CN103094219B - 三维集成高密度厚膜多芯片组件的集成方法 - Google Patents
三维集成高密度厚膜多芯片组件的集成方法 Download PDFInfo
- Publication number
- CN103094219B CN103094219B CN201210492847.7A CN201210492847A CN103094219B CN 103094219 B CN103094219 B CN 103094219B CN 201210492847 A CN201210492847 A CN 201210492847A CN 103094219 B CN103094219 B CN 103094219B
- Authority
- CN
- China
- Prior art keywords
- ceramic substrate
- thick
- integration
- integrated
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
Landscapes
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Abstract
本发明公开了三维集成高密度陶瓷厚膜多芯片组件的集成方法,方法是先制作所需多层陶瓷厚膜基片,在多层陶瓷厚膜基片上,制作厚膜导带-阻带网络,小多层陶瓷基片的对外引脚制作在的同一端的端面或者两面;然后在垂直集成的相应键合区形成金球;再采用厚膜混合集成的方式进行集成,在小多层陶瓷基片的正反面集成一个以上半导体芯片或片式元器件,并完成引线键合;最后,采用共晶、合金或浆料粘接等焊接方式将集成后的小多层陶瓷基片垂直集成在底座多层陶瓷基片上。本发明采用三维竖向垂直集成,可将一个以上半导体芯片或其他片式元器件垂直集成在同一底座多层陶瓷基片上,实现高密度三维集成,提高多芯片组件的集成度和提高应用系统的可靠性。
Description
技术领域
本发明涉及多芯片组件(简称MCM),具体而言,涉及陶瓷厚膜多芯片组件(简称MCM-C),进一步来说,涉及三维集成高密度陶瓷厚膜多芯片组件(简称3D-MCM-C)。
背景技术
原有多芯片组件的集成技术中,在多层陶瓷厚膜基片(简称LTCC)表面采用二维平面集成技术(简称2D集成技术),将半导体芯片、其他片式元器件直接装贴在多层陶瓷基片表面上,或采用三维平面垂直集成技术(简称3D集成技术),在2D集成技术的基础上,将2个以上的芯片按一定的顺序和粘片工艺水平垂直堆叠,再采用键合丝(金丝或硅铝丝)进行引线键合,完成整个电气连接,最后在特定的气氛中将管基和管帽进行密封而成。
原有技术存在的主要问题是:①对于二维平面集成技术,半导体芯片、其他片式元器件以最大面方向贴装到陶瓷基片上,芯片与基片的引线键合从一个焊点到另一个焊点之间需要一定的跨度,再加上基片上还需要根据具体电路的要求制作必要的厚膜电阻、厚膜电容、厚膜电感等,因此,基片表面的芯片贴装数量有限,芯片集成效率受基片面积的影响,芯片集成度难以提高;②对于三维水平垂直集成技术,受半导体芯片面积的限制,水平堆叠的芯片数量不可能太多,一般在5层以内,且各层芯片与多层陶瓷基片表面的键合区进行键合时,一方面需要更多的键合区,另一方面每一层芯片表面焊点与多层陶瓷基片表面键合区的焊点之间进行内引线键合时,需要一定的跨度,其跨度从底芯片到顶层芯片逐步加大,因而,要占用较大的基片面积,从而限制集成度的进一步提升。
经检索,涉及多芯片组件的专利申请件有20件,但没有涉及三维集成的多芯片组件申请件、更没有涉及三维集成高密度的陶瓷厚膜多芯片组件的申请件。
发明内容
本发明的目的是提供三维集成高密度陶瓷厚膜多芯片组件的集成方法,采用三维竖向垂直集成技术,将半导体芯片、其他片式元器件的最大面与多层陶瓷基片表面进行垂直集成,从而增加多层陶瓷基片表面单位面积上可集成的芯片数、其他片式元器件数量,达到提升多陶瓷厚膜多芯片组件集成密度的目的。
为实现上述目的,发明人提供的三维集成高密度陶瓷厚膜多芯片组件集成方法是:先按多层陶瓷厚膜基片常规工艺制作所需多层陶瓷厚膜基片,在多层陶瓷厚膜基片上,采用丝网印刷、浆料烧结、激光调阻的方式制作导带-阻带网络,将所有对外进行电气连接的引脚制作在小多层陶瓷基片的同一端的端面或者两面;然后在每根引脚的键合区和底座多层陶瓷基片表面相应的键合区形成金球;再采用厚膜混合集成的方式进行半导体芯片或片式元器件的集成,在小多层陶瓷基片的正反面集成一个以上半导体芯片或片式元器件,并完成半导体芯片的引线键合;最后,采用共晶焊接、合金焊或浆料粘接的方式将集成后的小多层陶瓷基片垂直集成在底座多层陶瓷基片上。
上述多层陶瓷基片由多层陶瓷烧结而成,在每一层中均有金属化通孔、导带,内层有裕量较大的阻带,表层有经激光调阻后的阻带。
上述金球是采用金丝球键合的方法或丝网印刷后再流焊的方法形成的。
上述厚膜混合集成方式的厚膜是通过丝网印刷电阻浆料、金属浆料到陶瓷基片上、再经高温烧结的方式形成的。
发明人指出:同时在多层陶瓷基片的两面引出引线,适用于对外进行电气连接的引脚过多的情况。
发明人指出:上述片式元器件是不包括半导体芯片的其它片式元器件。
本发明有以下特点:①采用三维竖向垂直集成,可将一个以上半导体芯片或其他片式元器件垂直集成在同一底座多层陶瓷基片上,实现高密度三维集成,大大提高多芯片组件的集成度;②由于可集成更多的半导体芯片、其他片式元器件,从而可集成更多的功能,达到子系统或系统集成(简称SiP,即系统级封装);③可大大减少整机应用系统使用电子元器件的数量,从而大大减小整机的体积,提高应用系统的可靠性;④由于采用高密度集成,大大缩短引线长度,可进一步提高多芯片组件的工作频率和可靠性;⑤与原有技术相组合,结合芯片的面积大小、发热情况,可实现灵活的集成方式,发热量较大的芯片采用水平垂直集成,便于散热,发热量不大的芯片采用竖向垂直集成,便于提升集成度。本实用新型广泛应用于航天、航空、船舶、精密仪器、通讯、工业控制等领域,特别适用于装备系统小型化、高可靠的领域,具有广阔的市场前景和应用空间。
附图说明
图1为发明前的一种集成技术示意图,图2为发明前的另一种集成技术示意图,图3为本发明的三维竖向垂直集成的多层陶瓷基片的方法示意图。
图中,1为管壳底座,2为管脚,3为多层陶瓷基片,4为片式元器件,5为半导体芯片Ⅰ,6为半导体芯片Ⅱ,7为阻带,8为导带/键合区,9为用三维平面方式垂直贴装的芯片,10为小多层陶瓷基片,11为内引线,12为金球,13为半导体芯片Ⅲ。
多层陶瓷基片中的虚线表示基片为多层,至少二层。
具体实施方式
实施例:
贵州振华风光半导体有限公司按照本发明方法生产三维竖向垂直集成的多层陶瓷基片,其结构如图3所示,具体的生产流程为:
(1)生瓷带制备:配制玻璃陶瓷浆料,将玻璃陶瓷浆料在流延机上沿衬底薄膜流延成薄片,制成生瓷带,经烘干、卷带,备用;
(2)裁片:根据产品基片的具体尺寸按要求进行裁片;
(3)冲孔:各层间通过通孔及导带进行互连。采用机械冲孔方式,制成LTCC各层的互联通路;
(4)填孔及导带印刷:在LTCC陶瓷片上通过丝网印刷的方法,将金属浆料填充到过孔内,按规定图形印刷出导带图形;
(5)阻带印刷:在LTCC陶瓷片上通过丝网印刷的方法,将电阻浆料按规定图形印刷出阻带图形;
(6)叠片:将各层陶瓷片按照设计顺序进行精确叠放。为使得陶瓷片相互紧密粘连,需把流延时预置的衬底薄膜揭除;
(7)等静压:将已经精确叠放的多层陶瓷在机械高压下进行贴合,实现紧密接触;
(8)切割:将静压之后的陶瓷片,按照模块边界进行切割分离;
(9)烧结:陶瓷片切割分离后,在烧结炉中进行排胶和烧结,使瓷材硬化结构稳定;
(10)通过丝网印刷的方法,在烧结后的多层陶瓷基片表面印刷导带图形和阻带图形,在烧结炉中进行排胶和烧结;
(11)激光调阻:使用功率激光对通过丝网印刷制成的电阻进行精细调节,以消除丝网印刷误差、烧结过程中的材料收缩,并适配外围器件个体差异;
(12)检测:对调阻后的多层陶瓷基片(包括粘贴在底座的底座多层陶瓷基片、用于三维竖向垂直集成的多层陶瓷基片)进行外观检验和电气测试;
(13)在底座多层陶瓷基片表面竖向垂直集成键合区域上,采用金丝球焊机进行金球制作;
(14)在竖向多层陶瓷基片端面键合区域上,采用金丝球焊机进行金球制作;
(15)按常规集成电路组装工艺,在三维竖向垂直集成的多层陶瓷基片上进行半导体芯片、其他贴片元器件的组装;
(16)在专用夹具上对已组装半导体芯片或其他贴片元器件的三维竖向垂直集成多层陶瓷基片进行内引线键合(金丝或硅铝丝);
(17)将底座多层陶瓷基片采用合金焊接的方式装贴在管基上,按常规集成电路组装工艺,进行半导体芯片、其他贴片元器件的组装,在专用夹具上对已组装半导体芯片或其他贴片元器件的底座陶瓷基片进行内引线键合(金丝或硅铝丝);
(18)采用浆料粘贴的方式,将已完成键合的三维竖向垂直集成多层陶瓷基片垂直装贴在底座多层陶瓷基片相应的区域上;
(19)在高纯氮的保护下、在180℃左右的高温箱中进行2小时左右的高温烧结,将三维竖向垂直集成多层陶瓷基片与底座多层陶瓷基片有机地烧结在一起;
(20)对功能及外观按产品要求进行检验;
(21)在高纯氮的保护下、在150℃左右的炉子中进行8小时以上的高温烘烤,将水汽彻底烘干;
(22)封帽:在特定的环境中进行封帽,完成整个器件的集成与生产工作;
(23) 按产品工艺文件与检验文件,完成器件的测试、筛选、打印与包装入库工作。
Claims (4)
1.三维集成高密度陶瓷厚膜多芯片组件的集成方法,其特征是:先按多层陶瓷厚膜基片常规工艺制作所需多层陶瓷厚膜基片,在多层陶瓷厚膜基片上,采用丝网印刷、浆料烧结、激光调阻的方式制作导带-阻带网络,将所有对外进行电气连接的引脚制作在小多层陶瓷基片的同一端的端面或者两面;然后在每根引脚的键合区和底座多层陶瓷基片表面相应的键合区形成金球;再采用厚膜混合集成的方式进行半导体芯片或片式元器件的集成,在小多层陶瓷基片的正反面集成一个以上半导体芯片或片式元器件,并完成半导体芯片的引线键合;最后,采用共晶焊接、合金焊或浆料粘接的方式将集成后的小多层陶瓷基片垂直集成在底座多层陶瓷基片上。
2.如权利要求1所述的方法,其特征在于所述多层陶瓷基片由多层陶瓷烧结而成,在每一层中均有金属化通孔、导带,内层有阻带,表层有经激光调阻后的阻带。
3.如权利要求1所述的方法,其特征在于所述金球是采用金丝球键合的方法或丝网印刷后再流焊的方法形成的。
4.如权利要求1所述的方法,其特征在于所述所述厚膜混合集成方式的厚膜是通过丝网印刷电阻浆料、金属浆料到陶瓷基片上、再经高温烧结的方式形成的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210492847.7A CN103094219B (zh) | 2012-11-28 | 2012-11-28 | 三维集成高密度厚膜多芯片组件的集成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210492847.7A CN103094219B (zh) | 2012-11-28 | 2012-11-28 | 三维集成高密度厚膜多芯片组件的集成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103094219A CN103094219A (zh) | 2013-05-08 |
CN103094219B true CN103094219B (zh) | 2015-01-28 |
Family
ID=48206626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210492847.7A Active CN103094219B (zh) | 2012-11-28 | 2012-11-28 | 三维集成高密度厚膜多芯片组件的集成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103094219B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109285786A (zh) * | 2018-09-17 | 2019-01-29 | 郭鸿洲 | 一种芯片封装基板及制作方法 |
CN113707643A (zh) * | 2021-08-30 | 2021-11-26 | 中国振华集团永光电子有限公司(国营第八七三厂) | 一种高集成高可靠igbt功率模块及其制造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2944449B2 (ja) * | 1995-02-24 | 1999-09-06 | 日本電気株式会社 | 半導体パッケージとその製造方法 |
JP2783259B2 (ja) * | 1996-07-18 | 1998-08-06 | 日本電気株式会社 | 半導体パッケージとその製造方法 |
CN101714543B (zh) * | 2009-11-12 | 2011-10-05 | 美新半导体(无锡)有限公司 | 用于多芯片系统三维封装的陶瓷基板及其封装方法 |
-
2012
- 2012-11-28 CN CN201210492847.7A patent/CN103094219B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN103094219A (zh) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103456646B (zh) | 多层低温共烧陶瓷基板集成液冷循环通道的制备方法 | |
CN102881602B (zh) | 工作温度可控多芯片组件的集成方法 | |
WO2013171636A1 (en) | Three-dimensional modules for electronic integration | |
US9299498B2 (en) | Miniature wire-bondable capacitor | |
CN104485324A (zh) | 无引线球脚表贴式微波薄膜混合集成电路及其集成方法 | |
CN103050414B (zh) | 三维集成高密度厚薄膜多芯片组件的集成方法 | |
CN103094219B (zh) | 三维集成高密度厚膜多芯片组件的集成方法 | |
CN103280424B (zh) | 一种高集成度功率厚膜混合集成电路的集成方法 | |
CN106229276A (zh) | 一种基于ltcc基板的bga一体化封装装置 | |
CN103107123B (zh) | 三维集成功率厚膜混合集成电路的集成方法 | |
CN110299328A (zh) | 一种堆叠封装器件及其封装方法 | |
CN102945821B (zh) | 高密度厚膜混合集成电路的集成方法 | |
CN102931124B (zh) | 高密度薄膜混合集成电路的集成方法 | |
CN202948920U (zh) | 三维集成高密度多芯片组件 | |
JPS58220492A (ja) | 複合回路装置 | |
CN206712021U (zh) | 一种ltcc2.4g贴片天线 | |
CN104465607A (zh) | 无引线平面表贴式微波薄膜混合集成电路及其集成方法 | |
JP2002076193A (ja) | 半導体素子収納用パッケージおよびパッケージ実装基板 | |
CN103681364A (zh) | 无引线球脚表贴式高密度厚膜混合集成电路的集成方法 | |
CN216449724U (zh) | 一种激光雷达器件 | |
US20180247898A1 (en) | Wiring board, electronic device, and electronic module | |
KR100495151B1 (ko) | 액상 봉지 재료를 테스트하기 위한 테스트 기판 | |
CN103107109B (zh) | 三维集成功率薄膜混合集成电路的集成方法 | |
KR100529927B1 (ko) | 다중 칩 모듈 패키지 구조 및 그 제작방법 | |
CN103151276B (zh) | 一种高集成度功率薄膜混合集成电路的集成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: 550018 No. 238, north section of Xintian Avenue, Guiyang City, Guizhou Province Patentee after: Guizhou Zhenhua Fengguang Semiconductor Co., Ltd Address before: 550018 No. 238, north section of Xintian Avenue, Guiyang City, Guizhou Province Patentee before: Guizhou Zhenhua Fengguang Semiconductor Co., Ltd |
|
CP01 | Change in the name or title of a patent holder |