CN103148153A - 液压减振器压缩阀片预变形量的设计方法 - Google Patents

液压减振器压缩阀片预变形量的设计方法 Download PDF

Info

Publication number
CN103148153A
CN103148153A CN2013100821456A CN201310082145A CN103148153A CN 103148153 A CN103148153 A CN 103148153A CN 2013100821456 A CN2013100821456 A CN 2013100821456A CN 201310082145 A CN201310082145 A CN 201310082145A CN 103148153 A CN103148153 A CN 103148153A
Authority
CN
China
Prior art keywords
valve
compression
compression valve
time
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100821456A
Other languages
English (en)
Other versions
CN103148153B (zh
Inventor
周长城
刘瑞军
李瑞先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201310082145.6A priority Critical patent/CN103148153B/zh
Publication of CN103148153A publication Critical patent/CN103148153A/zh
Application granted granted Critical
Publication of CN103148153B publication Critical patent/CN103148153B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

本发明涉及液压减振器压缩阀片预变形量的设计方法,属于液压减振器技术领域。由于受阀片变形及油液非线性节流损失计算问题的制约,目前国内外对于液压减振器压缩阀片预变形量设计一直没有给出可靠的设计方法,大都是凭经验及反复试验获得压缩阀片预变形量的设计值。本发明的主旨是提供一种可靠的压缩阀片预变形量的设计方法,其特征在于:可根据压缩叠加阀片的厚度和片数,初次开阀速度点及阻尼力要求和油路,对液压减振器压缩阀片预变形量进行精确设计。利用该发明可设计得到可靠的压缩阀片预变形量,确保压缩行程开阀速度及阻尼特性的设计要求,提高减振器性能及车辆平顺性,提高减振器的使用寿命,减少试验次数,降低设计及试验费用。

Description

液压减振器压缩阀片预变形量的设计方法
技术领域
本发明涉及液压减振器,特别是液压减振器压缩阀片预变形量的设计方法。
背景技术
减振器压缩阀片安装固定的内圆柱端面与阀口端面之间存有一定的高度差,当安装紧固好之后,压缩阀片在阀口半径位置将会产生一定的预变形量。压缩阀片预变形量决定着减振器压缩行程的初次开阀速度及减振器的阻尼特性,因此,对车辆行驶平顺性具有重要影响,而且开阀速度点的设置,会防止减振器在很低速度下频繁开阀,提高减振器的使用寿命。然后,由于受阀片变形及油液非线性节流损失解析计算方法的制约,目前国内外对于液压减振器压缩阀片预变形量设计一直没有给出可靠的设计方法,大都是凭经验及反复试验获得压缩阀片预变形量的设计值。因此,目前传统的设计方法,很难满足汽车行业快发展及车辆行驶速度不断提高而对减振器设计所提出的要求。
因此,必须建立一种精确、可靠的液压减振器压缩阀片预变形量的设计方法,提高减振器设计水平、质量和性能,满足车辆及悬架对减振器阻尼特性的要求,提高车辆的行驶平顺性、操作稳定性和乘坐舒适性。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种准确、可靠的液压减振器压缩阀片预变形量的设计方法,其设计流程如图1所示。
为了解决上述技术问题,本发明所提供的液压减振器压缩阀片预变形量的设计方法,压缩阀总成及压缩阀结构如图2所示,其技术方案实施步骤如下:
(1)计算减振器压缩阀叠加阀片的等效厚度                                                
根据压缩阀叠加阀片的厚度和片数h 1n 1h 2n 2;…,h nn n;计算减振器压缩阀叠加阀片的等效厚度
Figure 677015DEST_PATH_IMAGE001
为:
                                   
Figure 919909DEST_PATH_IMAGE002
(2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
根据压缩阀叠加阀片的内园半径
Figure 2013100821456100002DEST_PATH_IMAGE003
,外园半径
Figure 240163DEST_PATH_IMAGE004
,阀口半径
Figure 2013100821456100002DEST_PATH_IMAGE005
,弹性模量E和泊松比μ,计算减振器压缩阀片在阀口半径r k处的变形系数G rky,即:
Figure 312024DEST_PATH_IMAGE006
式中,
Figure 2013100821456100002DEST_PATH_IMAGE007
Figure 299703DEST_PATH_IMAGE008
,       ,
Figure 2013100821456100002DEST_PATH_IMAGE011
Figure 247946DEST_PATH_IMAGE012
Figure 2013100821456100002DEST_PATH_IMAGE013
Figure 389077DEST_PATH_IMAGE014
Figure 2013100821456100002DEST_PATH_IMAGE015
Figure 700104DEST_PATH_IMAGE016
Figure 2013100821456100002DEST_PATH_IMAGE017
Figure 2013100821456100002DEST_PATH_IMAGE019
Figure 828914DEST_PATH_IMAGE020
Figure 2013100821456100002DEST_PATH_IMAGE021
Figure 773736DEST_PATH_IMAGE022
Figure 939270DEST_PATH_IMAGE024
Figure 2013100821456100002DEST_PATH_IMAGE025
Figure 754254DEST_PATH_IMAGE026
Figure 254506DEST_PATH_IMAGE028
Figure 2013100821456100002DEST_PATH_IMAGE029
Figure 488172DEST_PATH_IMAGE030
Figure 2013100821456100002DEST_PATH_IMAGE031
Figure 23059DEST_PATH_IMAGE032
Figure 2013100821456100002DEST_PATH_IMAGE033
Figure 215137DEST_PATH_IMAGE034
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据压缩阀初次开阀时的油路,活塞杆直径d g,设计所要求的压缩行程初次开阀速度V k1y及阻尼力F dk1y,计算减振器压缩阀初次开阀时活塞缝隙的压力p Hk1y,即:
                                          
Figure 953417DEST_PATH_IMAGE036
根据活塞缸筒内径
Figure 2013100821456100002DEST_PATH_IMAGE037
,活塞缝隙
Figure 240042DEST_PATH_IMAGE038
,缝隙长度
Figure 2013100821456100002DEST_PATH_IMAGE039
,活塞偏心率
Figure 377237DEST_PATH_IMAGE040
,油液动力粘度
Figure 2013100821456100002DEST_PATH_IMAGE041
,及初次开阀时活塞缝隙的压力p Hk1y,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                  
Figure 255064DEST_PATH_IMAGE042
(4)计算初次开阀时压缩阀座孔的流量
Figure 2013100821456100002DEST_PATH_IMAGE043
及节流压力p hyk1
    根据压缩行程初次开阀速度V k1y,活塞杆直径d g,及步骤(3)中的Q Hk1y,计算初次开阀时压缩阀座孔的流量
Figure 480640DEST_PATH_IMAGE043
为:
                                                
根据压缩阀座孔的直径
Figure 2013100821456100002DEST_PATH_IMAGE045
和个数
Figure 768850DEST_PATH_IMAGE046
,流量系数=0.62,油液密度
Figure 817577DEST_PATH_IMAGE048
,及压缩阀座孔的流量,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 2013100821456100002DEST_PATH_IMAGE049
(5)初次开阀时压缩阀片所受的压力
Figure 627718DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 2013100821456100002DEST_PATH_IMAGE051
,及步骤(4)中的
Figure 473927DEST_PATH_IMAGE052
,计算初次开阀时压缩阀片所受的压力
Figure 631239DEST_PATH_IMAGE050
为:
(6)减振器压缩阀片预变形量
Figure 362566DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey,步骤(2)中的G rky,及步骤(5)中的
Figure 466788DEST_PATH_IMAGE050
,对减振器压缩阀片的预变形量
Figure 154121DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 2013100821456100002DEST_PATH_IMAGE055
本发明比现有技术具有的优点:
由于受阀片变形及油液非线性节流损失解析计算方法的制约,目前国内外对于液压减振器压缩阀片预变形量设计一直没有给出可靠的设计方法,大都是凭经验及反复试验获得压缩阀片预变形量的设计值。本发明可根据压缩叠加阀片的厚度和片数及等效厚度,压缩行程初次开阀速度点及阻尼力要求,初次开阀时的油路,对液压减振器压缩阀片预变形量进行精确设计。利用该发明可设计得到可靠的压缩阀片预变形量f rk0y,即压缩阀的内圆柱端面与阀口端面的高度差,确保满足减振器压缩行程开阀速度点及阻尼特性的设计要求,提高减振器性能及车辆平顺性,提高减振器的使用寿命,并且可减少试验次数,降低设计及试验费用。
为了更好地理解本发明下面结合附图作进一步的说明。
图1 是液压减振器压缩阀片预变形量的设计方法流程图;
图2 是减振器压缩阀座总成及压缩阀结构图;
图3 是减振器压缩阀下端面高度差即阀片预变形量的示意图;
图4 是减振器压缩阀初次开阀时的油路图;
图5 是实施例一的减振器特性试验速度特性曲线。
具体实施方案
下面通过实施例对本发明作进一步详细说明。
实施例一:某减振器压缩阀座总成及压缩阀结构如图2所示,补偿阀弹簧1,补偿阀片2,压缩底阀3,压缩阀紧固铆钉4,压缩阀叠加阀片5,压缩阀限位挡圈6,压缩阀底座7,限位间隙调整垫圈8,补偿阀孔9,补偿阀弹簧座10,其中,压缩阀叠加阀片上面的第1片为带有常通节流孔的节流阀片,并且压缩阀叠加阀片5通过压缩阀紧固铆钉4、限位间隙调整垫圈8和压缩阀限位挡圈6,与压缩阀端面紧密接触。压缩阀固定压缩阀片的内圆柱端面与阀口外端面之间存有一定的高度差,如图3所示,因此,压缩阀叠加阀片紧固安装好之后,就形成了一定的预变形量f rk0。该减振器活塞缸筒的内径
Figure 295384DEST_PATH_IMAGE056
,活塞杆直径d g=20mm,活塞缸筒与活塞杆之间的环形面积
Figure 2013100821456100002DEST_PATH_IMAGE057
;活塞缝隙长度;活塞平均间隙
Figure 2013100821456100002DEST_PATH_IMAGE059
;偏心率
Figure 484237DEST_PATH_IMAGE060
;油液运动粘度粘度
Figure 2013100821456100002DEST_PATH_IMAGE061
Figure 557235DEST_PATH_IMAGE062
m2/s,密度,动力粘度
Figure 347029DEST_PATH_IMAGE064
;压缩阀座孔的,直径
Figure DEST_PATH_IMAGE065
,个数
Figure 787369DEST_PATH_IMAGE066
;压缩阀片的内圆半径
Figure DEST_PATH_IMAGE067
,外圆半径
Figure 295711DEST_PATH_IMAGE068
,节流阀阀口位置半径
Figure DEST_PATH_IMAGE069
,弹性模型E=200GPa,泊松比
Figure 770686DEST_PATH_IMAGE070
=0.3,压缩阀叠加阀片厚度和片数分别为h 1=0.1mm, n 1=1;h 2=0.15mm,常通孔面积,流量系数
Figure 971860DEST_PATH_IMAGE072
,减振器设计所要求的初次开阀速度V k1y=0.1m/s,阻尼力F dk1y=150N时所要求的。
本发明实例所提供的液压减振器压缩阀片预变形量的设计方法,设计流程如图1所示,具体步骤如下:
(1)计算减振器压缩阀叠加阀片的等效厚度
Figure 837179DEST_PATH_IMAGE001
根据减振器压缩阀叠加阀片的厚度和片数,h 1=0.1mm, n 1=1;h 2=0.15mm, n 2=1;计算压缩阀叠加阀片的等效厚度
Figure 618053DEST_PATH_IMAGE001
为:
                                   
Figure DEST_PATH_IMAGE073
=0.16355mm;
(2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
根据压缩阀片的内圆半径,外圆半径,阀口位置半径
Figure 387404DEST_PATH_IMAGE069
,弹性模型E=200GPa,泊松比=0.3,计算减振器压缩阀片在非均布压力下的在阀口半径r k位置的变形系数G rky,即:
=
式中,=1.2425
=5.1801
Figure 231175DEST_PATH_IMAGE076
Figure 413894DEST_PATH_IMAGE009
=-5.12
Figure DEST_PATH_IMAGE077
,
Figure 269330DEST_PATH_IMAGE010
=-0.0022, 
Figure 195698DEST_PATH_IMAGE011
=-1.2334
Figure 275649DEST_PATH_IMAGE078
,
Figure 645582DEST_PATH_IMAGE012
=-7.8388
Figure DEST_PATH_IMAGE079
, 
Figure 974932DEST_PATH_IMAGE013
=263.1579,=-0.0386,
Figure 390181DEST_PATH_IMAGE015
=0.076,
Figure 180283DEST_PATH_IMAGE016
=2.1949
Figure 200191DEST_PATH_IMAGE079
=-1.0938
Figure 539217DEST_PATH_IMAGE080
=- 9.2536,
Figure 538583DEST_PATH_IMAGE019
=2.6,=8.448
Figure 399201DEST_PATH_IMAGE021
Figure 393702DEST_PATH_IMAGE022
Figure 19986DEST_PATH_IMAGE023
=-2.9669
Figure DEST_PATH_IMAGE081
Figure 111439DEST_PATH_IMAGE024
=-8.1536
Figure 899398DEST_PATH_IMAGE082
Figure 177932DEST_PATH_IMAGE025
Figure 591596DEST_PATH_IMAGE026
Figure 225971DEST_PATH_IMAGE027
=- 3.1088
Figure DEST_PATH_IMAGE083
Figure 934350DEST_PATH_IMAGE029
Figure 911226DEST_PATH_IMAGE030
Figure 293983DEST_PATH_IMAGE032
=- 1.8606
Figure 461473DEST_PATH_IMAGE035
=1.4929
Figure 421470DEST_PATH_IMAGE079
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据减振器压缩阀初次开阀时的油路图4,活塞杆直径d g=20mm,设计所要求的压缩行程在初次开阀时的阻尼力F dk1y=150N,计算减振器初次开阀时活塞缝隙压力p Hk1y,即:
                                          
Figure 980627DEST_PATH_IMAGE036
=4.7746
Figure DEST_PATH_IMAGE085
Pa;
根据活塞直径
Figure 975259DEST_PATH_IMAGE037
=28mm,活塞缝隙
Figure 961670DEST_PATH_IMAGE038
=0.04mm,活塞缝隙长度
Figure 923810DEST_PATH_IMAGE039
=9mm,油液动力粘度
Figure 768881DEST_PATH_IMAGE064
,活塞偏心率
Figure 336129DEST_PATH_IMAGE040
=1.0,及初次开阀时活塞缝隙压力p Hk1y=4.7746
Figure 24599DEST_PATH_IMAGE085
Pa,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                  
Figure 428030DEST_PATH_IMAGE042
=6.9913
Figure 860148DEST_PATH_IMAGE086
m3/s;
(4)计算初次开阀时压缩阀座孔的流量
Figure 547481DEST_PATH_IMAGE043
及节流压力p hyk1
   根据压缩行程初次开阀速度V k1y=0.1m/s,活塞杆直径d g=20mm, 及步骤(3)中的Q Hk1y=6.9913
Figure 626427DEST_PATH_IMAGE086
m3/s,对初次开阀时压缩阀座孔的流量进行计算,即:
                                                
Figure 205493DEST_PATH_IMAGE044
=2.4425
Figure DEST_PATH_IMAGE087
m3/s;
根据压缩阀座孔的直径
Figure 29224DEST_PATH_IMAGE045
=1.5mm和个数
Figure 528338DEST_PATH_IMAGE046
=2,流量系数=0.62,油液密度
Figure 677352DEST_PATH_IMAGE048
=890kg/m3,及压缩阀座孔的流量
Figure 808119DEST_PATH_IMAGE043
=2.4425
Figure 9293DEST_PATH_IMAGE087
m3/s,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 858301DEST_PATH_IMAGE049
=5.5288
Figure 655487DEST_PATH_IMAGE080
Pa;
(5)初次开阀时压缩阀片所受的压力
Figure 171919DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 12836DEST_PATH_IMAGE051
=4.7746
Figure 349139DEST_PATH_IMAGE085
Pa,及步骤(4)中的
Figure 684437DEST_PATH_IMAGE052
=5.5288
Figure 55375DEST_PATH_IMAGE080
Pa,计算初次开阀时压缩阀片所受的压力
Figure 598352DEST_PATH_IMAGE050
为:
Figure 438263DEST_PATH_IMAGE053
=4.2218
Figure 560940DEST_PATH_IMAGE085
Pa;
(6)减振器压缩阀片预变形量
Figure 51964DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey=0.16355mm,步骤(2)中的G rky=,及步骤(5)中的
Figure 293382DEST_PATH_IMAGE050
=4.2218
Figure 750908DEST_PATH_IMAGE085
Pa,对减振器压缩阀片的预变形量
Figure 565280DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 918901DEST_PATH_IMAGE055
=0.07mm。
利用电液伺服悬架综合性能试验台,对所设计减振器样机进行特性试验,所测得的减振器速度特性曲线如图5所示,减振器压缩行程初次开阀速度V k1y为0.11 m/s,与计算所得到的0.1m/s相吻合,表明该液压减振器初次开阀速度的计算方法是正确的。
实施例二:除了减振器压缩阀叠加阀片的厚度和片数与实施例一的不同之外,减振器结构参数、压缩阀体的结构参数及油液参数都与实施例一相同;其中,压缩阀叠加阀片的厚度和片数分别为h 1=0.1mm, n 1=3;h 2=0.15mm, n 2=1,初次开阀速度V k1y=0.15m/s,阻尼力F dk1y=180N。
采用实施例一的设计步骤,对该减振器压缩阀片预变形量进行设计,即:
(1)计算减振器压缩阀叠加阀片的等效厚度
Figure 998984DEST_PATH_IMAGE001
根据压缩阀叠加阀片的厚度和片数,h 1=0.1mm, n 1=3;h 2=0.15mm, n 2=1;计算减振器压缩阀叠加阀片的等效厚度
Figure 729043DEST_PATH_IMAGE001
为:
                                   
Figure 929080DEST_PATH_IMAGE073
=0.18542mm;
 (2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
由于叠加阀片的内园半径
Figure 204334DEST_PATH_IMAGE003
,外园半径
Figure 489822DEST_PATH_IMAGE004
,阀口半径
Figure 554730DEST_PATH_IMAGE005
,弹性模量E和泊松比μ,都与实施例一的相同,因此,该减振器压缩阀片在非均布压力下的在阀口半径r k位置的变形系数G rky,也与实施例一的相同,即
Figure 360006DEST_PATH_IMAGE088
=
Figure 55430DEST_PATH_IMAGE074
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据活塞杆直径d g=20mm,设计所要求的压缩行程在初次开阀时的阻尼力F dk1y=180N,计算减振器初次开阀时活塞缝隙的压力p Hk1y,即:
                                          
Figure 828214DEST_PATH_IMAGE036
=5.7296Pa;
根据活塞直径
Figure 568647DEST_PATH_IMAGE037
=28mm,活塞缝隙
Figure 700551DEST_PATH_IMAGE038
=0.04mm,活塞缝隙长度
Figure 695051DEST_PATH_IMAGE039
=9mm,油液动力粘度
Figure 570604DEST_PATH_IMAGE064
,活塞偏心率=1.0,及初次开阀时活塞缝隙的压力p Hk1y=5.7296
Figure 387698DEST_PATH_IMAGE085
Pa,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                  =8.3895
Figure 565050DEST_PATH_IMAGE086
m3/s;
(4)计算初次开阀时压缩阀座孔的流量
Figure 448692DEST_PATH_IMAGE043
及节流压力p hyk1
   根据压缩行程初次开阀速度V k1y=0.1m/s,活塞杆直径d g=20mm, 及步骤(3)中的Q Hk1y=8.3895m3/s,计算得到初次开阀时压缩阀座孔的流量
Figure 891492DEST_PATH_IMAGE043
                                               
Figure 859579DEST_PATH_IMAGE044
=3.8734m3/s;
根据压缩阀座孔的直径
Figure 773494DEST_PATH_IMAGE045
=1.5mm和个数
Figure 977686DEST_PATH_IMAGE046
=2,流量系数
Figure 733152DEST_PATH_IMAGE047
=0.62,油液密度
Figure 591387DEST_PATH_IMAGE048
=890kg/m3,及压缩阀座孔的流量
Figure 141317DEST_PATH_IMAGE043
=3.8734
Figure 366893DEST_PATH_IMAGE087
m3/s,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 926050DEST_PATH_IMAGE049
=1.3905
Figure 638792DEST_PATH_IMAGE085
Pa;
(5)初次开阀时压缩阀片所受的压力
Figure 375934DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 72495DEST_PATH_IMAGE051
=5.7296
Figure 638606DEST_PATH_IMAGE085
Pa,及步骤(4)中的
Figure 753323DEST_PATH_IMAGE052
=1.3905
Figure 910635DEST_PATH_IMAGE085
Pa,计算初次开阀时压缩阀片所受的压力
Figure 94492DEST_PATH_IMAGE050
为:
Figure 743254DEST_PATH_IMAGE053
=4.3391
Figure 430588DEST_PATH_IMAGE085
Pa;
(6)减振器压缩阀片预变形量
Figure 758801DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey=0.18542mm,步骤(2)中的G rky=,及步骤(5)中的
Figure 619758DEST_PATH_IMAGE050
==4.3391
Figure 161597DEST_PATH_IMAGE085
Pa,对减振器压缩阀片的预变形量
Figure 660712DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 38735DEST_PATH_IMAGE055
=0.05mm。
实施例三:除了减振器压座孔的直径d hy和个数n hy以及活塞杆直径d g与实施例一的不同之外,减振器的结构参数、压缩阀叠加阀片的厚度和片数、材料特性参数及油液参数都与实施例一相同;其中,压缩阀座孔的直径d hy=2.0mm、孔的个数n h=4,活塞杆直径d g=18mm。
采用实施例一的设计步骤,对该减振器压缩阀片预变形量进行计算,即:
(1)计算减振器压缩阀叠加阀片的等效厚度
Figure 281497DEST_PATH_IMAGE001
由于该减振器压缩阀叠加阀片的厚度和片数,与实施例一的相同,因此,压缩阀叠加阀片的等效厚度
Figure 677844DEST_PATH_IMAGE001
也与实施例一的相同,即:
                                   
Figure 347859DEST_PATH_IMAGE073
=0.16355mm;
(2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
由于该减振器叠加阀片的内园半径
Figure 213178DEST_PATH_IMAGE003
,外园半径
Figure 790790DEST_PATH_IMAGE004
,阀口半径
Figure 41643DEST_PATH_IMAGE005
,弹性模量E和泊松比μ,都与实施例一的相同,因此,压缩阀片在非均布压力下的在阀口半径r k位置的变形系数G rky,也与实施例一的相同,即
Figure 630363DEST_PATH_IMAGE088
=
Figure 232245DEST_PATH_IMAGE074
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据活塞杆的直径d g=18mm,设计所要求的压缩行程在初次开阀时的阻尼力F dk1y=150N,计算减振器初次开阀时活塞缝隙的压力p Hk1y,即:
                                          
Figure 816810DEST_PATH_IMAGE036
=5.8946
Figure 187749DEST_PATH_IMAGE085
Pa;
根据活塞直径
Figure 950300DEST_PATH_IMAGE037
=28mm,活塞缝隙
Figure 39478DEST_PATH_IMAGE038
=0.04mm,活塞缝隙长度
Figure 693314DEST_PATH_IMAGE039
=9mm,油液动力粘度
Figure 669491DEST_PATH_IMAGE064
,活塞偏心率
Figure 117790DEST_PATH_IMAGE040
=1.0,及初次开阀时活塞缝隙的压力p Hk1y=5.8946
Figure 428685DEST_PATH_IMAGE085
Pa,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                   =8.6312
Figure 982475DEST_PATH_IMAGE086
m3/s;
(4)计算初次开阀时压缩阀座孔的流量
Figure 336096DEST_PATH_IMAGE043
及节流压力p hyk1
   根据压缩行程初次开阀速度V k1y=0.1m/s,活塞杆直径d g=18mm,及步骤(3)中的Q Hk1y=8.6312
Figure 134287DEST_PATH_IMAGE086
m3/s,计算得到初次开阀时压缩阀座孔的流量
Figure 623868DEST_PATH_IMAGE043
                                                
Figure 823905DEST_PATH_IMAGE044
=1.6816
Figure 348427DEST_PATH_IMAGE087
m3/s;
根据压缩阀座孔的直径
Figure 633915DEST_PATH_IMAGE045
=2.0mm和个数=4,流量系数
Figure 238520DEST_PATH_IMAGE047
=0.62,油液密度
Figure DEST_PATH_IMAGE089
,及压缩阀座孔的流量
Figure 481413DEST_PATH_IMAGE043
=1.6816m3/s,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 60479DEST_PATH_IMAGE049
=2.0729
Figure 235109DEST_PATH_IMAGE090
Pa;
(5)初次开阀时压缩阀片所受的压力
Figure 852166DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 643404DEST_PATH_IMAGE051
=5.8946
Figure 253377DEST_PATH_IMAGE085
Pa,及步骤(4)中的
Figure 561474DEST_PATH_IMAGE052
=2.0729
Figure 864280DEST_PATH_IMAGE090
Pa,计算初次开阀时压缩阀片所受的压力
Figure 346077DEST_PATH_IMAGE050
为:
Figure 41631DEST_PATH_IMAGE053
=5.8739Pa;
(6)减振器压缩阀片预变形量
Figure 680871DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey=0.16355mm,步骤(2)中的G rky=
Figure 649964DEST_PATH_IMAGE074
,及步骤(5)中的
Figure 132898DEST_PATH_IMAGE050
=5.8739
Figure 887359DEST_PATH_IMAGE085
Pa,对减振器压缩阀片预变形量
Figure 531967DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 988356DEST_PATH_IMAGE055
=0.1mm。
实施例四:除了减振器压缩阀叠加阀片的内圆半径和阀口半径及活塞杆直径与实施例一的不同之外,减振器的结构参数、压缩阀叠加阀片的厚度和片数及材料特性、油液参数都与实施例一相同;其中,压缩阀片的内圆半径r a=4.0mm,外圆半径r b=8.0mm,阀口半径r k=6.5mm,活塞杆直径d g=18mm。
采用实施例一的计算步骤,对该减振器初次开阀速度进行计算,即:
(1)计算减振器压缩阀叠加阀片的等效厚度
由于该减振器压缩阀叠加阀片的厚度和片数,与实施例一的相同,因此,压缩阀叠加阀片的等效厚度
Figure 84280DEST_PATH_IMAGE001
也与实施例一的相同,即:
                                   
Figure 899789DEST_PATH_IMAGE073
=0.16355mm;
(2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
根据压缩阀叠加阀片的内园半径
Figure 843475DEST_PATH_IMAGE003
=4.0mm,外园半径
Figure 402632DEST_PATH_IMAGE004
=8.0mm,阀口半径
Figure 866105DEST_PATH_IMAGE005
=6.5mm,弹性模量E=200GPa和泊松比μ=0.3,计算减振器压缩阀片在阀口半径r k位置的变形系数G rky,即:
Figure 586937DEST_PATH_IMAGE006
=
Figure DEST_PATH_IMAGE091
式中,
Figure 362126DEST_PATH_IMAGE007
=1.0328
Figure 459395DEST_PATH_IMAGE075
Figure 292222DEST_PATH_IMAGE008
=4.2453
Figure 465845DEST_PATH_IMAGE076
Figure 384123DEST_PATH_IMAGE009
=-5.12
Figure 564044DEST_PATH_IMAGE077
,
Figure 985798DEST_PATH_IMAGE010
=-0.0022, 
Figure 314011DEST_PATH_IMAGE011
=-1.2856
Figure 454005DEST_PATH_IMAGE078
,
Figure 909389DEST_PATH_IMAGE012
=-8.1249
Figure 451228DEST_PATH_IMAGE078
, 
Figure 950343DEST_PATH_IMAGE013
=250,=-0.0402,
Figure 102287DEST_PATH_IMAGE015
=0.008,=2.56
Figure 450539DEST_PATH_IMAGE079
Figure 565126DEST_PATH_IMAGE017
=-1.0938
Figure 346000DEST_PATH_IMAGE080
Figure 862432DEST_PATH_IMAGE018
=-9.2536,
Figure 462871DEST_PATH_IMAGE019
=2.6,=8.448
Figure 180477DEST_PATH_IMAGE077
Figure 302148DEST_PATH_IMAGE021
Figure 313966DEST_PATH_IMAGE022
Figure 137566DEST_PATH_IMAGE023
=-2.9622
Figure 807713DEST_PATH_IMAGE081
Figure 33158DEST_PATH_IMAGE024
=-7.6781
Figure 215877DEST_PATH_IMAGE082
Figure 469452DEST_PATH_IMAGE092
Figure 699762DEST_PATH_IMAGE028
=- 2.9298
Figure 245757DEST_PATH_IMAGE083
Figure DEST_PATH_IMAGE093
Figure 506974DEST_PATH_IMAGE030
Figure 441432DEST_PATH_IMAGE031
Figure 982266DEST_PATH_IMAGE032
Figure 67082DEST_PATH_IMAGE034
=- 1.8451
Figure 872358DEST_PATH_IMAGE084
=1.416
Figure 871724DEST_PATH_IMAGE079
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据活塞杆的直径d g=18mm,设计所要求的压缩行程在初次开阀时的阻尼力F dk1y=150N,计算减振器初次开阀时活塞缝隙压力p Hk1y,即:
                                           =5.8946
Figure 400106DEST_PATH_IMAGE085
Pa;
根据活塞直径
Figure 266430DEST_PATH_IMAGE037
=28mm,活塞缝隙
Figure 274313DEST_PATH_IMAGE038
=0.04mm,活塞缝隙长度
Figure 415445DEST_PATH_IMAGE039
=9mm,油液动力粘度
Figure 444580DEST_PATH_IMAGE064
,活塞偏心率
Figure 232539DEST_PATH_IMAGE040
=1.0,及初次开阀时活塞缝隙压力p Hk1y=5.8946
Figure 979915DEST_PATH_IMAGE085
Pa,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                   
Figure 393579DEST_PATH_IMAGE042
=8.6312
Figure 277221DEST_PATH_IMAGE086
m3/s;
(4)计算初次开阀时压缩阀座孔的流量
Figure 501660DEST_PATH_IMAGE043
及节流压力p hyk1
   根据压缩行程初次开阀速度V k1y=0.1m/s,活塞杆直径d g=18mm,及步骤(3)中的Q Hk1y=8.6312
Figure 470753DEST_PATH_IMAGE086
m3/s,计算得到初次开阀时压缩阀座孔的流量
Figure 422529DEST_PATH_IMAGE043
                                                
Figure 708148DEST_PATH_IMAGE044
=1.6816
Figure 87177DEST_PATH_IMAGE087
m3/s;
根据压缩阀座孔的直径
Figure 74724DEST_PATH_IMAGE045
=1.5mm和个数
Figure 577993DEST_PATH_IMAGE046
=2,流量系数
Figure 436228DEST_PATH_IMAGE047
=0.62,油液密度
Figure 251737DEST_PATH_IMAGE089
,及压缩阀座孔的流量
Figure 195422DEST_PATH_IMAGE043
=1.6816
Figure 239733DEST_PATH_IMAGE087
m3/s,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 483633DEST_PATH_IMAGE049
=2.6206Pa;
(5)初次开阀时压缩阀片所受的压力
Figure 651757DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 749026DEST_PATH_IMAGE051
=5.8946Pa,及步骤(4)中的=2.6206Pa,计算初次开阀时压缩阀片所受的压力
Figure 142595DEST_PATH_IMAGE050
为:
Figure 309134DEST_PATH_IMAGE053
=5.6326
Figure 996468DEST_PATH_IMAGE085
Pa;
(6)减振器压缩阀片预变形量
Figure 896702DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey=0.16355mm,步骤(2)中的G rky=
Figure 36696DEST_PATH_IMAGE074
,及步骤(5)中的
Figure 741347DEST_PATH_IMAGE050
=5.6326
Figure 565078DEST_PATH_IMAGE085
Pa,对减振器压缩阀片预变形量
Figure 64192DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 691483DEST_PATH_IMAGE055
=0.08mm。

Claims (1)

1.液压减振器压缩阀片预变形量的设计方法,其具体步骤如下:
(1)计算减振器压缩阀叠加阀片的等效厚度                                                
Figure 2013100821456100001DEST_PATH_IMAGE001
根据压缩阀叠加阀片的厚度和片数h 1n 1h 2n 2;…,h nn n;计算减振器压缩阀叠加阀片的等效厚度
Figure 875548DEST_PATH_IMAGE001
为:
                                   
Figure 2013100821456100001DEST_PATH_IMAGE002
(2)计算减振器压缩阀片在阀口半径r k处的变形系数G rky
根据压缩阀叠加阀片的内园半径
Figure 2013100821456100001DEST_PATH_IMAGE003
,外园半径
Figure 2013100821456100001DEST_PATH_IMAGE004
,阀口半径,弹性模量E和泊松比μ,计算减振器压缩阀片在阀口半径r k处的变形系数G rky,即:
式中,
Figure 2013100821456100001DEST_PATH_IMAGE009
,       
Figure 2013100821456100001DEST_PATH_IMAGE010
,
Figure 2013100821456100001DEST_PATH_IMAGE011
Figure 2013100821456100001DEST_PATH_IMAGE012
Figure 2013100821456100001DEST_PATH_IMAGE013
Figure 2013100821456100001DEST_PATH_IMAGE014
Figure 2013100821456100001DEST_PATH_IMAGE015
Figure 2013100821456100001DEST_PATH_IMAGE016
Figure 2013100821456100001DEST_PATH_IMAGE018
Figure 2013100821456100001DEST_PATH_IMAGE019
Figure 2013100821456100001DEST_PATH_IMAGE020
Figure 2013100821456100001DEST_PATH_IMAGE021
Figure 2013100821456100001DEST_PATH_IMAGE022
Figure 2013100821456100001DEST_PATH_IMAGE024
Figure 2013100821456100001DEST_PATH_IMAGE028
Figure 2013100821456100001DEST_PATH_IMAGE029
Figure 2013100821456100001DEST_PATH_IMAGE030
Figure 2013100821456100001DEST_PATH_IMAGE031
Figure 2013100821456100001DEST_PATH_IMAGE032
Figure 2013100821456100001DEST_PATH_IMAGE033
Figure 2013100821456100001DEST_PATH_IMAGE034
Figure 2013100821456100001DEST_PATH_IMAGE035
(3)计算压缩阀初次开阀时活塞缝隙的压力p Hk1y和流量Q Hk1y
根据压缩阀初次开阀时的油路,活塞杆直径d g,设计所要求的压缩行程初次开阀速度V k1y及阻尼力F dk1y,计算减振器压缩阀初次开阀时活塞缝隙的压力p Hk1y,即:
                                          
Figure 2013100821456100001DEST_PATH_IMAGE036
根据活塞缸筒内径
Figure 2013100821456100001DEST_PATH_IMAGE037
,活塞缝隙,缝隙长度
Figure 2013100821456100001DEST_PATH_IMAGE039
,活塞偏心率,油液动力粘度
Figure 2013100821456100001DEST_PATH_IMAGE041
,及初次开阀时活塞缝隙的压力p Hk1y,计算压缩阀初次开阀时活塞缝隙的流量Q Hk1y,即:
                                  
Figure 2013100821456100001DEST_PATH_IMAGE042
(4)计算初次开阀时压缩阀座孔的流量
Figure 2013100821456100001DEST_PATH_IMAGE043
及节流压力p hyk1
    根据压缩行程初次开阀速度V k1y,活塞杆直径d g,及步骤(3)中的Q Hk1y,计算初次开阀时压缩阀座孔的流量为:
                                                
Figure 2013100821456100001DEST_PATH_IMAGE044
根据压缩阀座孔的直径
Figure 2013100821456100001DEST_PATH_IMAGE045
和个数
Figure 2013100821456100001DEST_PATH_IMAGE046
,流量系数
Figure 2013100821456100001DEST_PATH_IMAGE047
=0.62,油液密度,及压缩阀座孔的流量
Figure 765498DEST_PATH_IMAGE043
,计算初次开阀时压缩阀座孔的节流压力p hyk1为:
Figure 2013100821456100001DEST_PATH_IMAGE049
(5)初次开阀时压缩阀片所受的压力
Figure 2013100821456100001DEST_PATH_IMAGE050
根据步骤(3)中的
Figure 2013100821456100001DEST_PATH_IMAGE051
,及步骤(4)中的
Figure 2013100821456100001DEST_PATH_IMAGE052
,计算初次开阀时压缩阀片所受的压力
Figure 783962DEST_PATH_IMAGE050
为:
Figure 2013100821456100001DEST_PATH_IMAGE053
(6)减振器压缩阀片预变形量
Figure 2013100821456100001DEST_PATH_IMAGE054
的设计:
       根据步骤(1)中的h ey,步骤(2)中的G rky,及步骤(5)中的
Figure 413658DEST_PATH_IMAGE050
,对减振器压缩阀片的预变形量
Figure 681828DEST_PATH_IMAGE054
进行设计,即:
                                                
Figure 2013100821456100001DEST_PATH_IMAGE055
CN201310082145.6A 2013-03-15 2013-03-15 液压减振器压缩阀片预变形量的设计方法 Expired - Fee Related CN103148153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310082145.6A CN103148153B (zh) 2013-03-15 2013-03-15 液压减振器压缩阀片预变形量的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310082145.6A CN103148153B (zh) 2013-03-15 2013-03-15 液压减振器压缩阀片预变形量的设计方法

Publications (2)

Publication Number Publication Date
CN103148153A true CN103148153A (zh) 2013-06-12
CN103148153B CN103148153B (zh) 2014-09-03

Family

ID=48546404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310082145.6A Expired - Fee Related CN103148153B (zh) 2013-03-15 2013-03-15 液压减振器压缩阀片预变形量的设计方法

Country Status (1)

Country Link
CN (1) CN103148153B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038097A (ja) * 2004-07-27 2006-02-09 Hitachi Ltd 油圧緩衝器
JP4858970B2 (ja) * 2006-10-10 2012-01-18 カヤバ工業株式会社 減衰力調整部構造
CN102748418A (zh) * 2012-07-17 2012-10-24 山东理工大学 减振器复合阀螺旋弹簧刚度设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038097A (ja) * 2004-07-27 2006-02-09 Hitachi Ltd 油圧緩衝器
JP4858970B2 (ja) * 2006-10-10 2012-01-18 カヤバ工業株式会社 減衰力調整部構造
CN102748418A (zh) * 2012-07-17 2012-10-24 山东理工大学 减振器复合阀螺旋弹簧刚度设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周长城等: ""汽车筒式减振器分段线性特性的建模与仿真"", 《汽车工程》, vol. 32, no. 4, 25 April 2010 (2010-04-25) *
徐伟等: ""汽车悬架阻尼匹配研究及减振器设计"", 《农业装备与车辆工程》, no. 6, 10 June 2009 (2009-06-10) *
赵力航: ""油气弹簧力学特性仿真"", 《农业机械学报》, vol. 40, no. 10, 25 October 2009 (2009-10-25) *

Also Published As

Publication number Publication date
CN103148153B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN102748418B (zh) 减振器复合阀螺旋弹簧刚度设计方法
CN102840265A (zh) 半主动悬架可控筒式液压减振器阀参数的优化设计方法
CN107289058A (zh) 一种减震器阻尼调节阀
CN103161871A (zh) 汽车减振器压缩阀叠加阀片的强度校核方法
CN103148148B (zh) 减振器复原叠加阀片强度的校核方法
CN206085764U (zh) 一种具有减震功能的铸锻机床
CN103148153A (zh) 液压减振器压缩阀片预变形量的设计方法
CN103148150A (zh) 汽车减振器压缩阀常通孔面积的设计方法
CN103498885A (zh) 基于速度特性的液压减振器复原阀常通孔面积的设计方法
CN104455172A (zh) 一种多级限压调节式液压缓冲器
CN103133590A (zh) 汽车减振器压缩阀限位挡圈曲面形状的设计方法
CN103148146B (zh) 减振器复原阀限位挡圈曲面形状的设计方法
CN103148152B (zh) 液压减振器压缩阀座的孔径及个数的优化设计方法
CN103148149B (zh) 汽车减振器压缩阀限位间隙垫圈厚度的设计方法
CN2913727Y (zh) 空气减震器
CN103115105B (zh) 减振器复原阀叠加阀片的拆分设计方法
CN201125981Y (zh) 一种桥梁液压阻尼器的阻尼阀
CN103115104B (zh) 减振器复原叠加阀片最大许用厚度的设计方法
DE112011101182T5 (de) Klappenventilaufbau
CN103148145A (zh) 减振器活塞下端面高度差的设计方法
KR20110026173A (ko) 쇽업소버의 밸브 구조
CN101260915A (zh) 球阀式车辆液力减振装置
CN110552989A (zh) 大流量补偿通道的压缩阀结构及其工作方法
CN201714895U (zh) 一种自保护液压减振器复原阻尼阀
CN114352672B (zh) 行程相关变阻尼横向油压减振器及其设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140903

Termination date: 20190315