大电路601进行放大,得到比较结果。 
如图10.1所示,本发明实施例中第一种磁感应模块,所述磁感应模块为差分磁感应线圈。差分磁感应线圈的两输出端可以直接与低通滤波模块的两输入端相连。 
如图10.2所示本发明实施例中第二种磁感应模块,所述磁感应模块为差分霍尔器件,且该差分霍尔器件的两个输出端都通过隔直电容与低通滤波模块两个输入端相连。 
如图10.3所示,本发明实施例中第三种磁感应模块,所述磁感应模块为差分霍尔器件,该差分霍尔器件一个输出端通过隔直电容与低通滤波模块一个输入端相连,该差分霍尔器件的另一个输出端直接与低通滤波模块另一个输入端相连。 
如图10.4所示,本发明实施例中第四种磁感应模块,所述磁感应模块为差分霍尔器件,该差分霍尔器件的两个输出端直接与低通滤波模块的两个输入端相连。 
如图10.5所示,本发明实施例中第五种磁感应模块,所述磁感应模块为差分巨磁阻器件,该差分巨磁阻器件的两个输出端都通过隔直电容与低通滤波模块的两个输入端相连。 
如图10.6所示,本发明实施例中第六种磁感应模块,所述磁感应模块为差分巨磁阻器件,该差分巨磁阻器件的一个输出端通过隔直电容与低通滤波模块的一个输入端相连,该差分巨磁阻器件的另一个输出端直接与低通滤波模块的另一个输入端相连。 
如图10.7所示,本发明实施例中第七种磁感应模块,所述磁感应模块为差分巨磁阻器件,该差分巨磁阻器件的两个输出端直接与低通滤波模块的两个输入端相连。 
本发明提供的用于低频信号检测及传输系统的差分模拟前端装置,能够减小电路噪声和环境噪声对低频信号检测及传输系统中所接收到的低频信号的干扰,从而提高低频交变磁场距离检测和控制的精度。 
图3中的6个差分比较器可以配置成3对进行使用,同时进行解码、多个距离、距离区间的判断、控制。也可独立作为6个单独的差分比较器使用,同时进行进行解码、多个距离、距离区间的判断、控制。也可将其中部分差分比较器成对地使用,进行解码或距离、距离区间的判断、控制;将其中部分差分比较器独立地使用,进行解码或距离、距离区间的判断、控制。 
实际上,前端装置可以根据需要配置一个至多个差分比较器,用于多个距离、多个距离区间的距离判断和控制、低频磁场信号解码。 
本发明提供的低频信号检测方法,能够减小电路噪声和环境噪声对低频信号检测及传输系统中所接收到的低频信号的干扰,通过使用全差分结构,有效抑制共模电平对系统的影响,从而提高低频交变磁场距离检测和控制的精度。 
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 

Claims (11)

1.一种用于低频信号检测及传输系统的差分模拟前端装置,包括一个磁感应模块和一个低通滤波模块,其特征在于,还包括一个差分放大模块和至少一个转换比较模块,所述磁感应模块、低通滤波模块、差分放大模块和转换比较模块依次连接,所述转换比较模块包括一个数模转换器和第一差分比较器,所述差分放大模块的输出端与所述第一差分比较器的差分输入端连接,所述数模转换器的差分输出端与所述第一差分比较器的差分参考电平输入端相连接。
2.按照权利要求1所述的差分模拟前端装置,其特征在于,所述转换比较模块还包括一个第二差分比较器,所述转换比较模块中数模转换器的正负差分输出端分别与第一差分比较器中的正负差分参考电平输入端和第二差分比较器中的负正差分参考电平输入端相连,所述差分放大模块的输出端与所述第二差分比较器的差分输入端连接。
3.按照权利要求1或2所述的差分模拟前端装置,其特征在于,所述磁感应模块为差分磁感应线圈,所述差分磁感应线圈的两个输出端与低通滤波模块的两个输入端相连接。
4.按照权利要求1或2所述的差分模拟前端装置,其特征在于,所述磁感应模块包括差分霍尔器件和隔直电容,或差分巨磁阻器件和隔直电容,所述差分霍尔器件的两个输出端或差分巨磁阻器件的两个输出端分别通过隔直电容与所述低通滤波模块相连接。
5.按照权利要求1或2所述的差分模拟前端装置,其特征在于,所述差分放大模块包括至少一个接成电阻负反馈网络的单级差分放大器。
6.按照权利要求5所述的差分模拟前端装置,其特征在于,所述单级差分放大器包括一个差分放大器和四个电阻,所述电阻中的两个电阻分别设于正相信号输入端与差分放大器的同相输入端之间和反向信号输入端与差分放大器的反向输入端之间,所述电阻中的第三个电阻设于差分放大器的同相输入端与反相输出端之间,所述电阻中的第四个电阻设于差分放大器的反相输入端与同相输出端之间。
7.按照权利要求5所述的差分模拟前端装置,其特征在于,所述单级差分放大器包括一个差分放大器、四个电阻和两个电容,所述电阻中的两个电阻分别设于正相信号输入端与差分放大器的同相输入端之间和反向信号输入端与差分放大器的反向输入端之间,所述电阻中的第三个电阻与一个电容并联后设于差分放大器的同相输入端与反相输出端之间,所述电阻中的第四个电阻与一个电容并联后设于差分放大器的反相输入端与同相输出端之间。
8.按照权利要求5所述的差分模拟前端装置,其特征在于,所述单级差分放大器包括一个差分放大器、六个电阻和四个电容,所述其中两个电阻一端分别与正相信号输入端和反相信号输入端相连接,另一端分别与并联的两个电容相连接,所述两组并联的电容中分别有一个电容接地,另两个电容分别通过一个电阻与差分放大器的同相输入端和反相输入端相连接,所述剩余的两个电阻分别设有差分放大器的同相输入端与反相输出端之间和差分放大器的反相输入端与同相输出端之间。
9.按照权利要求6或7或8所述的差分模拟前端装置,其特征在于,所述多级差分放大器包括第一级和至少一个单级差分放大器,所述第一级包括两个放大器和三个电阻,所述两个放大器的正相输入端分别与正相信号输入端和反相信号输入端相连接,所述两个放大器的反相输入端通过一个电阻互相连接,所述两个放大器的反相输入端分别通过一个电阻与输出端相连接,所述接正相信号的放大器的输出端与下一级接正相信号的一端相连接,所述接反相信号的放大器的输出端与下一级接反相信号的一端相连接。
10.按照权利要求1或2所述的差分模拟前端装置,其特征在于,所述数模转换器为电压缩放结构,所述数模转换器的差分输出范围最大为两倍的电源地电压。
11.按照权利要求10所述的差分模拟前端装置,其特征在于,所述差分比较器由时钟控制,所述差分比较器为采样开关式差分信号输入差分参考电平架构比较器或者快闪式差分信号输入差分参考电平架构比较器。
CN201110444043.5A 2011-12-27 2011-12-27 一种用于低频信号检测及传输系统的差分模拟前端装置 Active CN103187938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110444043.5A CN103187938B (zh) 2011-12-27 2011-12-27 一种用于低频信号检测及传输系统的差分模拟前端装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110444043.5A CN103187938B (zh) 2011-12-27 2011-12-27 一种用于低频信号检测及传输系统的差分模拟前端装置

Publications (2)

Publication Number Publication Date
CN103187938A true CN103187938A (zh) 2013-07-03
CN103187938B CN103187938B (zh) 2017-07-25

Family

ID=48678928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110444043.5A Active CN103187938B (zh) 2011-12-27 2011-12-27 一种用于低频信号检测及传输系统的差分模拟前端装置

Country Status (1)

Country Link
CN (1) CN103187938B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079858A (zh) * 2014-07-14 2014-10-01 天津瑞发科半导体技术有限公司 反向信号传输混合装置
CN106126463A (zh) * 2016-08-02 2016-11-16 成都振芯科技股份有限公司 一种双向传输的低速信号幅度检测电路
CN106840470A (zh) * 2017-01-19 2017-06-13 北京机械设备研究所 一种电桥式压力传感器输出信号采集装置及方法
CN107276544A (zh) * 2016-03-30 2017-10-20 联发科技股份有限公司 可编程的放大器电路
CN107315149A (zh) * 2016-04-26 2017-11-03 德昌电机(深圳)有限公司 磁传感器集成电路、电机组件及应用设备
CN108242229A (zh) * 2018-02-01 2018-07-03 京东方科技集团股份有限公司 阵列基板、阵列基板的驱动方法及显示装置
CN111427829A (zh) * 2020-03-13 2020-07-17 浙江华睿科技有限公司 CoaXPress协议的低速上行信号解调电路、CoaXPress协议的驱动电路
CN112887876A (zh) * 2021-01-12 2021-06-01 厦门亿联网络技术股份有限公司 支持单端信号的差分音频系统及控制方法
CN113193839A (zh) * 2021-04-08 2021-07-30 成都蕊感微电子有限公司 信号接收放大电路及传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840442A1 (en) * 1996-10-30 1998-05-06 STMicroelectronics S.r.l. A two-stage fully differential operational amplifier with efficient common-mode feed back circuit
CN2738204Y (zh) * 2005-03-10 2005-11-02 高国伟 倾斜角测量装置
US7619472B1 (en) * 2008-06-04 2009-11-17 Newport Media, Inc. Noise-shaped blocker-reject amplifier
CN102142868A (zh) * 2010-01-29 2011-08-03 国民技术股份有限公司 近距离通信方法及系统
CN102196605A (zh) * 2010-03-15 2011-09-21 国民技术股份有限公司 移动射频装置、射频ic卡及射频存储卡
CN102244530A (zh) * 2010-05-10 2011-11-16 国民技术股份有限公司 一种近距离通信方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840442A1 (en) * 1996-10-30 1998-05-06 STMicroelectronics S.r.l. A two-stage fully differential operational amplifier with efficient common-mode feed back circuit
CN2738204Y (zh) * 2005-03-10 2005-11-02 高国伟 倾斜角测量装置
US7619472B1 (en) * 2008-06-04 2009-11-17 Newport Media, Inc. Noise-shaped blocker-reject amplifier
CN102142868A (zh) * 2010-01-29 2011-08-03 国民技术股份有限公司 近距离通信方法及系统
CN102196605A (zh) * 2010-03-15 2011-09-21 国民技术股份有限公司 移动射频装置、射频ic卡及射频存储卡
CN102244530A (zh) * 2010-05-10 2011-11-16 国民技术股份有限公司 一种近距离通信方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAMES KARKI等: "全差分放大器(一)", 《国外电子元器件》 *
唐宁等: "高性能全差分运算放大器设计", 《微电子学》 *
江思敏等: "《PCB和电磁兼容设计 第2版》", 30 June 2008, 机械工业出版社 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079858B (zh) * 2014-07-14 2016-04-27 天津瑞发科半导体技术有限公司 反向信号传输混合装置
CN104079858A (zh) * 2014-07-14 2014-10-01 天津瑞发科半导体技术有限公司 反向信号传输混合装置
CN107276544B (zh) * 2016-03-30 2021-03-12 联发科技股份有限公司 可编程的放大器电路
CN107276544A (zh) * 2016-03-30 2017-10-20 联发科技股份有限公司 可编程的放大器电路
CN107315149A (zh) * 2016-04-26 2017-11-03 德昌电机(深圳)有限公司 磁传感器集成电路、电机组件及应用设备
CN106126463A (zh) * 2016-08-02 2016-11-16 成都振芯科技股份有限公司 一种双向传输的低速信号幅度检测电路
CN106126463B (zh) * 2016-08-02 2023-04-07 成都振芯科技股份有限公司 一种双向传输的低速信号幅度检测电路
CN106840470A (zh) * 2017-01-19 2017-06-13 北京机械设备研究所 一种电桥式压力传感器输出信号采集装置及方法
CN106840470B (zh) * 2017-01-19 2019-06-07 北京机械设备研究所 一种电桥式压力传感器输出信号采集装置及方法
CN108242229A (zh) * 2018-02-01 2018-07-03 京东方科技集团股份有限公司 阵列基板、阵列基板的驱动方法及显示装置
CN111427829A (zh) * 2020-03-13 2020-07-17 浙江华睿科技有限公司 CoaXPress协议的低速上行信号解调电路、CoaXPress协议的驱动电路
CN111427829B (zh) * 2020-03-13 2022-03-01 浙江华睿科技股份有限公司 CoaXPress协议的低速上行信号解调电路、CoaXPress协议的驱动电路
CN112887876A (zh) * 2021-01-12 2021-06-01 厦门亿联网络技术股份有限公司 支持单端信号的差分音频系统及控制方法
CN112887876B (zh) * 2021-01-12 2022-07-08 厦门亿联网络技术股份有限公司 支持单端信号的差分音频系统及控制方法
CN113193839A (zh) * 2021-04-08 2021-07-30 成都蕊感微电子有限公司 信号接收放大电路及传感器

Also Published As

Publication number Publication date
CN103187938B (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
CN103187938A (zh) 一种用于低频信号检测及传输系统的差分模拟前端装置
US8576928B2 (en) Capacitive divider transmission scheme for improved communications isolation
US8798175B2 (en) Communicating with a self-clocking amplitude modulated signal
CN101388651B (zh) 高速数字接口的接收器
KR101633726B1 (ko) 저 주파수 신호 검출 및 송신을 위한 장치
CN107210711B (zh) 射频系统开关功率放大器系统及方法
CN103078593B (zh) 低电源电压下高转换增益无源混频器
CN103023445B (zh) 一种用于低频信号检测及传输系统的差分模拟前端装置
CN102545949A (zh) 大输入动态范围的射频幅度键控解调电路
CN102497216B (zh) 一种可配置的接收信号强度指示电路
CN106374860A (zh) 一种基于电压合成结构的Doherty功率放大器
CN110235378A (zh) 无线电接收器
CN103236864B (zh) 一种版图面积缩小的接收信号强度指示电路
CN102055409A (zh) 多级cmos功率放大器
CN103023584B (zh) 一种用于低频信号检测及传输系统的模拟前端装置
CN104639068A (zh) 一种开关电容实现的线性可编程增益放大器
CN100495913C (zh) 直流偏压消除电路
CN104124932A (zh) 射频功率放大模块
CN101414807B (zh) 信号放大电路
CN102340295B (zh) 一种宽带有源巴伦电路
CN102843320B (zh) 与自定时振幅调制信号通信
CN108336998A (zh) 模数转换装置与模数转换方法
CN103051289A (zh) 低时钟串扰的预放大器、动态比较器及电路
WO2011140731A1 (zh) 一种用于低频磁场信号检测和传输及距离判断的装置、系统和方法
Lai et al. A 0.5 V GFSK 200μW limiter/demodulator with bulk-driven technique for Low-IF bluetooth

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant