CN103140770B - 自主校准的磁场传感器和电流传感器 - Google Patents

自主校准的磁场传感器和电流传感器 Download PDF

Info

Publication number
CN103140770B
CN103140770B CN201180032144.XA CN201180032144A CN103140770B CN 103140770 B CN103140770 B CN 103140770B CN 201180032144 A CN201180032144 A CN 201180032144A CN 103140770 B CN103140770 B CN 103140770B
Authority
CN
China
Prior art keywords
magnetic field
circuit
sensor
current
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180032144.XA
Other languages
English (en)
Other versions
CN103140770A (zh
Inventor
G·M·阿尼利
M·帕斯特尔
安德里亚·阿基比尔
M·卡亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyme Electronics (China) Co., Ltd.
Original Assignee
Liaisons Electroniques Mecaniques LEM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaisons Electroniques Mecaniques LEM SA filed Critical Liaisons Electroniques Mecaniques LEM SA
Publication of CN103140770A publication Critical patent/CN103140770A/zh
Application granted granted Critical
Publication of CN103140770B publication Critical patent/CN103140770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0035Calibration of single magnetic sensors, e.g. integrated calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本公开涉及自主校准的磁场传感器。一种磁场传感器,包括磁场感测电路(2),该磁场感测电路包括基准磁场发生器(8)和磁场感测单元(6),并且所述磁场传感器还包括信号处理电路(4),该信号处理电路连接到所述磁场感测单元的输出端并且包括用于校正所述磁场传感器的传输特性中的误差波动的增益校正反馈电路(30,28,47)。所述传感器进一步包括基准电流发生器(3)。所述基准电流发生器配置为生成基准电流Iref,所述基准电流发生器连接到配置为生成基准磁场Bref的所述磁场感测电路(2),并且所述基准电流发生器连接到配置为提供基准信号(yref)的增益校正反馈电路,所述解调器电路的输出信号可以与所述基准信号比较。

Description

自主校准的磁场传感器和电流传感器
技术领域
本发明涉及磁场传感器,该磁场传感器自主校准以补偿传输特性因一些因素产生的波动,所述因素例如温度、老化、机械应力和电压偏置。本发明还涉及电流传感器,其借助校准的磁场传感器测量外部导体中的电流流动。
背景技术
在制造期间被校准以补偿电压偏置和温度漂移的磁场传感器不能充分补偿源自例如机械应力和组件老化等因素的传感器传输特性的波动。为了解决这个缺陷,已知的是提供如US4752733和WO2006/056829中所述的在使用中被校准的传感器。
WO2006/056829公开了一种磁场传感器,其包括基准磁场发生器、磁场感测单元和信号处理电路,该信号处理电路连接到磁场感测单元的输出端并且包括一个或更多个反馈回路以校正磁场感测单元的传输特性中的变化。外部磁场通过以下方式被测量:在外部磁场上添加调制的基准磁场,在与基准磁场的调制频率不同的频率下调制磁场感测单元的输出信号,所述频率中的一个是其他频率的整数倍,并且增加或减去调制的信号的不同相位,以便提取相应于外部磁场的测量信号以及相应于基准磁场的基准信号。所述基准信号与测量信号分离,使得所述基准信号可以被用在反馈回路中以补偿磁场感测单元传输特性中的误差波动,并且同时产生不具有基准场分量的输出传感器信号。
然而,调制的基准磁场的生成依赖于生成基准磁场的基准线圈的外部基准电流源,这使得传感器的安装以及传感器与外部电路和组件的互连复杂化,并且增大了实施方式的总成本。对外部基准电流的依赖还可以降低传感器的可靠性或精确度。
发明内容
鉴于前述内容,本发明的一个目的是提供一种随时间保持精确度的可靠的磁场传感器,以及易于且经济性地在外部电路或装置中实现,并且这种实现是经济的。
另一个目的是提供一种电流传感器,其包括随时间保持精确度的可靠的磁场传感器,以及易于且经济性地在外部电路或装置中实现。
有利的是提供一种具有输入端和输出端的磁场传感器,该输入端和输出端允许在用于各种应用的不同电路中的简单配置和实施。
有利的是提供一种磁场传感器,其在工业领域中的制造是经济的。
本发明的目的通过提供如权利要求1的磁场传感器而实现。
本文公开的内容是一种包括磁场感测电路和信号处理电路的磁场传感器,该磁场感测电路包括基准磁场发生器和磁场感测单元,该信号处理电路连接到磁场感测单元的输出端并且包括解调器电路和用于校正磁场传感器的传输特性中的波动的增益校正反馈电路,包括由于误差导致的波动。传感器还包括配置为生成基准电流的基准电流发生器,基准电流发生器连接到配置为生成基准磁场的磁场感测电路并且连接到配置为提供基准信号的增益校正反馈电路,解调器电路的输出信号与基准信号进行比较。
有利地,在传感器中并入内部基准电流发生器简化了用于例如电流感测应用等各种应用的外部电路的实施。
基准电流发生器可以经由电流镜像电路连接到基准磁场发生器的基准线圈,电流镜像电路配置为复制基准电流并且生成驱动线圈以生成基准磁场的第二基准电流。
增益校正反馈电路可以经由电流镜像电路连接到基准电流发生器,电流镜像电路配置为复制基准电流Iref并且生成被馈送到增益校正反馈电路的进一步的基准电流。电流镜像电路可以连接到增益校正反馈电路的解调器。
基准电流发生器可以包括集成电路元件,该集成电路元件生成施加在内部电阻器RBG两端以生成基准电流Iref的带隙基准电压VBG
信号处理电路可以包括连接到信号处理电路的测量信号解调器的输出端的电压-电流(V/I)转换电路。电压-电流(V/I)转换电路可以有利地与样本结合并且保持基于测量信号的功能。
信号解调器电路可以包括并联的至少两个解调器,其被配置为同时分离测量信号和基准信号,或者信号解调器电路可以包括单个解调器,该解调器可操作在配置为例如通过时分复用独立地处理测量和基准信号的至少两个连续的解调模式中。
在一个实施例中,磁场传感器可以集成在电流传感器中,电流传感器用于通过测量由待测量的电流生成的外部磁场而测量在导体中流动的电流。电流传感器可以包括由具有高磁导率的材料制成并且具有气隙的磁芯,磁场感测单元定位在气隙中。
附图说明
本发明进一步的目的和有利特征将通过权利要求、以下说明和附图变得显然,其中:
图1是示意性地说明了根据本发明的一个实施例的磁场传感器的整体电路原理的图示;
图2是说明了根据本发明的一个实施例的磁场传感器的电路的图示;
图3a说明了根据本发明的一个实施例的磁场传感器的电压-电流转换电路的实施例,图3b-3d示出了关于所述电路的不同操作阶段的不同连接配置。
具体实施方式
首先参考图2,说明了根据本发明的一个实施例的磁场传感器1的电路原理的原理被显示为大致包括磁场感测电路2、内部基准电流发生器3和信号处理电路4。磁场感测电路2包括磁场感测单元6、基准磁场发生器8和增益校正输入端10。基于检测由待测电流生成的磁场,根据本发明的磁场传感器可以有利地被用作电流传感器。根据本发明的磁场传感器还可以在其他磁场感测应用中实现。
磁场感测单元6可以包括一个或多个磁场感测元件,例如,如本领域公知的霍尔效应传感器或形成在集成电路中的霍尔效应传感器阵列,磁场感测单元6还包括用于调制每个磁场感测元件的输出信号的调制器。例如通量门(fluxgate)、巨磁阻或其他公知的磁场传感器的其他磁场传感器也可以用在本发明的范围内。
基准磁场发生器8包括馈送线圈基准电流Iref,coil的调制的基准电流输入端12,线圈基准电流Iref,coil为了生成施加到磁场感测单元6的基准磁场Bref的目的而驱动一个或多个基准线圈14。基准线圈和磁场传感器信号调制器被驱动的时钟频率由开关盒16a、16b控制,由此磁场感测单元调制器的时钟频率优选为是均衡因数或倍数,例如是控制基准线圈调制器的时钟频率的1.5倍或两倍。
信号处理电路4包括连接到磁场感测单元6的输出端20的放大器电路部分18、解调电路部分22和用于将增益校正馈送回磁场感测单元6的输入端的反馈回路28。解调电路部分具有解调器24、解调器30和解调器32,该解调器24具有导向磁场传感器输出端26的输出端23,该解调器30具有引导进入增益校正反馈线路28中的输出端25,并且该解调器32具有引导进入偏移校正反馈线路27中的输出端。
解调器的目的是分离在放大器的输出端处的信号中存在的两个分量,即测量信号和基准信号。如果两个信号同时存在,则解调器可以通过加法和减法提取信号,如WO2006/056829中所述。这可以使用两个并联的解调器在两个信号上同时完成。另一个选择是使用一个单个的解调器提取基准信号和测量信号,解调器之后在两个连续的解调模式中操作。当测量信号和基准信号在放大链中被独立处理时,即当传感器被连接以仅测量外部场或基准场同时抵消另一个信号时,也可以提供相同的方法。
在图2的实施例中,分离的解调器32、30用于偏移校正和增益校正以改善精确度和响应性。然而,可以使用馈送到偏移校正反馈线路和增益校正反馈线路的单个解调器。还可行的是通过调整解调方案以间歇地产生输出信号和偏移校正信号而仅具有用于反馈线路和传感器输出线路26的单个解调器。换句话说,连接到前置放大器输出端的解调器可以和需要数量一样多,从而解调信号中存在的不同分量:
●外部磁场Bext的测量值
●用于校准增益的基准磁场Bref的测量值
●传感器和前置放大器偏移
这些信号分量中的每一个均可以通过如图2所示的分离的解调器提取,或者它们中的一些可以通过在周期性时间基础上应用不同的解调方案的相同解调器而依次提取。
在本发明中,测量信号解调器24的输出端有利地是电压输出端,由此磁场传感器输出端26可以被容易地配置为电压输出端,或者借助连接到解调器输出端23的电压-电流(V/I)转换电路34被配置为电流输出端。电流输出端或电压输出端的选择提高了外部电路中磁场传感器的实施的灵活性。
现在参考图1,在讨论图2和3中说明的传感器的更为具体的实施例或方面之前,将大体上说明根据本发明的实施例的传感器的一般的工作原理。如上所述,电路包括具有反馈回路28的增益校正反馈电路。为了测量增益误差,基准信号被生成并且连同外部信号一起放大。为了生成基准信号,需要稳定的基准电流Iref。本发明的一个有利方面是稳定的基准电流Iref通过内部基准电流发生器3生成,内部基准电流发生器3用于通过基准线圈14生成基准磁场Bref
Bref=EcoilIref(1)
其中Ecoil是线圈效率。通过改变基准电流Iref的方向,基准磁场Bref可以是正的或负的。因此,存在于磁场传感器6(例如霍尔传感器)的输入端处的总磁场(B)是外部磁场(Bext)和基准(Bref)磁场的和或差。磁场传感器生成电压:
VH=SIBIbias(2)
其中SI是霍尔传感器的灵敏度,而Ibias是传感器的偏置电流。在放大器的输出端处的信号x为:
x=f(A,SI,B,Ibias)(3)
其中A是放大器的增益。
信号x包含由本质上已知为现有技术的解调技术分离的外部场和基准场的图像,例如如WO2006/056829中所述。对于每个信号,提供了分离的解调器。
在第一解调器D1的输出中,信号yout是:
yout=f(GS,Bext)(4)
同时第二解调器D2的输出为:
yout_ref=f(GR,Bref)(5)
其中Gs和GR分别是外部场和基准场的增益。
在基准路径上的被解调的信号通过放大链提供了基准磁场Bref的模拟图像。为了测量增益的误差,该信号需要与在芯片上生成的一些稳定的模拟信号相比较。基准电流Iref已经是可用并且稳定的。此外,基准电流Iref生成基准磁场Bref并且第二解调器D2的输出端yout_ref是基准磁场Bref的图像,由此它们的比率是恒定的并且可以用于增益校正。必须确保输出yout_ref和基准电流Iref是可比较的量。
如果增益无变化,同时信号被放大,则比较器的输出将为零。如果基准场GR的增益存在变化,则两种情况是可能的:
i)如果yout_ref>f(Iref),则比较器的输出Comp=-Δ
ii)如果f(Iref)>yout_ref,则Comp=+Δ
该输出通过减小/增大偏置电流Ibias以执行增益校正而控制磁场传感器单元(例如霍尔单元)6的增益校正偏置电流。当解调器D1和D2优选为匹配时,ΔGR=ΔGS,其中ΔGi(i=S,R)表示增益误差,并且由此增益校正将同等地作用在解调器输出yout和yout_ref上,确保了输出yout是具有最小误差的外部磁场Bext的图像。
放大链中的信号可以是电压或电流。霍尔传感器的输出已经是电压。如果放大器输出x是电压,则解调器D2的输出yout_ref将也是电压。为了使该信号成为与基准电流Iref可比较的量,则:
i)Iref需要被转换为电压
ii)或者yout_ref需要被转换为电流
为了最小化增益误差,同样有用的是确保基准场和外部场的增益的变化接近相等ΔGR=ΔGS
提出的集成基准给出电流。基准解调器的输出是电压。这两个量需要被比较并且它们的差被用于增益校正。为了维持ΔGR尽可能接近ΔGS,基准电流到电压的转换需要以高精度和低温漂移完成。电流和电压之间的基本关系是:V=RI,其中R是电阻。转换的可行的方式是通过:(i)意味着稳定电阻器的非常稳定的振荡器和电容器;(ii)外部电阻器;或者(iii)如在本发明的实施例中提出的内部电阻器。
优选地,实施的方案将确保电流的改变与电压ΔI~ΔV中的改变成比例,使得用于增益校正的解调器输出yout_ref和基准电流Iref的比率保持不变。
非常稳定的振荡器是昂贵的方案,而外部电阻器将是更廉价的方案,但是系统将不是完全集成的。集成的电阻器具有高温度漂移,并且如果该集成的电阻器仅用在基准路径中,则其将不适合期望的传感器应用。然而,如果与之前的电阻器匹配的其他电阻器被用在信号路径中,那么温度漂移均等地影响基准信号和测量信号,并且由此被抵消,使得ΔGR=ΔGS。因此,根据本发明的系统的输出信号是电流而不是电压。
现在将说明根据图2中所示的实施例的磁场传感器的工作。在所说明的实施例中,基准电流发生器3包括生成带隙基准电压VBG35的集成电路元件,该带隙基准电压VBG35被施加在内部电阻器RBG两端以生成基准电流Iref
Iref=VBG/RBG(1)
然而,基准电流可以通过其他手段生成,例如获取自其他已知的稳定或恒定的电压源。基准电流Iref由电流镜像电路36a复制以生成第二基准电流Iref,coil
Iref,coil=α1Iref(2)
其中α1是Iref,coil和Iref之间的额定比率。
第三基准电流同样由进一步的电流镜像电路36b生成:
Iref,r2Iref(3)
其中α2是Iref,r和Iref之间的额定比率。
第二基准电流Iref,coil偏置基准线圈14,以便生成基准磁场Bref
Bref=EcoilIref,coil(4)
其中Ecoil是线圈效率。
第三基准电流Iref,r偏置内部电阻器Rvref,以便生成基准电压Vref
Vref=RrefIref,r(5)
在一个变型中,配置可以在Iref,coil=Iref,r的情况下被简化,因为基准线圈和基准电阻器之后可以被串联放置并且直接以相同的电流偏置。对于霍尔传感器微系统形式的磁场传感器,外部磁场Bext可以被测量和放大以产生表示如下的外部场的放大的电压信号VA,ext
VA,ext=SIIbiasApreampBext(6)
其中SI是关于霍尔传感器电流的灵敏度,Ibias是偏置传感器的电流,而Apreamp是前置放大器链的增益。
基准磁场Bref还可以由相同的电路测量以产生表示如下基准场的放大的电压信号VA,ref
VA,ref=SIIbiasApreampBref(7)
如果使用调制技术(例如WO2006/056829中所述),则两个放大的电压信号VA,ext和VA,ref可以通过系统被同时处理,或者通过交替地抵消Bext和Bref从而在同一时间仅处理一个信号而被顺序地处理。
基准解调器30包括在灵敏度校准回路中。其目的是使系统的增益,即SIIbiasApreamp,在操作期间恒定,使得系统在被补偿时显示出理想的特性。为此,回路稳定基准电压信号:
VA,ref=Vref(8)
其使得:
SIIbiasApreampEcoilα1Iref=Rvrefα2Iref(9)
当等式(8)中的所有项均使用之前的等式被扩大时。磁场传感器的偏置电流由此被调节为:
Ibias=(Rvref/SIApreampEcoil)·(α21)(10)
系统的信号输出26可以直接是放大的电压信号VA,ext,或通过电压-电流V/I转换电路或通过电阻器将其转换为电流Iout
Iout=VA,ext/RVI=SIIbiasApreampBext/RVI(11)
如果校准回路被激活,则在等式(10)中计算的偏置电流Ibias可以被替换到等式(11)中:
Iout=VA,ext/RVI=(SIApreampBext/RVI)·(Rvref/SIApreampEcoil)·(α21)=Bext(1/Ecoil)·(Rvref/RVI)·(α21)(12)
在等式(12)中,可以注意到外部场Bext有利地被乘以稳定的恒量,因为:
a)线圈的系数仅取决于几何尺寸,其受到温度变化或老化的影响很小。
b)如果两个组件固有地匹配,即装置被类似地制造并且在硅上放置为彼此靠近,则电阻器比率Rvref/RVI可以被确保是稳定的。
c)电流比率α21还可以是稳定的,因为其可以由构成电流镜像的两个晶体管生成,晶体管可以类似电阻器地匹配。这意味着校准回路可以有效调节系统的灵敏度,使得输出电流为:
Iout=Bext·K(13)
其中K是常量并且等于:
K=(1/Ecoil)·(Rvref/RvI)·(α12)(14)
灵敏度改变可以由a)、b)和c)中讨论的三个组分中的一个的改变而引起。这可以有利地例如通过增大由装置占据的相对表面积而被最小化,从而提高集成组件的匹配质量。
参考图3a-3d,现在将说明可以包括在信号处理电路4中的电压-电流(V/I)转换电路34的一个实施例。根据有利实施例,V/I电路34可以包括采样和保持功能。
通过利用电容器C1-C5和开关T1、T2的放大器完成集成。由于电容器C3和C6的存在,采样和保持操作是可行的,同时电压到电流的转换通过电阻器R完成。
V/I转换器34连接到信号解调器24的输出23并且具有差分输入电压输入Vin_n、Vin_p,因此我们可以写成:
Vin_n=vcm-Vin/2(1)
Vin_p=vcm+Vin/2(2)
其中vcm是共模电压。电压到电流转换器的操作包括三个阶段。在第一阶段中,开关T1闭合(图3b)。在这个阶段中,输入电压Vin被采样。如果Qi(阶段1)表示第一阶段中电容器Ci上的变化,则在输入电容器C1和C2上聚集的相应的电容器电荷可以被表示为:
Q1(phase1)=C1(Vin_p-vcm)=C1Vin(phase1)/2(3)
Q2(phase1)=C2(Vin_n-vcm)=-C2Vin(phase1)/2(4)
放大器的输出,即节点B和节点A,通过电容器C3和C6连接到共模电压vcm。如果之前C4和C5在重置阶段中被放电,则自此放大器的输入中不存在电流并且节点A和B处的电压VA和VB等于电源电压vcm:VA=VB=vcm。因此,没有电流能够流经电阻器R,故输出电流为零:Iout=0。否则,如果不存在重置阶段,则电容器C5将不能放电,这是由于没有电流流入V-节点或从V-节点中流出,使得节点B处的电压VB将保持其在之前循环中的数值,并且Iout(阶段1)=Iout(阶段0)。
在第二阶段中,开关T2闭合(图3c)。C1和C2上聚集的电容器电荷被传递到C4和C5。现在放大器38的输入节点(V-节点,V+节点)通过电容器C3和C6连接到共模电压vcm。
ΔQ1=ΔQ4+ΔQ3(5)
ΔQ2=ΔQ5+ΔQ6(6)
通过以上等式,我们可以计算出放大器的输入处的电压为:
Q4(phase1)(7)
Q3(phase1)=0和Q4(phase1)=0(8)
C1(vcm-V+-Vin(1)/2)=C3(vcm-V+)+C4(vcm-V+)(9)
对于C3=C4和C1=2C3
V+=vcm-Vin/10(10)
由于转换器中的负反馈和放大器的高增益,放大器输入电压相等:V+=V-。
通过等式(6)和(10),节点B处的电压为VB=vcm-Vin/2。因此,输出电流直接与采样的输入成比例:
Iout=IR=(VB-vcm)/R=-Vin/2R(11)
在第三阶段中,所有开关均打开(图3d)并且没有电流经过电容器C4和C5。在此情况下,节点B处的电压VB将保持其之前的数值并且输出电流Iout将不改变。
在转换器中使用的放大器38可以包括其结构内的偏移抵消。偏移可以通过输入斩波器抵消,使得在一个时期中,V+=Vin_p并且V-=Vin_n,而在第二时期中,V+=Vin_n并且V-=Vin_p。由于当输入相交时我们具有单端输出,所以信号路径也固有地相交。

Claims (10)

1.一种磁场传感器,包括磁场感测电路(2)和信号处理电路(4),该磁场感测电路包括基准磁场发生器(8)和磁场感测单元(6),该信号处理电路(4)连接到所述磁场感测单元的输出端并且包括用于校正所述磁场传感器的传输特性中的波动的增益校正反馈电路(30,28),其特征在于,所述传感器进一步包括基准电流发生器(3),所述基准电流发生器配置为生成基准电流Iref,所述基准电流发生器连接到配置为生成基准磁场Bref的所述磁场感测电路(2)并且连接到配置为提供基准信号(yref)的增益校正反馈电路,解调器电路的输出信号与所述基准信号进行比较,并且其中所述信号处理电路(4)包括连接到所述信号处理电路(4)的测量信号解调器(24)的输出端(23)的电压-电流(V/I)转换电路(34)。
2.如权利要求1所述的传感器,其中所述基准电流发生器经由电流镜像电路(36a)连接到所述基准磁场发生器(8)的基准线圈(14),所述电流镜像电路配置为复制所述基准电流Iref并且生成驱动所述线圈以生成基准磁场Bref的第二基准电流(Iref,coil)。
3.如权利要求1或2所述的传感器,其中所述增益校正反馈电路(30,28,47)经由电流镜像电路(36b)连接到基准电流发生器,所述电流镜像电路配置为复制所述基准电流Iref并且生成被馈送到所述增益校正反馈电路(30,28,47)的进一步的基准电流(Iref,r)。
4.如权利要求3所述的传感器,其中所述电流镜像电路(36b)连接到所述增益校正反馈电路的解调器。
5.如权利要求1或2所述的传感器,其中所述基准电流发生器包括集成电路元件,该集成电路元件生成施加在内部电阻器RBG两端以生成所述基准电流Iref的带隙基准电压VBG
6.如权利要求1所述的传感器,其中所述电压-电流(V/I)转换电路包括配置为集成、采样和保持测量信号的电路。
7.如权利要求1或2所述的传感器,其中所述信号处理电路包括解调器电路,该解调器电路包括并联的至少两个解调器,所述解调器被配置为同时分离测量信号和所述基准信号。
8.如权利要求1或2所述的传感器,其中所述信号处理电路包括解调器电路,该解调器电路包括一个解调器,该解调器可操作在配置为独立地处理测量信号和所述基准信号的至少两个连续的解调模式中。
9.一种电流传感器,所述电流传感器用于通过测量由待测量的电流生成的外部磁场而测量在导体中流动的电流,所述电流传感器包括如权利要求1所述的磁场传感器。
10.如权利要求9所述的电流传感器,包括由具有高磁导率的材料制成并且具有气隙的磁芯,所述磁场感测单元定位在所述气隙中。
CN201180032144.XA 2010-06-30 2011-06-27 自主校准的磁场传感器和电流传感器 Active CN103140770B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10168027.0 2010-06-30
EP10168027A EP2402777B1 (en) 2010-06-30 2010-06-30 Autonomously calibrated magnetic field sensor
PCT/IB2011/052817 WO2012001612A1 (en) 2010-06-30 2011-06-27 Autonomously calibrated magnetic field sensor

Publications (2)

Publication Number Publication Date
CN103140770A CN103140770A (zh) 2013-06-05
CN103140770B true CN103140770B (zh) 2015-11-25

Family

ID=43034455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180032144.XA Active CN103140770B (zh) 2010-06-30 2011-06-27 自主校准的磁场传感器和电流传感器

Country Status (5)

Country Link
US (1) US9404991B2 (zh)
EP (1) EP2402777B1 (zh)
JP (1) JP5864566B2 (zh)
CN (1) CN103140770B (zh)
WO (1) WO2012001612A1 (zh)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447556B2 (en) 2009-02-17 2013-05-21 Allegro Microsystems, Inc. Circuits and methods for generating a self-test of a magnetic field sensor
WO2011011479A1 (en) * 2009-07-22 2011-01-27 Allegro Microsystems, Inc. Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
US8564285B2 (en) 2010-07-28 2013-10-22 Allegro Microsystems, Llc Magnetic field sensor with improved differentiation between a sensed magnetic field signal and a noise signal
US8680846B2 (en) 2011-04-27 2014-03-25 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
US9457206B2 (en) * 2012-09-11 2016-10-04 Supreme Corporation Fire resistant anti-ballistic knit fabric and protective article and protective undergarment made from the same
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US9261571B2 (en) * 2013-08-15 2016-02-16 Texas Instruments Incorporated Fluxgate magnetic sensor readout apparatus
CN103808454B (zh) * 2014-02-27 2015-08-05 北京航空航天大学 一种压力传感器的自主校准方法
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
CN105093148B (zh) * 2014-05-20 2018-08-21 中国人民解放军63973部队 一种电磁脉冲磁场探头时域校准方法
US9804222B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
TWI582447B (zh) 2014-12-11 2017-05-11 財團法人工業技術研究院 磁場感測裝置及其磁場感測方法
CN104459571B (zh) * 2014-12-17 2017-07-07 海伯森技术(深圳)有限公司 基于非晶态合金材料的磁场传感器的驱动电路及其应用方法
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9523742B2 (en) 2015-04-27 2016-12-20 Allegro Microsystems, Llc Circuits and methods for modulating current in circuits comprising sensing elements
DE102015109009A1 (de) * 2015-06-08 2016-12-08 Infineon Technologies Ag Stromsensorchip mit Magnetfeldsensor
US10261137B2 (en) * 2015-11-09 2019-04-16 Infineon Technologies Ag Magnetic sensor
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
CN105823502B (zh) * 2016-03-14 2018-06-19 深圳怡化电脑股份有限公司 一种传感器老化补偿电路及其方法
JP6724459B2 (ja) * 2016-03-23 2020-07-15 Tdk株式会社 磁気センサ
US10132879B2 (en) * 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
JP6734138B2 (ja) * 2016-07-22 2020-08-05 旭化成エレクトロニクス株式会社 電流センサおよび電流センサの制御方法
US10393555B2 (en) * 2016-12-14 2019-08-27 Infineon Technologies Ag Calibration of an angle sensor without a need for regular rotation
DE102017200143A1 (de) * 2017-01-09 2018-07-12 Robert Bosch Gmbh Magnetometer
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
JP2019113374A (ja) * 2017-12-22 2019-07-11 協立電機株式会社 フラックスゲートセンサ
EP3517897B1 (en) * 2018-01-25 2020-10-28 Melexis Technologies SA Position sensing device
JP7213622B2 (ja) * 2018-04-12 2023-01-27 愛知製鋼株式会社 磁気計測システム、及び磁気センサの校正方法
DE102018212087B3 (de) 2018-07-19 2020-01-23 Siemens Healthcare Gmbh Empfangsvorrichtung für Signale mit Frequenzmultiplex
US10712184B1 (en) * 2019-01-09 2020-07-14 Georg Fischer Signet Llc Magnetic flowmeter assembly having independent coil drive and control system
JP7006633B2 (ja) * 2019-02-13 2022-01-24 Tdk株式会社 磁気センサシステム
GB2582286B (en) * 2019-03-08 2021-05-12 Waukesha Bearings Ltd Improved signal conditioning circuit for use with active magnetic bearings
TWI693418B (zh) * 2019-03-22 2020-05-11 宇能電科技股份有限公司 校正磁場產生裝置及其具有自我校正磁場能力的磁場感測器與校正方法
CN110542870B (zh) * 2019-08-08 2021-08-24 宁波中车时代传感技术有限公司 霍尔传感器集成芯片灵敏度和零点温漂的补偿电路及方法
DE102019134077B4 (de) * 2019-12-12 2021-07-22 Infineon Technologies Ag Signalverarbeitungsschaltung für einen Hall-Sensor und Signalverarbeitungsverfahren
US11125837B2 (en) * 2020-01-14 2021-09-21 Allegro Microsystems, Llc Magnetic field sensor offset and gain adjustment
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
DE102020110682A1 (de) 2020-04-20 2021-10-21 Infineon Technologies Ag Magnetfeldsensorvorrichtung und Verfahren
CN111596236A (zh) * 2020-06-11 2020-08-28 赛卓电子科技(上海)有限公司 具有灵敏度校正和偏移校正功能的磁场传感器及实现方法
JP2022123649A (ja) * 2021-02-12 2022-08-24 株式会社アドバンテスト 磁場発生器の制御装置、試験装置、及び磁場制御方法
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching
DE102022121887A1 (de) 2022-08-30 2024-02-29 Infineon Technologies Ag Vorrichtung und verfahren zur kompensation von sensitivitätsschwankungen einer magnetfeldsensorschaltung
CN117519404B (zh) * 2024-01-05 2024-03-22 深圳市信瑞达电力设备有限公司 一种调节霍尔元件输出增益的方法和电路拓扑

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752733A (en) * 1984-08-16 1988-06-21 Jan Petr Compensating circuit for a magnetic field sensor
CN1272921A (zh) * 1998-12-15 2000-11-08 Tdk株式会社 磁传感器装置和电流传感器装置
CN101379384A (zh) * 2006-02-03 2009-03-04 皇家飞利浦电子股份有限公司 带有基准单元的磁传感器装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317637A (ja) * 1993-05-06 1994-11-15 Murata Mfg Co Ltd 磁性検出装置
US6429727B1 (en) * 2000-10-03 2002-08-06 Texas Instruments Incorporated Low EMI shutdown circuit for modem applications
EP1637898A1 (en) * 2004-09-16 2006-03-22 Liaisons Electroniques-Mecaniques Lem S.A. Continuously calibrated magnetic field sensor
US7420349B2 (en) * 2006-08-30 2008-09-02 Atmel Corporation Microcontroller interface with hall element
GB0620307D0 (en) * 2006-10-16 2006-11-22 Ami Semiconductor Belgium Bvba Auto-calibration of magnetic sensor
CN101611316A (zh) * 2007-02-01 2009-12-23 皇家飞利浦电子股份有限公司 感测磁性粒子的磁传感器设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752733A (en) * 1984-08-16 1988-06-21 Jan Petr Compensating circuit for a magnetic field sensor
CN1272921A (zh) * 1998-12-15 2000-11-08 Tdk株式会社 磁传感器装置和电流传感器装置
CN101379384A (zh) * 2006-02-03 2009-03-04 皇家飞利浦电子股份有限公司 带有基准单元的磁传感器装置

Also Published As

Publication number Publication date
EP2402777B1 (en) 2013-01-09
WO2012001612A1 (en) 2012-01-05
EP2402777A1 (en) 2012-01-04
US20130093412A1 (en) 2013-04-18
CN103140770A (zh) 2013-06-05
US9404991B2 (en) 2016-08-02
JP2013533480A (ja) 2013-08-22
JP5864566B2 (ja) 2016-02-17

Similar Documents

Publication Publication Date Title
CN103140770B (zh) 自主校准的磁场传感器和电流传感器
JP4757260B2 (ja) 連続校正式磁界センサー
US7298133B2 (en) Magnetic flux concentrator anti-differential current sensor with flux concentrating recesses
CN202748469U (zh) 用于读取磁场传感器的读取电路和包括该读取电路的电子器件
JP2013533480A5 (zh)
US9702909B2 (en) Manufacturing method for current sensor and current sensor
JP7234475B2 (ja) 補助ホールデバイスを用いるホールデバイス感度の較正
CN104246517B (zh) 具有罗果夫斯基类型的电流换能器的用于测量电流的装置
WO2019064657A1 (ja) 電流センサ
WO2014208105A1 (ja) 温度補償付磁気センサ素子とそれを用いた磁気センサおよび電力測定装置
US11598824B2 (en) Magnetic field sensor apparatus and method
US5554927A (en) Electrical quantity measurement device
US10161969B2 (en) Method and apparatus for the measurement of electrical current by means of a self-compensating configuration of magnetic field sensors
CN104040362B (zh) 电流传感器
CN106932736B (zh) 使用宽带信号的闭环设备校准
JP2019219294A (ja) 磁気センサ
US20240069122A1 (en) Apparatus and method for compensating for sensitivity fluctuations of a magnetic field sensor circuit
JP2021051046A (ja) ゼロフラックス型磁気センサ及びそれを備える非接触電流計並びにゼロフラックス型磁気センサの制御回路及び制御方法
CN115248340A (zh) 电流感测电路
PL241368B1 (pl) Hallotronowy miernik indukcji pola magnetycznego

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200106

Address after: 28 Linhe street, China Linhe Industrial Zone, Shunyi District, Beijing

Patentee after: Lyme Electronics (China) Co., Ltd.

Address before: Fribourg

Patentee before: Lem Liaisons Electron Mec

TR01 Transfer of patent right