CN103089466A - 用于诊断氧传感器中的故障的系统和方法 - Google Patents

用于诊断氧传感器中的故障的系统和方法 Download PDF

Info

Publication number
CN103089466A
CN103089466A CN2012104294630A CN201210429463A CN103089466A CN 103089466 A CN103089466 A CN 103089466A CN 2012104294630 A CN2012104294630 A CN 2012104294630A CN 201210429463 A CN201210429463 A CN 201210429463A CN 103089466 A CN103089466 A CN 103089466A
Authority
CN
China
Prior art keywords
fuel ratio
air fuel
fuel
period
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104294630A
Other languages
English (en)
Other versions
CN103089466B (zh
Inventor
S.P.利瓦伊约基
T.J.马赫
J.W.齐基宁
M.J.多克特
S.杰弗里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN103089466A publication Critical patent/CN103089466A/zh
Application granted granted Critical
Publication of CN103089466B publication Critical patent/CN103089466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明涉及用于诊断氧传感器中的故障的系统和方法。根据本发明的原理的系统包括错误时间模块和传感器诊断模块。错误时间模块基于第一空燃比和所需空燃比不同的时间量而确定错误时间。第一氧传感器产生指示第一空燃比的第一信号。当错误时间大于预定时间时,传感器诊断模块诊断出第一氧传感器中的故障。

Description

用于诊断氧传感器中的故障的系统和方法
技术领域
本发明涉及用于诊断设置在发动机的排气系统中的氧传感器的故障的系统和方法。
背景技术
在此提供的背景技术描述用于总体上介绍本发明的背景。在本背景技术部分中所描述的程度上,当前署名的发明人的作品和本描述中在申请时不构成现有技术的各方面,既非明示也非默示地被认为是本发明的现有技术。
氧传感器可定位在发动机的排气系统中。氧传感器可产生指示来自发动机的排气中的氧含量的氧信号。氧信号还可指示发动机的空燃比,其可被称为实际空燃比。提供给发动机的汽缸的空气和燃料的量可基于诸如化学计量空燃比的所需空燃比和/或实际空燃比而控制。
燃料控制系统可以在闭环状态或开环状态下操作。在闭环状态下,燃料输送可被控制以最小化所需空燃比和实际空燃比之间的差值。在开环状态下,燃料输送可独立于实际空燃比而控制。例如,燃料输送可基于喷油MAP图而控制。
发明内容
根据本发明的原理的系统包括错误时期模块和传感器诊断模块。错误时期模块基于第一空燃比和所需空燃比不同的时间量而确定错误时期。第一氧传感器产生指示第一空燃比的第一信号。当错误时期大于预定时期时,传感器诊断模块诊断出第一氧传感器中的故障。
本发明提供下列技术方案。
技术方案1. 一种系统,包括:
错误时期模块,其基于第一空燃比和所需空燃比不同的时间量来确定错误时期,其中,第一氧传感器产生指示所述第一空燃比的第一信号;以及
传感器诊断模块,其在所述错误时期大于预定时期时诊断出所述第一氧传感器中的故障。
技术方案2. 根据技术方案1所述的系统,其中,当所述第一空燃比为富燃且所述所需空燃比为贫燃时,所述错误时期模块增加所述错误时期。
技术方案3. 根据技术方案1所述的系统,其中,当所述第一空燃比为贫燃且所述所需空燃比为富燃时,所述错误时期模块增加所述错误时期。
技术方案4. 根据技术方案1所述的系统,其中,当所述第一空燃比和所述所需空燃比两者均为富燃和贫燃之一时,所述错误时期模块将所述错误时期设为零。
技术方案5. 根据技术方案1所述的系统,其中,所述第一氧传感器为窄带传感器。
技术方案6. 根据技术方案1所述的系统,其中,所述第一氧传感器为宽带传感器。
技术方案7. 根据技术方案1所述的系统,还包括燃料控制模块,当诊断出故障时,所述燃料控制模块独立于所述第一空燃比而控制向发动机的燃料输送。
技术方案8. 根据技术方案7所述的系统,其中,所述燃料控制模块基于发动机操作状态而控制向所述发动机的燃料输送,所述发动机操作状态不基于从氧传感器接收的输入而确定。
技术方案9. 根据技术方案7所述的系统,其中,当诊断出所述故障时,所述燃料控制模块基于第二空燃比而控制向所述发动机的燃料输送,其中,第二氧传感器产生指示所述第二空燃比的第二信号。
技术方案10. 根据技术方案9所述的系统,其中,所述第一氧传感器设置在第一组汽缸下游,所述第二氧传感器设置在第二组汽缸下游,并且当诊断出所述故障时,所述燃料控制模块基于所述第二空燃比而控制向所述第一组和所述第二组汽缸的燃料输送。
技术方案11. 一种方法,包括:
基于第一空燃比和所需空燃比不同的时间量来确定错误时期,其中,第一氧传感器产生指示所述第一空燃比的第一信号;以及
当所述错误时期大于预定时期时,诊断所述第一氧传感器中的故障。
技术方案12. 根据技术方案11所述的方法,还包括当所述第一空燃比为富燃且所述所需空燃比为贫燃时增加所述错误时期。
技术方案13. 根据技术方案11所述的方法,还包括当所述第一空燃比为贫燃且所述所需空燃比为富燃时增加所述错误时期。
技术方案14. 根据技术方案11所述的方法,还包括当所述第一空燃比和所述所需空燃比两者均为富燃和贫燃之一时将所述错误时期设为零。
技术方案15. 根据技术方案11所述的方法,其中,所述第一氧传感器为窄带传感器。
技术方案16. 根据技术方案11所述的方法,其中,所述第一氧传感器为宽带传感器。
技术方案17. 根据技术方案11所述的方法,还包括当诊断出故障时独立于所述第一空燃比而控制向发动机的燃料输送。
技术方案18. 根据技术方案17所述的方法,还包括基于发动机操作状态而控制向所述发动机的燃料输送,所述发动机操作状态不基于从氧传感器接收的输入而确定。
技术方案19. 根据技术方案17所述的方法,还包括当诊断出所述故障时基于第二空燃比而控制向所述发动机的燃料输送,其中,第二氧传感器产生指示所述第二空燃比的第二信号。
技术方案20. 根据技术方案19所述的方法,还包括当诊断出所述故障时基于所述第二空燃比而控制向第一组汽缸和第二组汽缸的燃料输送,其中,所述第一氧传感器设置在所述第一组汽缸下游,所述第二氧传感器设置在所述第二组汽缸下游。
本发明进一步的适用范围将通过下文提供的详细描述而变得显而易见。应当理解,详细描述和具体示例仅意图用于举例说明,而并非意图限制本方面的范围。
附图说明
通过详细描述和附图将会更全面地理解本发明,附图中:
图1是根据本发明的原理的示例发动机系统的功能框图;
图2是根据本发明的原理的示例控制系统的功能框图;
图3是示出根据本发明的原理的示例控制方法的流程图;以及
图4是示出根据本发明的原理的示例控制信号的曲线图。
具体实施方式
氧传感器可以是窄带传感器或宽带传感器。窄带传感器输出指示空燃比是否为富燃或贫燃的电压。例如,大于450毫伏(mV)的输出电压可指示富燃空燃比,并且小于450mV的输出电压可指示贫燃空燃比。宽带传感器输出指示空燃比的值的电压。
偏压电路可导致氧传感器在开路或短路的情况下输出指示空燃比为富燃或贫燃的电压。例如,氧传感器通常可输出在50mV和850mV之间的电压,并且氧传感器在被偏置时可输出1900mV的电压。因此,氧传感器可由于偏压电路而阻滞在富燃或贫燃状态。阻滞在富燃或贫燃状态的传感器可导致发动机的粗暴操作和/或发动机停转。
根据本发明的原理的系统和方法基于错误时期来诊断氧传感器中的故障。错误时期是所需空燃比和实际空燃比不同的时间量。实际空燃比通过由氧传感器产生的信号来指示。当所需空燃比为贫燃而实际空燃比为富燃时,错误时期可能增加。当所需空燃比为富燃且实际空燃比为贫燃时,错误时期也可能增加。当错误时期大于预定时期时,氧传感器中的故障可被诊断出。
当诊断出故障氧传感器时,根据本发明的原理的系统和方法可以在开环状态或伪开环状态下操作。在开环状态下,可基于发动机操作状态来控制燃料输送,发动机操作状态不是基于从氧传感器接收的输入而确定的。在伪开环状态下,可基于从无故障的氧传感器接收的输入来控制燃料输送。当在发动机(例如,单排发动机)下游设置单个氧传感器时,可采用开环状态。当在发动机(例如,双排发动机)下游设置两个或更多个氧传感器时,可采用伪开环状态。
基于错误时期诊断氧传感器中的故障提供了当车辆被维修时可以检索和利用的诊断信息。在诊断出故障氧传感器时在开环状态或伪开环状态下控制燃料输送防止了发动机粗暴操作和发动机停转。防止发动机粗暴操作和发动机停转提高了客户满意度。
参见图1,发动机系统10包括发动机12,其燃烧空气燃料混合物以产生用于车辆的驱动扭矩。空气通过进气系统14吸入发动机12中。进气系统14包括节流阀16和进气歧管18。节流阀16可包括具有可旋转叶片的蝶阀。节流阀16打开以将空气吸入进气歧管18中。发动机控制模块(ECM) 20输出节流控制信号22以控制吸入进气歧管18的空气量。
来自进气歧管18的空气通过进气阀26吸入发动机12的汽缸24中。虽然发动机12描绘为具有八个汽缸,但发动机12可具有更多或更少的汽缸。发动机12可以是双排发动机,并且汽缸24可以分布在第一排28和第二排30之间。备选地,发动机12可以是单排发动机。
一个或多个燃料喷射器32将燃料喷入发动机12中。燃料可以在中央位置处或多个位置处(例如,在每个汽缸24的进气阀26附近)喷入进气歧管18中。在各种实施方式中,燃料可以直接喷入汽缸24中或喷入与汽缸24相关联的混合室中。ECM 20输出燃料控制信号34以控制由燃料喷射器32喷射的燃料的量。
喷射的燃料在汽缸24中与空气混合并产生空气燃料混合物。汽缸24内的活塞(未示出)压缩空气燃料混合物。发动机12可以是压缩点火发动机,在这种情况下,在汽缸24中的压缩点燃空气燃料混合物。备选地,发动机12可以是火花点火发动机,在这种情况下,汽缸24中的火花塞(未示出)产生点燃空气燃料混合物的火花。ECM 20可输出火花控制信号(未示出)以控制火花塞产生火花的时间(即,点火正时)。
燃烧的副产物通过排气阀36被排出并通过排气系统38从车辆排出。排气系统38包括排气歧管40和三元催化剂(TWC) 42。TWC 42减少氮氧化物并使一氧化碳和烃氧化。当发动机12的空燃比为贫燃时,TWC 42可以储存氧,并且储存在TWC 42中的氧在空燃比为富燃时可以随着一氧化碳和烃被氧化而被消耗。ECM 20可以使空燃比在接近化学计量空燃比的窄范围内在富和贫之间波动以最小化排放。
进气温度(IAT)传感器44测量通过进气系统14吸入的空气的温度并产生指示进气温度的IAT信号46。空气流量(MAF)传感器48测量通过进气系统吸入的空气的质量流量并产生指示空气质量流量的MAF信号50。歧管绝对压力(MAP)传感器52测量进气歧管18中的压力并产生指示歧管压力的MAP信号54。曲轴位置(CPS)传感器56测量曲轴的位置并产生指示曲轴的位置(和发动机速度)的CPS信号58。
第一氧(O2)传感器60测量来自第一排28的排气中的第一氧含量并产生指示第一氧含量的第一O2信号62。第二O2传感器64测量来自第二排30的排气中的第二氧含量并产生指示第二氧含量的第二O2信号66。排气温度(EGT)传感器68测量排气的温度并产生指示排气温度的EGT信号70。第三O2传感器72测量TWC 42下游的排气中的第三氧含量并产生指示第三氧含量的第三O2信号74。氧传感器60、64、72可以是窄带传感器或宽带传感器。
ECM 20接收由以上讨论的传感器产生的信号并基于所接收的信号控制发动机12。ECM 20可诊断第一O2传感器60和/或第二O2传感器64中的故障。虽然ECM 20可诊断氧传感器60、64中任一个的故障,但为了简明起见,下面的讨论描述诊断第一O2传感器60中的故障的ECM 20。ECM 20可以类似方式诊断第二O2传感器64中的故障。
ECM 20基于错误时期来诊断第一O2传感器60中的故障。错误时期是所需空燃比和实际空燃比不同的时间量。ECM 20调整燃料控制信号34以实现所需空燃比。ECM 20基于第一O2信号62来确定实际空燃比。
当所需空燃比为贫燃且实际空燃比为富燃时,ECM 20可增加错误时期。当所需空燃比为富燃且实际空燃比为贫燃时,ECM 20可增加错误时期。当错误时期大于预定时期时,ECM 20可诊断出第一O2传感器60中的故障。
参见图2,ECM 20的示例实施方式包括空燃比模块202、错误时期模块204、传感器诊断模块206、燃料控制模块208和节流控制模块210。空燃比模块202基于第一O2信号62确定实际空燃比是否为富燃或贫燃。例如,当第一O2信号62大于预定电压(例如,450mV)时,实际空燃比可能是富燃,并且当第一O2信号62小于预定电压时,实际空燃比可能是贫燃。预定电压可对应于化学计量空燃比。空燃比模块202输出指示实际空燃比是否为富燃或贫燃的信号。
空燃比模块202可基于第一O2信号62和/或由发动机12燃烧的燃料的类型来确定实际空燃比的值。例如,当第一O2信号62等于预定电压并且燃料类型为汽油时,空燃比模块202可确定实际空燃比为14.7。燃料类型可以是预定的和/或使用例如仪表盘和/或维修工具提供给空燃比模块202。空燃比模块202可输出实际空燃比的值。
错误时期模块204基于实际空燃比和所需空燃比确定错误时期。错误时期是实际空燃比和所需空燃比不同的时间量。所需空燃比可以是诸如化学计量比的预定比率。备选地,燃料控制模块208可如下文所讨论的确定所需空燃比并将所需空燃比输出到错误时期模块204。
当所需空燃比为贫燃且实际空燃比为富燃时,错误时期模块204可增加富燃错误时期。当所需空燃比为富燃且实际空燃比为贫燃时,错误时期模块204可增加贫燃错误时期。当所需空燃比和实际空燃比为富燃或贫燃时,错误时期模块204可将错误时期设为零。错误时期模块204输出错误时期。
传感器诊断模块206基于错误时期诊断第一O2传感器60中的故障。当富燃错误时期大于预定时期(例如,3秒)时,传感器诊断模块206可诊断阻滞富燃故障。当贫燃错误时期大于预定时期时,传感器诊断模块206可诊断阻滞贫燃故障。传感器诊断模块206输出指示诊断出第一O2传感器60中的故障的时间的信号。传感器诊断模块206也可设置诊断故障代码和/或当诊断出第一O2传感器60故障时激活维修指示器,例如可视消息。
当第一O2信号62和第三O2信号74指示贫燃空燃比时,或者当第一O2信号62和第三O2信号74指示富燃空燃比时,传感器诊断模块206可抑制诊断第一O2传感器60中的故障。当贫燃错误时期大于预定时期且第三O2信号74指示富燃空燃比时,传感器诊断模块206可诊断阻滞贫燃故障。当富燃错误时期大于预定时期且第三O2信号74指示贫燃空燃比时,传感器诊断模块206可诊断阻滞富燃故障。
燃料控制模块208输出燃料控制信号34以控制由燃料喷射器32喷射的燃料的量(即燃料质量)。燃料控制模块208可基于吸入进气歧管18的空气的量(即空气质量)来控制燃料质量以实现所需空燃比。节流控制模块210可如下文所讨论的确定空气质量并将空气质量输出到燃料控制模块208。燃料控制模块208可基于发动机操作状态来确定所需空燃比以最小化排放。发动机操作状态可包括进气温度、空气质量流量、歧管压力、发动机速度和/或排气温度。
当第一O2传感器60正常操作时,燃料控制模块208可在闭环状态下操作。在闭环状态下,燃料控制模块208调整燃料质量以最小化所需空燃比和实际空燃比之间的差值。燃料控制模块208可基于从第一O2传感器60接收的输入而控制到第一排28的燃料输送,并且基于从第二O2传感器64接收的输入而控制到第二排30的燃料输送。备选地,第一O2传感器60可以在第一排28和第二排30的下游,并且燃料控制模块208可基于从第一O2传感器60接收的输入而控制到第一排28和第二排30的燃料输送。
当在第一O2传感器60中诊断出故障时,燃料控制模块208可在开环状态或伪开环状态下操作。当在发动机12下游设置不止一个O2传感器并且O2传感器之一无故障时,燃料控制模块208可在伪开环状态中操作。当在发动机12下游仅设置故障O2传感器时,燃料控制模块208可在开环状态下操作。
在开环状态下,燃料控制模块208可独立于从第一O2传感器60接收的输入而控制燃料输送。例如,燃料控制模块208可基于喷油MAP图而控制燃料输送。喷油MAP图可基于发动机操作状态而指定燃料输送参数(例如,燃料质量、燃料加注速率)。发动机操作状态可包括进气温度、空气质量流量、歧管压力、发动机速度和/或排气温度。
在伪开环状态下,当在第一O2传感器60中诊断出故障时,燃料控制模块208可基于从第二O2传感器64接收的输入而控制到第一排28和第二排30的燃料输送。例如,燃料控制模块208可控制到第一排28和第二排30的燃料输送以最小化实际空燃比和所需空燃比之间的差值。空燃比模块202可基于第二O2信号66而确定实际空燃比。反之,当在第二O2传感器64中诊断出故障时,燃料控制模块208可基于从第一O2传感器60接收的输入而控制到第一排28和第二排30的燃料输送。
节流控制模块210输出节流控制信号22以控制吸入进气歧管18的空气量(即空气质量)。节流控制模块210可调整空气质量以最小化所需空气质量和实际空气质量之间的差值。节流控制模块210可基于驾驶员输入而确定所需空气质量。例如,驾驶员输入可基于加速器踏板位置和/或巡航控制设置而产生。
节流控制模块210可基于发动机操作状态而确定实际空气质量。发动机操作状态可包括进气温度、空气流量和/或歧管压力。发动机操作状态还可包括节流阀位置。节流阀位置可基于节流控制信号22而测量和/或确定。节流控制模块210可调整节流阀位置以最小化所需节流阀位置和实际节流阀位置之间的差值。节流控制模块210可基于驾驶员输入而确定所需节流阀位置并输出所得空气质量。
参见图3,用于诊断氧传感器中的故障的方法始于302。氧传感器可以是窄带传感器或宽带传感器。在304中,该方法确定所需空燃比是否为贫燃。如果304为肯定的,则该方法在306中继续。否则,该方法在308中继续。
所需空燃比可以是诸如化学计量比的预定比率或者在预定范围内在富燃和贫燃之间波动的比率。该方法可基于发动机操作状态而确定所需空燃比。发动机操作状态可包括进气温度、空气质量流量、歧管压力、发动机速度和/或排气温度。
在306中,该方法确定实际空燃比是否为富燃。如果306为肯定的,则该方法在310中继续。否则,该方法在312中继续。该方法基于氧传感器的输出电压而确定实际空燃比是否为富燃或贫燃。例如,当输出电压大于450毫伏(mV)时,实际空燃比可以是富燃,并且当当输出电压小于450毫伏时,实际空燃比可以是贫燃。
在310中,该方法增加富燃错误时期。在314中,该方法确定富燃错误时期是否大于预定时期(例如,3秒)。如果314为肯定的,则该方法在316中继续。否则,该方法在304中继续。在316中,该方法诊断氧传感器中有阻滞富燃故障。该方法可设置诊断故障代码和/或激活诸如可视消息的维修指示器以指示诊断出阻滞富燃故障的时间。
在318中,该方法在开环状态或伪开环状态下操作。在开环状态下,该方法独立于从氧传感器接收的输入而控制燃料输送。在伪开环状态下,该方法基于从无故障的氧传感器接收的输入而控制燃料输送。
在308中,该方法确定实际空燃比是否为富燃。如果308为肯定的,则该方法在312中继续。否则,该方法在320中继续。在320中,该方法增加贫燃错误时期。在312中,该方法将错误时期设为零。该方法可将富燃错误时期设为零和/或将贫燃错误时期设为零。
在322中,该方法确定贫燃错误时期是否大于预定时期。如果322为肯定的,则该方法在324中继续。否则,该方法在304中继续。在324中,该方法诊断氧传感器中有阻滞贫燃故障。该方法可设置诊断故障代码和/或激活诸如可视消息的维修指示器以指示诊断出阻滞贫燃故障的时间。
现在参见图4,X轴402表示第一样本数,Y轴404表示单位为毫伏(mV)的电压,并且Y轴406表示第二样本数。第一样本数和第二样本数指示时期。时期可基于第一样本数和第二样本数的采样速率而确定。第一样本数的采样速率为250毫秒(ms),并且第二样本数的采样速率为100ms。
由氧传感器输出的实际电压408相对于X轴402和Y轴404而绘制。氧传感器的期望状态410相对于X轴402和Y轴411而绘制。富燃错误时期412、贫燃错误时期414和错误修正电压416相对于X轴402和Y轴406而绘制。期望状态410可以是贫燃状态418或富燃状态420。向发动机的燃料输送可基于期望状态410和错误修正电压416而控制。
当实际电压408大于预定电压且期望状态410为贫燃状态418时,富燃错误时期412增加,并且贫燃错误时期414减少。预定电压可以是对应于化学计量空燃比的电压。当实际电压408小于预定电压且期望状态410为富燃状态420时,富燃错误时期412减少,并且贫燃错误时期414增加。当富燃错误时期412等于3秒(即,30计数与100ms的乘积)时,在氧传感器中诊断出阻滞富燃故障。当诊断出阻滞富燃故障时,向发动机的燃料输送可独立于实际电压408而控制。例如,向发动机的燃料输送可基于从无故障的不同氧传感器接收的输入而控制。
上面的描述本质上仅是示例性的并且决不是要限制本发明、其应用或用途。本发明的广义教导可以以各种形式实施。因此,虽然本发明包括具体示例,但本发明的真正范围不应局限于此,因为在研究附图、说明书和随附权利要求书的基础上其它修改将变得显而易见。为了清楚起见,在附图中将使用相同的附图标记标识相似的元件。如本文所用,短语A、B和C中的至少一个应当被解释为是指使用非排他逻辑“或”的逻辑(A或B或C)。应当理解,在不改变本发明的原理的情况下,可以以不同的顺序(或同时地)执行方法内的一个或多个步骤。
如本文所用,术语模块可以指属于或包括:专用集成电路(ASIC);电子电路;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的处理器(共享、专用或分组);提供所描述功能的其它合适的硬件部件;或以上的一些或全部的组合,例如在片上系统中。术语模块可包括存储由处理器执行的代码的存储器(共享、专用或分组)。
如在上面所使用的术语代码可包括软件、固件和/或微代码并可指程序、例程、函数、类和/或对象。如在上面所使用的术语“共享”意味着来自多个模块的一些或全部代码可使用单个(共享)处理器来执行。此外,来自多个模块的一些或全部代码可由单个(共享)存储器来存储。如在上面所使用的术语“分组”意味着来自单个模块的一些或全部代码可使用一组处理器来执行。此外,来自单个模块的一些或全部代码可使用一组存储器来存储。
本文所述设备和方法可通过由一个或多个处理器执行的一个或多个计算机程序来实现。计算机程序包括存储在非暂时的有形计算机可读介质上的处理器可执行指令。计算机程序还可包括存储的数据。非暂时的有形计算机可读介质的非限制性示例是非易失性存储器、磁存储器和光存储器。

Claims (10)

1.一种系统,包括:
错误时期模块,其基于第一空燃比和所需空燃比不同的时间量来确定错误时期,其中,第一氧传感器产生指示所述第一空燃比的第一信号;以及
传感器诊断模块,其在所述错误时期大于预定时期时诊断出所述第一氧传感器中的故障。
2.根据权利要求1所述的系统,其中,当所述第一空燃比为富燃且所述所需空燃比为贫燃时,所述错误时期模块增加所述错误时期。
3.根据权利要求1所述的系统,其中,当所述第一空燃比为贫燃且所述所需空燃比为富燃时,所述错误时期模块增加所述错误时期。
4.根据权利要求1所述的系统,其中,当所述第一空燃比和所述所需空燃比两者均为富燃和贫燃之一时,所述错误时期模块将所述错误时期设为零。
5.根据权利要求1所述的系统,其中,所述第一氧传感器为窄带传感器。
6.根据权利要求1所述的系统,其中,所述第一氧传感器为宽带传感器。
7.根据权利要求1所述的系统,还包括燃料控制模块,当诊断出故障时,所述燃料控制模块独立于所述第一空燃比而控制向发动机的燃料输送。
8.根据权利要求7所述的系统,其中,所述燃料控制模块基于发动机操作状态而控制向所述发动机的燃料输送,所述发动机操作状态不基于从氧传感器接收的输入而确定。
9.根据权利要求7所述的系统,其中,当诊断出所述故障时,所述燃料控制模块基于第二空燃比而控制向所述发动机的燃料输送,其中,第二氧传感器产生指示所述第二空燃比的第二信号。
10.一种方法,包括:
基于第一空燃比和所需空燃比不同的时间量来确定错误时期,其中,第一氧传感器产生指示所述第一空燃比的第一信号;以及
当所述错误时期大于预定时期时,诊断所述第一氧传感器中的故障。
CN201210429463.0A 2011-11-01 2012-11-01 用于诊断氧传感器中的故障的系统和方法 Active CN103089466B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/286,717 2011-11-01
US13/286717 2011-11-01
US13/286,717 US8939010B2 (en) 2011-11-01 2011-11-01 System and method for diagnosing faults in an oxygen sensor

Publications (2)

Publication Number Publication Date
CN103089466A true CN103089466A (zh) 2013-05-08
CN103089466B CN103089466B (zh) 2017-04-12

Family

ID=48084611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210429463.0A Active CN103089466B (zh) 2011-11-01 2012-11-01 用于诊断氧传感器中的故障的系统和方法

Country Status (3)

Country Link
US (1) US8939010B2 (zh)
CN (1) CN103089466B (zh)
DE (1) DE102012219626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884769A (zh) * 2015-12-18 2018-11-23 法国大陆汽车公司 用于诊断氧探头的诊断方法
CN114962034A (zh) * 2022-06-08 2022-08-30 东风汽车集团股份有限公司 混动车型发动机宽域氧传感器劣化诊断方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939010B2 (en) 2011-11-01 2015-01-27 GM Global Technology Operations LLC System and method for diagnosing faults in an oxygen sensor
DE102013214541B4 (de) * 2012-08-03 2016-01-21 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zur diagnose eines defekts in einem sauerstoffsensor auf grundlage einer motordrehzahl
US9146177B2 (en) * 2012-08-03 2015-09-29 GM Global Technology Operations LLC System and method for diagnosing a fault in an oxygen sensor based on engine speed
US9057338B2 (en) 2012-11-09 2015-06-16 GM Global Technology Operations LLC Exhaust gas oxygen sensor fault detection systems and methods using fuel vapor purge rate
US10107214B2 (en) * 2013-10-31 2018-10-23 Robert Bosch Gmbh Control system and method using exhaust gas temperatures to adjust an air/fuel mixture for an internal combustion engine
US9453472B2 (en) 2013-11-08 2016-09-27 GM Global Technology Operations LLC System and method for diagnosing a fault in an oxygen sensor based on ambient temperature
US10190520B1 (en) 2017-10-12 2019-01-29 Harley-Davidson Motor Company Group, LLC Signal conditioning module for a wide-band oxygen sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214308A (en) * 1978-06-22 1980-07-22 The Bendix Corporation Closed loop sensor condition detector
US5970967A (en) * 1996-12-11 1999-10-26 Unisia Jecs Corporation Method and apparatus for diagnosing an abnormality in a wide range air-fuel ratio sensor
US20020139360A1 (en) * 2001-03-05 2002-10-03 Fumihiko Sato Combustible-gas sensor, diagnostic device for intake-oxygen concentration sensor, and air-fuel ratio control device for internal combustion engines
US20090182490A1 (en) * 2007-12-12 2009-07-16 Denso Corporation Exhaust gas oxygen sensor monitoring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217253A (ja) 1988-02-25 1989-08-30 Nissan Motor Co Ltd 酸素センサの故障診断装置
DE3834711A1 (de) 1988-10-12 1990-04-19 Bosch Gmbh Robert Verfahren und vorrichtung zur fehlererkennung und/oder fehlerbehandlung bei stereo-lambdaregelung
US5357791A (en) 1993-03-15 1994-10-25 Ford Motor Company OBD-II exhaust gas oxygen sensor
US5390650A (en) 1993-03-15 1995-02-21 Ford Motor Company Exhaust gas oxygen sensor monitoring
JP2869911B2 (ja) * 1993-04-15 1999-03-10 本田技研工業株式会社 内燃エンジンの酸素センサ劣化検出装置
DE4333412A1 (de) 1993-09-30 1995-04-13 Siemens Ag Verfahren zur Überprüfung der Funktionsfähigkeit von Lambdasonden
DE10331334B4 (de) 2003-07-10 2012-12-20 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP4338586B2 (ja) 2004-05-26 2009-10-07 株式会社日立製作所 エンジンの排気系診断装置
DE102010022683A1 (de) 2010-06-04 2011-04-21 Daimler Ag Verfahren zum Betreiben einer an eine Brennkraftmaschine angeschlossenen Abgasreinigungsanlage
US8939010B2 (en) 2011-11-01 2015-01-27 GM Global Technology Operations LLC System and method for diagnosing faults in an oxygen sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214308A (en) * 1978-06-22 1980-07-22 The Bendix Corporation Closed loop sensor condition detector
US5970967A (en) * 1996-12-11 1999-10-26 Unisia Jecs Corporation Method and apparatus for diagnosing an abnormality in a wide range air-fuel ratio sensor
US20020139360A1 (en) * 2001-03-05 2002-10-03 Fumihiko Sato Combustible-gas sensor, diagnostic device for intake-oxygen concentration sensor, and air-fuel ratio control device for internal combustion engines
US20090182490A1 (en) * 2007-12-12 2009-07-16 Denso Corporation Exhaust gas oxygen sensor monitoring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884769A (zh) * 2015-12-18 2018-11-23 法国大陆汽车公司 用于诊断氧探头的诊断方法
CN108884769B (zh) * 2015-12-18 2021-06-08 法国大陆汽车公司 用于诊断氧探头的诊断方法
CN114962034A (zh) * 2022-06-08 2022-08-30 东风汽车集团股份有限公司 混动车型发动机宽域氧传感器劣化诊断方法
CN114962034B (zh) * 2022-06-08 2023-09-22 东风汽车集团股份有限公司 混动车型发动机宽域氧传感器劣化诊断方法

Also Published As

Publication number Publication date
US20130104626A1 (en) 2013-05-02
US8939010B2 (en) 2015-01-27
CN103089466B (zh) 2017-04-12
DE102012219626A1 (de) 2013-05-02

Similar Documents

Publication Publication Date Title
CN103089466A (zh) 用于诊断氧传感器中的故障的系统和方法
US8103433B2 (en) Method to detect a faulty operating condition during a cylinder cutoff of an internal combustion engine
US9453472B2 (en) System and method for diagnosing a fault in an oxygen sensor based on ambient temperature
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
US7558667B2 (en) Method for detecting assembled state of gas sensors and apparatus for detecting assembled state of gas sensors
US7926330B2 (en) Detection of cylinder-to-cylinder air/fuel imbalance
US8447456B2 (en) Detection of engine intake manifold air-leaks
US8417438B2 (en) Apparatus for detecting air-fuel ratio dispersion abnormality between cylinders of multiple-cylinder internal combustion engine
US10006382B2 (en) Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
US8555863B2 (en) Control device for internal combustion engine
CN104033311A (zh) 控制双燃料车辆中的发动机以防止由于发动机失火而损坏催化剂的系统和方法
SE514368C2 (sv) Förfarande och arrangemang för diagnos av givare i samband med styrning av en förbränningsmotor samt användning av nämnda arrangemang
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
US10054074B2 (en) Device for determining abnormality in engine system
CN103573447B (zh) 用于基于发动机速度诊断氧传感器中的故障的系统和方法
US9404431B2 (en) Method and device for operating an internal combustion engine
US7721707B2 (en) Abnormality determination apparatus and abnormality determination method for valve
US9217384B2 (en) Diagnosis method and device for operating an internal combustion engine
US8315782B2 (en) Method and device for operating an internal combustion engine
JP7123512B2 (ja) 内燃機関の制御装置
US9528460B2 (en) Fuel injection apparatus
CN110714861A (zh) 用于监测发动机的排放气体再循环系统的泄漏的方法
US9316179B2 (en) Secondary air supply device for internal combustion engine
CN108071457B (zh) 用于识别在引导内燃机的废气流的排气系统中的故障的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant