CN103124162A - 一种高线性高效率射频功率放大器 - Google Patents

一种高线性高效率射频功率放大器 Download PDF

Info

Publication number
CN103124162A
CN103124162A CN2013100600415A CN201310060041A CN103124162A CN 103124162 A CN103124162 A CN 103124162A CN 2013100600415 A CN2013100600415 A CN 2013100600415A CN 201310060041 A CN201310060041 A CN 201310060041A CN 103124162 A CN103124162 A CN 103124162A
Authority
CN
China
Prior art keywords
nmos pipe
power amplifier
capacitor
resistance
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100600415A
Other languages
English (en)
Other versions
CN103124162B (zh
Inventor
魏慧婷
侯训平
文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Microelectronic Technology Institute
Mxtronics Corp
Original Assignee
Beijing Microelectronic Technology Institute
Mxtronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Microelectronic Technology Institute, Mxtronics Corp filed Critical Beijing Microelectronic Technology Institute
Priority to CN201310060041.5A priority Critical patent/CN103124162B/zh
Publication of CN103124162A publication Critical patent/CN103124162A/zh
Application granted granted Critical
Publication of CN103124162B publication Critical patent/CN103124162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

本发明涉及一种高线性高效率射频功率放大器,包括五个电容C1、C2、C3、C4、C5,四个电阻R1、R2、R3、R4,四个NMOS管M1、M2、M3、M4,两个电感L1、L2,输入射频信号Rfin通过电容C1、C2和C3分别输入到NMOS管M1、M2和M4的栅极,偏置电压Vb1、Vb2、Vb3、Vb4分别通过电阻R1、R2、R3、R4给NMOS管M1、M2、M3和M4提供直流;NMOS管M2的漏极接NMOS管M4的源极,NMOS管M1的漏极接NMOS管M3的源极;本发明功率放大器增强了晶体管的抗击穿能力,提高了输出功率,并实现了功率放大器的高线性和高效率。

Description

一种高线性高效率射频功率放大器
技术领域
本发明属于无线通信系统技术领域,涉及一种高线性高效率射频功率放大器。
背景技术
随着无线通信市场需求不断增长,射频集成电路的开发和研究得到了迅速发展。而在射频发射机集成电路系统中,功率放大器位于发射系统的最前端,也是功耗最大的模块之一,如何在保证线性度的情况下高效率地输出功率仍然是当今射频功率放大器研究的热点和难点。在工艺选择上,虽然SiGe、InP、GaAs等工艺可以制造出更高性能的功率放大电路,但其成本远高于CMOS工艺,并且很难实现数字模拟电路的片上全集成。用CMOS工艺来显然有利于提高芯片的集成度和减小成本。CMOS工艺的特征尺寸的不断减小,虽然可以增大集成电路的集成密度,却会给CMOS电路带来影响,主要体现在击穿电压的降低和衬底电阻的减小,这会限制功率放大器的输出功率和减小效率。
现有的功率放大器多为传统功率放大器结构,如图1所示,该电路采用NMOS晶体管单管共源放大。对于线性功率放大器来说,一般会选择A、AB和B类工作状态,这三类放大器的线性度依次递减,而效率依次增加。AB类放大器是线性度和效率的折中,所以被广泛应用在功率放大电路中。但是仅在工作类型上去选择,其效果有限,要兼顾高线性度和高效率,只有设计出新的电路结构。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种高线性高效率射频功率放大器,该功率放大器增强了晶体管的抗击穿能力,提高了输出功率,并实现了功率放大器的高线性和高效率。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种高线性高效率射频功率放大器,包括五个电容C1、C2、C3、C4、C5,四个电阻R1、R2、R3、R4,四个NMOS管M1、M2、M3、M4,两个电感L1、L2,具体连接关系为:输入射频信号Rfin分别连接电容C1的一端、电容C2的一端和电容C3的一端;电容C1的另一端连接NMOS管M1的栅极,电容C2的另一端连接NMOS管M2的栅极,电容C3的另一端连接NMOS管M4的栅极;偏置电压Vb1连接电阻R1的一端,偏置电压Vb2连接电阻R2的一端,偏置电压Vb3连接电阻R3的一端,偏置电压Vb4连接电阻R4的一端;电阻R1的另一端连接NMOS管M1的栅极,电阻R2的另一端连接NMOS管M2的栅极,电阻R3的另一端连接NMOS管M3的栅极,电阻R4的另一端连接N MOS管M4的栅极;NMOS管M2的漏极连接N MOS管M4的源极,NMOS管M1的漏极连接NMOS管M3的源极,NMOS管M3的漏极和NMOS管M4的漏极连接电感L1的一端和电容C4的一端;电感L1的另一端接电源VDD;电容C4的另一端连接电感L2和电容C5的一端,电容C5的另一端为输出射频信号端口,NMOS管M1的源极、NMOS管M2的源极和电感L2的另一端均接地。
在上述高线性高效率射频功率放大器中,NMOS管M1工作在A类放大状态,NMOS管M2工作在B类放大状态,NMOS管M4工作在AB类放大状态。
在上述高线性高效率射频功率放大器中,NMOS管M2的宽长比是NMOS管M1宽长比的4~6倍;优选NMOS管M2的宽长比是NMOS管M1宽长比的5倍。
在上述高线性高效率射频功率放大器中,三个偏置电压Vb1、Vb2和Vb3为不同的电压。
在上述高线性高效率射频功率放大器中,偏置电压Vb1通过电阻R1给NMOS管M1提供偏置,偏置电压Vb2通过电阻R2给NMOS管M2提供偏置,偏置电压Vb3通过电阻R3给NMOS管M3提供偏置,偏置电压Vb4通过电阻R4给NMOS管M4提供偏置。
在上述高线性高效率射频功率放大器中,电容C1、C2、C3是交流耦合电容,起到对直流信号的隔离作用。
在上述高线性高效率射频功率放大器中,其中两个电容C2、C3,两个电阻R2、R4,两个NMOS管M2,M4共同组成的功率放大电路为辅助功率放大器,其中一个电容C1,两个电阻R1、R3,两个NMOS管M1,M3组成的功率放大电路为主功率放大器。
在上述高线性高效率射频功率放大器中,射频功率放大器为全差分拓扑结构,输入采用Rfin+和Rfin-作为差分输入信号,输出为Rfout+,Rfout-作为差分输出信号。
本发明与现有技术相比具有如下有益效果:
(1)本发明对功率放大器结构进行了创新设计,采用两个NMOS晶体管堆叠的结构,大大增强了晶体管抗击穿的能力,提高输出功率;采用AB/B类功率放大电路和A类功率放大电路并联的结构,实现了功率放大器的高线性和高效率;
(2)本发明功率放大器将两个NMOS管M2和M4堆叠在一起,相当于可以承受的击穿电压为2VBD,显然可以等效为一个击穿电压提高了一倍的单晶体管,同时NMOS管M1和M3也采用堆叠结构,从而大大提高功率输出的幅度,提高了最大输出功率;解决了工艺特征尺寸减小所带来的输出功率减小的问题;
(3)本发明采用AB/B类功率放大电路和A类功率放大电路并联的结构,三个信号输入管M1、M2、M4不同时工作,当输入射频信号较小时,只有M1对信号进行放大输出功率,利用A类功率放大器的高线性优势可以使信号输出高线性;当输入信号继续增大到一定程度时,AB/B类功率放大电路中的M4和M2开始工作,而随着信号增大,A类功率放大电路的输出功率慢慢开始压缩,达到饱和输出功率,此时AB/B类功率放大电路还能继续提供输出功率,从而很大程度上增大了总电路的线性功率范围,提高了功率放大器的线性度;
(4)本发明通过大量试验对NMOS管尺寸和NMOS晶体管的栅极偏压进行优化设计和选择,例如给出NMOS管M2的宽长比是NMOS管M1宽长比的4~6倍,三个偏置电压Vb1、Vb2和Vb3为不同的电压,Vb4远远大于Vb2等,进一步增加了电路的线性度,提高了电路功率输出的效率;
(5)本发明电路采用全CMOS工艺,结构简单,大大降低芯片成本并实现片上集成。
附图说明
图1为传统功率放大器拓扑结构示意图。
图2为本发明高线性高效率射频功率放大器拓扑结构示意图;
图3为本发明高线性高效率射频功率放大器的全差分拓扑结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图2所示为本发明高线性高效率射频功率放大器拓扑结构示意图,本发明射频功率放大器包括五个电容C1、C2、C3、C4、C5,四个电阻R1、R2、R3、R4,四个NMOS管M1、M2、M3、M4,两个电感L1、L2,具体连接关系为:输入射频信号Rfin分别连接电容C1的一端、电容C2的一端和电容C3的一端;电容C1的另一端连接NMOS管M1的栅极,电容C2的另一端连接NMOS管M2的栅极,电容C3的另一端连接NMOS管M4的栅极;偏置电压Vb1连接电阻R1的一端,偏置电压Vb2连接电阻R2的一端,偏置电压Vb3连接电阻R3的一端,偏置电压Vb4连接电阻R4的一端;电阻R1的另一端连接NMOS管M1的栅极,电阻R2的另一端连接NMOS管M2的栅极,电阻R3的另一端连接NMOS管M3的栅极,电阻R4的另一端连接NMOS管M4的栅极;NMOS管M2的漏极连接NMOS管M4的源极,NMOS管M1的漏极连接NMOS管M3的源极,NMOS管M3的漏极和NMOS管M4的漏极连接电感L1的一端和电容C4的一端;电感L1的另一端接电源VDD;电容C4的另一端连接电感L2和电容C5的一端,电容C5的另一端为输出射频信号端口,NMOS管M1的源极、NMOS管M2的源极和电感L2的另一端均接地。
其中NMOS管M1工作在A类放大状态,NMOS管M2工作在B类放大状态,NMOS管M4工作在AB类放大状态。NMOS管M2的宽长比是NMOS管M1宽长比的4~6倍,本实施例中NMOS管M2的宽长比是NMOS管M1宽长比的5倍。三个偏置电压Vb1、Vb2和Vb3为不同的电压。
偏置电压Vb1通过电阻R1给NMOS管M1提供偏置,偏置电压Vb2通过电阻R2给NMOS管M2提供偏置,偏置电压Vb3通过电阻R3给NMOS管M3提供偏置,偏置电压Vb4通过电阻R4给NMOS管M4提供偏置。电容C1、C2、C3是交流耦合电容,起到对直流信号的隔离作用。
如图2所示,两个电容C2、C3,两个电阻R2、R4,两个NMOS管M2,M4共同组成AB/B类功率放大电路。射频信号Rfin通过交流耦合电容C2和C3分别输入到NMOS管M2和M4的栅极;偏置电压Vb2和Vb4分别通过电阻R2、R4给NMOS管M2和M4的栅极提供直流偏置;NMOS管M2的源极接地端,NMOS管M2的漏极与NMOS管M4的源极相接,M4的漏极为AB/B类功率放大电路的信号输出端。AB/B类功率放大电路为辅助功率放大器。
一个电容C1,两个电阻R1、R3,两个NMOS管M1,M3组成的功率放大电路共同组成A类功率放大电路。射频信号Rfin通过交流耦合电容C1输入到NMOS管M1的栅极,偏置电压Vb1通过电阻R1给NMOS管M1的栅极提供直流偏置;NMOS管M1的源极接地,M1的漏极与NMOS管M3的漏极相连;偏置电压Vb3通过电阻R3给NMOS管M3的栅极提供直流偏置;NMOS管M3的漏极为A类功率放大电路的信号输出端。A类功率放大电路为主功率放大器。
两个电感L1、L2和两个电容C4、C5共同组成输出匹配网络。电感L1的一端接NMOS管M3、M4的漏极和电容C4的一端,另一端接电源VDD;电容C4的另一端接电容C5的一端和电感L2的一端,L2的另一端接地端;电容C5的另一端为射频信号输出端。
本发明射频功率放大器电路的工作原理如下:
AB/B类功率放大电路采用类似于共源共栅放大器的结构,不同的是,NMOS管M2和M4都是射频信号输入管。假设单晶体管M2能承受的击穿电压为VBD2,则将两个晶体管M2和M4堆叠在一起后,相当于可以承受的击穿电压为2VBD,等效为一个击穿电压提高了一倍的单晶体管,从而大大提高功率输出的幅度,提高最大输出功率。通过偏置电压Vb2和Vb4使NMOS管M2工作在B类功率放大状态,NMOS管M4工作在AB类功率放大状态。其中Vb2等于NMOS管M2的阈值电压Vth,Vb4远远大于Vb2。
A类功率放大电路采用共源共栅放大器结构,通过偏置电压Vb1使共源放大NMOS晶体管M1工作在A类功率放大状态。当输入功率不太高时,A类功率放大器能对输入信号进行不失真地放大,使电路具有高线性度。同时,NMOS管M1和M3也是堆叠结构,如AB/B类功率放大电路中M2和M4,可以大大提高功率输出的幅度。
本发明功率放大器中三个信号输入管M1、M2、M4不同时工作,当输入射频信号较小时,只有M1对信号进行放大输出功率,利用A类功率放大器的高线性优势可以使信号输出高线性;当输入信号继续增大到一定程度时,AB/B类功率放大电路中的M4和M2开始工作,而随着信号增大,A类功率放大电路的输出功率慢慢开始压缩,达到饱和输出功率,此时AB/B类功率放大电路还能继续提供输出功率,这样就增大了总电路的线性功率范围,提高了功率放大器的线性度。本实施例中选择AB/B类功率放大电路中的晶体管M2的宽长比是A类功率放大电路M1宽长比的5倍,由于M2工作在B类放大状态,效率较高,而M2又不是主功率电路,故可以在不损害线性度的情况下提高效率。
本实施例电路用0.13um CMOS工艺进行仿真验证,该电路可以实现的输出1dB压缩点为22dBm,最大功率附加效率PAE为55%。
如图3所示为本发明高线性高效率射频功率放大器的全差分拓扑结构示意图。图中左右两边的电路与图2完全相同,只是输入采用Rfin+和Rfin-为差分输入信号,输出为Rfout+,Rfout-为差分输出信号,其工作原理与图2所示电路相同。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (9)

1.一种高线性高效率射频功率放大器,其特征在于:包括五个电容C1、C2、C3、C4、C5,四个电阻R1、R2、R3、R4,四个NMOS管M1、M2、M3、M4,两个电感L1、L2,具体连接关系为:输入射频信号Rfin分别连接电容C1的一端、电容C2的一端和电容C3的一端;电容C1的另一端连接NMOS管M1的栅极,电容C2的另一端连接NMOS管M2的栅极,电容C3的另一端连接NMOS管M4的栅极;偏置电压Vb1连接电阻R1的一端,偏置电压Vb2连接电阻R2的一端,偏置电压Vb3连接电阻R3的一端,偏置电压Vb4连接电阻R4的一端;电阻R1的另一端连接NMOS管M1的栅极,电阻R2的另一端连接NMOS管M2的栅极,电阻R3的另一端连接NMOS管M3的栅极,电阻R4的另一端连接NMOS管M4的栅极;NMOS管M2的漏极连接NMOS管M4的源极,NMOS管M1的漏极连接NMOS管M3的源极,NMOS管M3的漏极和NMOS管M4的漏极连接电感L1的一端和电容C4的一端;电感L1的另一端接电源VDD;电容C4的另一端连接电感L2和电容C5的一端,电容C5的另一端为输出射频信号端口,NMOS管M1的源极、NMOS管M2的源极和电感L2的另一端均接地。
2.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述NMOS管M1工作在A类放大状态,NMOS管M2工作在B类放大状态,NMOS管M4工作在AB类放大状态。
3.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述NMOS管M2的宽长比是NMOS管M1宽长比的4~6倍。
4.根据权利要求3所述的一种高线性高效率射频功率放大器,其特征在于:所述NMOS管M2的宽长比是NMOS管M1宽长比的5倍。
5.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述三个偏置电压Vb1、Vb2和Vb3为不同的电压。
6.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述偏置电压Vb1通过电阻R1给NMOS管M1提供偏置,偏置电压Vb2通过电阻R2给NMOS管M2提供偏置,偏置电压Vb3通过电阻R3给NMOS管M3提供偏置,偏置电压Vb4通过电阻R4给NMOS管M4提供偏置。
7.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述电容C1、C2、C3是交流耦合电容,起到对直流信号的隔离作用。
8.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:其中两个电容C2、C3,两个电阻R2、R4,两个NMOS管M2,M4共同组成的功率放大电路为辅助功率放大器,其中一个电容C1,两个电阻R1、R3,两个NMOS管M1,M3组成的功率放大电路为主功率放大器。
9.根据权利要求1所述的一种高线性高效率射频功率放大器,其特征在于:所述射频功率放大器为全差分拓扑结构,输入采用Rfin+和Rfin-作为差分输入信号,输出为Rfout+,Rfout-作为差分输出信号。
CN201310060041.5A 2013-02-26 2013-02-26 一种高线性高效率射频功率放大器 Active CN103124162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310060041.5A CN103124162B (zh) 2013-02-26 2013-02-26 一种高线性高效率射频功率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310060041.5A CN103124162B (zh) 2013-02-26 2013-02-26 一种高线性高效率射频功率放大器

Publications (2)

Publication Number Publication Date
CN103124162A true CN103124162A (zh) 2013-05-29
CN103124162B CN103124162B (zh) 2015-12-02

Family

ID=48455050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310060041.5A Active CN103124162B (zh) 2013-02-26 2013-02-26 一种高线性高效率射频功率放大器

Country Status (1)

Country Link
CN (1) CN103124162B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768308A (zh) * 2018-05-16 2018-11-06 清华大学 基于晶体管堆叠结构的非对称Doherty功率放大器
CN109104161A (zh) * 2018-08-20 2018-12-28 上海华虹宏力半导体制造有限公司 类e类射频功率放大器
CN110988762A (zh) * 2019-12-05 2020-04-10 深圳市特深电气有限公司 射频功率放大器和磁共振成像系统的射频信号激发电路
CN111726140A (zh) * 2020-06-19 2020-09-29 维沃移动通信有限公司 功率放大器控制方法、装置、wifi射频电路和电子设备
CN112910420A (zh) * 2021-01-18 2021-06-04 温州大学 一种高线性度射频功率放大器
CN114564902A (zh) * 2022-01-25 2022-05-31 南京元络芯科技有限公司 一种增加低频射频信号承载能力的mos管堆叠结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420208A (zh) * 2007-10-24 2009-04-29 财团法人工业技术研究院 具有串联耦接的串联放大器的可变增益放大器
CN101741316A (zh) * 2009-12-24 2010-06-16 北京时代民芯科技有限公司 一种增益可变的宽带射频低噪声放大器
US20120119835A1 (en) * 2010-11-15 2012-05-17 Qualcomm Incorporated Current mode power amplifier providing harmonic distortion suppression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420208A (zh) * 2007-10-24 2009-04-29 财团法人工业技术研究院 具有串联耦接的串联放大器的可变增益放大器
CN101741316A (zh) * 2009-12-24 2010-06-16 北京时代民芯科技有限公司 一种增益可变的宽带射频低噪声放大器
US20120119835A1 (en) * 2010-11-15 2012-05-17 Qualcomm Incorporated Current mode power amplifier providing harmonic distortion suppression

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768308A (zh) * 2018-05-16 2018-11-06 清华大学 基于晶体管堆叠结构的非对称Doherty功率放大器
CN108768308B (zh) * 2018-05-16 2020-06-12 清华大学 基于晶体管堆叠结构的非对称Doherty功率放大器
CN109104161A (zh) * 2018-08-20 2018-12-28 上海华虹宏力半导体制造有限公司 类e类射频功率放大器
CN110988762A (zh) * 2019-12-05 2020-04-10 深圳市特深电气有限公司 射频功率放大器和磁共振成像系统的射频信号激发电路
CN111726140A (zh) * 2020-06-19 2020-09-29 维沃移动通信有限公司 功率放大器控制方法、装置、wifi射频电路和电子设备
CN111726140B (zh) * 2020-06-19 2022-06-10 维沃移动通信有限公司 功率放大器控制方法、装置、wifi射频电路和电子设备
CN112910420A (zh) * 2021-01-18 2021-06-04 温州大学 一种高线性度射频功率放大器
CN114564902A (zh) * 2022-01-25 2022-05-31 南京元络芯科技有限公司 一种增加低频射频信号承载能力的mos管堆叠结构
CN114564902B (zh) * 2022-01-25 2023-03-21 南京元络芯科技有限公司 一种增加低频射频信号承载能力的mos管堆叠结构

Also Published As

Publication number Publication date
CN103124162B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN102142819B (zh) 基于变压器的射频功率放大器
CN103595359B (zh) 一种0.1~5GHz超宽带CMOS功率放大器
CN105978515B (zh) 宽调整范围高集成度变压器耦合射频功率放大器
CN103124162B (zh) 一种高线性高效率射频功率放大器
CN102163954B (zh) 一种低电压低噪声宽带混频器
CN103117711B (zh) 一种单片集成的射频高增益低噪声放大器
CN102820857B (zh) 宽带高增益跨阻放大器
CN107733381B (zh) 一种高效率高增益Doherty堆叠功率放大器
CN108574464B (zh) 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器
CN108649911B (zh) 一种毫米波宽带高效率晶体管堆叠功率放大器
CN103746665A (zh) 一种0.1~3GHz CMOS增益可调驱动功率放大器
CN107046408B (zh) 一种低成本射频差分放大器
CN104158501A (zh) 一种多模可配置Class AB功率放大器
CN101697478B (zh) 一种全差分e类功率放大器
CN106487338A (zh) 一种考虑密勒效应的分布式三堆叠结构的功率放大器
CN103595357A (zh) 一种0.1~1.2GHz的CMOS超宽带射频功率放大器
CN109245735B (zh) 一种基于二次谐波注入技术的高效率j类堆叠功率放大器
CN202068377U (zh) 一种低电压低噪声宽带混频器
CN102882476B (zh) 高频带宽放大电路
CN208539862U (zh) 一种基于波形控制技术的连续逆f类堆叠功率放大器
CN209134361U (zh) 一种Doherty驱动Doherty功率放大器
CN208539863U (zh) 基于精确谐振回路控制的高效率逆d类堆叠功率放大器
CN208353299U (zh) 一种基于晶体管堆叠技术的高效率连续f类功率放大器
CN208656727U (zh) 一种高功率高效率高增益逆f类堆叠功率放大器
CN104796089A (zh) 一种使用电压结合的Doherty差分功放

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant