CN103084147B - 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法 - Google Patents

氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法 Download PDF

Info

Publication number
CN103084147B
CN103084147B CN201110351136.3A CN201110351136A CN103084147B CN 103084147 B CN103084147 B CN 103084147B CN 201110351136 A CN201110351136 A CN 201110351136A CN 103084147 B CN103084147 B CN 103084147B
Authority
CN
China
Prior art keywords
iron oxide
mnps
nano particle
magnetic nano
oxide magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110351136.3A
Other languages
English (en)
Other versions
CN103084147A (zh
Inventor
郑文聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKO PETROCHEMICAL CO Ltd
Original Assignee
NAKO PETROCHEMICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKO PETROCHEMICAL CO Ltd filed Critical NAKO PETROCHEMICAL CO Ltd
Priority to CN201110351136.3A priority Critical patent/CN103084147B/zh
Priority to US13/672,298 priority patent/US9034174B2/en
Priority to AU2012101651A priority patent/AU2012101651A4/en
Publication of CN103084147A publication Critical patent/CN103084147A/zh
Priority to HK13107321.0A priority patent/HK1180633A1/zh
Application granted granted Critical
Publication of CN103084147B publication Critical patent/CN103084147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3265Non-macromolecular compounds with an organic functional group containing a metal, e.g. a metal affinity ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/12Recovery of used adsorbent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • C10G32/02Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供了一种制备氧化铁磁性纳米粒子的方法,所述方法包括如下步骤:i)将水溶性亚铁盐和水溶性铁盐按摩尔比1∶2在碱性和柠檬酸盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs);ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-MNPs);以及iii)用表面活性剂修饰步骤ii)获得的嗜硫元素-MNPs,将嗜硫元素-MNPs从水相转移到有机相中。本发明还涉及由上述方法制备的氧化铁磁性纳米粒子以及使用该氧化铁磁性纳米粒子脱硫的方法。利用本发明的氧化铁磁性纳米粒子有效地实现了深度脱硫效果。

Description

氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法
技术领域
本发明涉及脱硫净化技术领域,更具体地说,本发明涉及一种制备氧化铁磁性纳米粒子的方法,该氧化铁磁性纳米粒子作为脱硫吸附剂能够实现有效地深度脱硫。
背景技术
大气污染一直是各国政府需要解决的难题,尤其是空气中的含硫化合物(例如SOx)是影响人类健康的有害气体,因此各国政府或国际组织都制订了含硫化合物的排放标准和/或措施,以控制含硫化合物的排放。工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等含有硫的化合物,在燃烧时会产生二氧化硫等气体,这是产生含硫化合物的最大污染源。所以石油提炼工业一般都有一道脱硫工艺以降低其硫的含量。
众所周知,汽油和柴油通常含有300至500ppmw的含硫化合物,在燃烧时会产生对汽车发动机、人们的健康以及环境有害的硫化物,所以低硫汽车燃料近年逐渐受到重视。其中一种脱硫技术是加氢脱硫方法,它能够有效地除去某些含硫化合物,如硫醇和硫化物等。虽然加氢脱硫方法能够降低汽油和柴油中一部分含硫量,但该方法仍有一定的局限性,例如不能除去噻吩类化合物,如在4-和/或6-位上具有一或多个烷基的烷基二苯并噻吩(DBTs),即无法进行深度脱硫。此外,加氢脱硫方法要求在高温高压下进行,例如,温度为320℃至380℃,压力为3-7Mpa,因此需要消耗大量的能源,并且需要制作耐高温高压的设备,故设备成本昂贵。
另一种脱硫技术是使用嗜硫吸附剂,例如还原性金属、金属氧化物、负载金属的沸石基材料、活性氧化铝和含碳材料等等。但是这些吸附剂的孔隙率和比表面积较低,导致它们吸附硫的能力不高,这一主要缺陷限制了它们的应用。
纳米技术近年来已在许多领域得到了应用。纳米材料由于具有表面效应、体积效应和量子尺寸效应,因此表现出许多奇异的物理和化学特性。其中磁性纳米粒子(magnetic nanoparticles,MNPs)通过表面共聚和表面修饰的方法,能够与有机物、聚合物或无机材料相结合形成核壳结构的复合微球,它的核具有磁性,壳结构具有表面活性基团,能与各种有机和无机分子偶联。在外加磁场的作用下,磁性纳米粒子能够很方便地和底液分离,操作简便,成本低,分离效率高。此外,磁性微球具有大的比表面积,因此具有吸附容量大,速度快等优点,在物质的分离、吸附和净化等方面显示了很好的应用前景。
中国专利申请号200510019060.9公开了一种Fe3O4/Au核壳结构磁性纳米颗粒及其制备方法,其中所述制备方法包括向FeCl2和FeCl3的混合溶液中加入氨水和柠檬钠混合液,控制氧化铁纳米颗粒的生长,然后再加入柠檬酸钠溶液和HAuCl4溶液,在Fe3O4纳米颗粒上生长Au壳层,从而形成Fe3O4/Au核壳结构磁性纳米颗粒。该纳米颗粒可应用在生物与医学领域。
国际专利申请号WO 01/78506A1公开了一种氧化物纳米吸附剂及其制备方法,所述氧化物纳米吸附剂可以破坏生物试剂如毒素。其中氧化物可以为MgO、CaO、TiO2、ZrO2、FeO、Fe2O3、NiO、CuO、Al2O3、ZnO、Mn2O3、V2O3、V2O5及其混合物。该专利申请公开的氧化物纳米颗粒表面可以用与其不同的第二种金属氧化物进行表面改性。
目前,为了有效地减少含硫化合物对工业生产和环境的破坏以及保障人们的身体健康,研究人员对含有含硫化合物的物质的脱硫进行了大量的研究工作,尤其对于作为汽车燃料的汽油和柴油的深度脱硫(除去噻吩类化合物)作了多方面的尝试。现有一些噻吩类化合物化合物吸附剂被尝试用来作深度脱硫,但它们的比表面积低,限制了其负载能力,因此它们的脱硫性能不高。
虽然磁性纳米粒子的设计与制造正越来越受到关注,在磁性分离、磁性探针、生物医学等诸多领域得到应用,但是现有技术中还未发现磁性纳米粒子应用在深度脱硫中。
发明内容
本发明的一个目的是提供一种制备氧化铁磁性纳米粒子的方法,利用该方法获得的磁性纳米粒子可以选择性地除去诸如噻吩类化合物的含硫化合物。
本发明的另一个目的是提供一种氧化铁磁性纳米粒子,不仅能有效地除去诸如噻吩类化合物的含硫化合物,而且操作简单,成本低,能耗少。
为实现上述目的,本发明的第一方面提供了一种制备氧化铁磁性纳米粒子的方法,所述方法包括如下步骤:
i)将水溶性亚铁盐和水溶性铁盐按摩尔比1∶2在碱性和柠檬酸盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs),例如三氧化二铁粒子;
ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-c-MNPs);以及
iii)用表面活性剂修饰步骤ii)获得的嗜硫元素-c-MNPs,将嗜硫元素-c-MNPs从水相转移到有机相中。
根据本发明一优选实施例,所述水溶性亚铁盐是氯化亚铁,所述水溶性铁盐是三氯化铁,以及所述柠檬酸盐是柠檬酸钠。较佳地,所述氯化亚铁的浓度范围是0.04M至1.00M,所述三氯化铁的浓度范围是0.08M至2.00M,以及所述柠檬酸钠的浓度范围是0.20M至1.00M。
根据本发明另一优选实施例,所述含有嗜硫元素的化合物是亚铜盐,例如氯化亚铜,较佳地,所述氯化亚铜的浓度范围是6×10-3M至0.25M。
优选地,所述表面活性剂是十六烷基三甲基铵盐(CTAB),得到CTAB修饰的嗜硫元素-c-MNPs(CTAB-嗜硫元素-c-MNPs),其中,所述CTAB的浓度范围较佳地是0.08M至0.200M。
通过使用铁盐的类别及其浓度,本发明获得的氧化铁磁性纳米粒子的平均粒径为1-1.4μm。
本发明的第二方面涉及一种根据本发明第一方面的方法制备的氧化铁磁性纳米粒子。
本发明的第三方面提供一种从物质中除去含硫化合物的方法,所述方法包括:使根据本发明的方法制备的氧化铁磁性纳米粒子与所述含有含硫化合物的物质在适合吸附至少一部分含硫化合物尤其噻吩类化合物的条件下接触。
上述除去含硫化合物的方法还可以包括以下步骤:通过施加梯度磁场将吸附后的所述氧化铁磁性纳米粒子从所述含硫物质分离出来;将分离出来的所述氧化铁磁性纳米粒子用酸溶液处理,使所述氧化铁磁性纳米粒子再生,其中所述酸溶液的pH值可以是1至6;然后对所述再生的氧化铁磁性纳米粒子施加磁场,使其分离出来并用水洗涤,回收得到可循环再用的氧化铁磁性纳米粒子。
根据本发明一实施例,所述氧化铁磁性纳米粒子的用量为5至10g/每升所述含有含硫化合物的物质。一般地,在100rpm速率和40-60℃下,所述氧化铁磁性纳米粒子与含有含硫化合物的物质搅拌15-25分钟,即可以使所述含硫化合物吸附在所述氧化铁磁性纳米粒子上。
所述含有含硫化合物的物质可以是汽油、柴油、润滑油或其他燃料油。所述噻吩类化合物包括噻吩、苯并噻吩、二苯并噻吩、4,6-二甲基二苯并噻吩以及在4-和/或6-位上具有一或二个烷基的噻吩类化合物。
与现有技术例如采用装填还原性金属、金属氧化物、负载金属的沸石基材料、活性氧化铝和含碳材料等等嗜硫吸附剂的固定床脱硫不同,本发明使用磁性纳米粒子作为硫的吸附剂,由于磁性纳米粒子的比表面积高,吸附能力强,这是其他任何嗜硫吸附剂所不能比拟的。本发明将纳米粒子的高比表面积、对硫有很强吸附作用的嗜硫元素例如铜、以及十六烷基三甲基铵盐(CTAB)能够能使纳米粒子易于分散在有机相中的性能这三者有机地结合起来,有效地实现了深度脱硫效果。已经发现,本发明的氧化铁磁性纳米粒子能够除去浓度为ppmw级的噻吩类化合物,脱硫效率极高。
此外,本发明利用磁性纳米粒子通过磁场易于分离的特点,可使吸附后的纳米粒子再生,循环再用。
具体实施方式
以下将以燃料油为例子详细对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
众所周知,燃料油含有含硫化合物,燃烧时会产生含硫气体或硫化物,不但对车辆的发动机有害,而且影响人们的健康和污染环境。因此,为了减少含硫气体或硫化物的排放,最有效的方法是提供低硫燃料油甚至不含硫的燃料油,这样燃料油燃烧产生的气体无需经过脱硫处理就能达到排放标准。
为此,人们在这一方面作出许多努力,但是有效地从燃料油中除去浓度为ppm级的含硫化合物仍然是一个难题。本发明提出了使用氧化铁磁性纳米粒子从燃料油中除去噻吩类化合物,从而实现燃料油的深度脱硫。
在本发明一优选实施方式中,以FeCl2和FeCl3为起始原料,制备Y-Fe2O3磁性纳米粒子,然后在Y-Fe2O3纳米粒子的表面上包覆柠檬酸盐,形成Fe2O3-柠檬酸盐核-壳粒子(c-Fe2O3),其制备可用以下反应方程式表示:
FeCl2+2FeCl3·6H2O→Y-Fe2O3
Y-Fe2O3+Na3C6H5O7·2H2O→c-Fe2O3
将经上述反应制备的在其表面上包覆柠檬酸盐的三氧化二铁磁性纳米粒子以c-MNPs表示。c-MNPs是本发明的脱硫吸附剂的核心,由于具有铁离子,因此在外加磁场的作用下,能够很方便地和燃料油分离,具有操作简便和分离效率高的优点。
通过控制铁盐的浓度和类别,可以将纳米粒子的尺寸控制在所希望的数量级上,例如1至1.4μm,即1000至1400nm。
使c-MNPs与嗜硫元素例如铜结合。将氯化亚铜与c-MNPs进行以下反应,使铜吸附在c-MNPs上,生成结合铜的c-MNPs(Cu-c-MNPs):
c-MNP+CuCl→Cu-c-MNPs
由于铜对硫有很强的吸附作用,再加上纳米粒子的比表面积很大,因此结合了铜的纳米粒子Cu-c-MNPs能够有效地吸附硫,特别是噻吩类化合物,从而可获得深度脱硫效果。
Cu-c-MNPs是亲水分子,较难与有机化合物相互作用。为了使Cu-c-MNPs在有机相中具有高度分散性,与有机相发生相互作用,需要对Cu-c-MNPs作进一步修饰,例如通过相转移将Cu-c-MNPs从水相转移到有机相,使得Cu-c-MNPs能够在燃料油/有机相中发挥作用。例如,可以采用表面活性剂十六烷基三甲基溴化铵(CTAB)对Cu-c-MNPs进行表面修饰,得到CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs):
Cu-c-MNP+CTAB→CTAB-Cu-c-MNP
CTAB的表面性能使得磁性纳米粒子易于分散在有机相中,能够更好地吸附燃料油中的含硫物质。已经发现,本发明的CTAB-Cu-c-MNPs对硫具有很高的吸附能力,经验证,每克CTAB-Cu-c-MNPs纳米粒子能够吸附8-40mg硫,大大高于现有脱硫剂的吸附能力(0-20mg硫/g脱硫剂)。
实施例1表面上包覆柠檬酸盐的氧化铁磁性纳米粒子(c-MNPs)的制备
分别制备20ml的0.04M氯化亚铁(FeCl2)溶液和20ml的0.08M三氯化铁(FeCl3)溶液,两种溶液分别高速搅拌约20分钟。搅拌后,将上述两种溶液加入到400ml的0.60M氨水溶液(NH4OH)中,混合物常温下搅拌约60分钟,再于搅拌下加热回流约60分钟。让混合物常温下冷却后,用离心方法(6000rpm转速,约20分钟)将上层剩余未反应的杂质除去,加入400ml清水洗涤沉淀物。重覆三次离心分离过程,得到400ml的纯化氧化铁磁性纳米粒子(MNPs)溶液。
将250ml的4.0M硝酸溶液加入到MNPs溶液中,常速搅拌约20分钟,再用离心方法(6000rpm转速,约20分钟)提取MNPs。将MNPs加入到400ml清水中,并加热回流。在加热回流的过程中,加入100ml的1.0M柠檬酸钠(sodium citrate),再加热回流多1小时。让混合物于常温下冷却后再进行超滤,将剩余未反应的柠檬酸钠从反应溶液中去除,直至滤液导电率与清水相同,得到纯化的表面上包覆柠檬酸盐的氧化铁磁性纳米粒子(c-MNPs)。
实施例2结合铜的c-MNPs(Cu-c-MNPs)的制备
制备144ml的0.233M氯化亚铜(CuCl)溶液。向该溶液中加入适量实施例1制得的c-MNPs并使c-MNPs配成浓度为0.4%。将混合物于常温、200rpm转速和氮气气氛下搅拌10分钟。在反应烧瓶的底部放置磁石约15分钟,以将Cu-c-MNPs吸附在反应烧瓶的底部。去除上层液体,加入144ml的0.1M盐酸(HCl)溶液,并常速搅拌约20分钟,重覆3次上述磁化分离过程。
类似地,用清水代替盐酸,用磁化分离过程去除溶液中的盐酸。将得到的Cu-c-MNPs有效地分散于清水中。
实施例3CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs)的制备
将1.74g的十六烷基三甲基铵盐(CTAB)加入到40ml的三氯甲烷(chloroform)溶剂中,制成0.119M十六烷基三甲基铵盐溶液。然后加入20ml含0.8%(重量)Cu-c-MNPs(经实施例2制备)的水溶液,常速下搅伴20分钟。将混合物置于分液漏斗中,收集下层的三氯甲烷有机相。向三氯甲烷有机相中加入过量的无水硫酸钠(anhydrous sodium sulfate),常温下存放24小时,吸收有机相中的水份。
利用高梯度磁选柱将三氯甲烷有机相中剩余未反应的十六烷基三甲基铵盐除去。再将三氯甲烷有机相置于旋转蒸馏器内,提取CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs),呈粉末。
要除去燃料油中的噻吩类化合物,将燃料油与按照本发明上述方法获得的CTAB-Cu-c-MNPs纳米粒子混合,二者的混合比例可以是每升燃料油与5-10gCTAB-Cu-c-MNPs混合。例如,可以将燃料油与CTAB-Cu-c-MNPs在批量反应器中混合,在40-60℃(较佳地在50℃)以100rpm的转速搅拌大约15-25分钟左右。搅拌完成后,燃料油中的含硫化合物包括噻吩类化合物都被吸附到CTAB-Cu-c-MNPs纳米粒子上。如上所述,由于CTAB-Cu-c-MNPs具有对硫有很高亲和力的铜,而且比表面积大,因此噻吩类化合物的吸附率很高,深度脱硫效果很好。此外,CTAB-Cu-c-MNPs中CTAB的表面性能又使得该纳米粒子容易地分散在有机相中,进一步加强对噻吩类化合物的吸附。
CTAB-Cu-c-MNPs纳米粒子吸附了含硫化合物之后,由于其核心含有铁,对其施加高梯度磁场,例如高梯度磁选柱,可以很方便地使吸附了含硫化合物的CTAB-Cu-c-MNPs纳米粒子与燃料油分离,然后分别收集分离开来的CTAB-Cu-c-MNPs和脱硫后的燃料油。脱硫后的燃料油由于绝大部分的含硫化合物已被吸附到CTAB-Cu-c-MNPs纳米粒子,所以燃烧时产生的含硫化合物极低,不会对环境和人们的健康构成影响。
经磁场分离出来的CTAB-Cu-c-MNPs纳米粒子可以用pH值为1-6的酸溶液(例如盐酸和硫酸溶液)加以处理,例如以100rpm转速搅拌一段适当时间,使CTAB-Cu-c-MNPs纳米粒子上的含硫化合物与酸充分反应,除去含硫化合物。借此,使CTAB-Cu-c-MNPs纳米粒子再生。再生后的CTAB-Cu-c-MNPs纳米粒子在外加磁场的作用下,又再次被分离出来,然后用水洗涤多次。清洗后的CTAB-Cu-c-MNPs可以循环再用,这样会进一步降低脱硫成本。
以上描述的是按照本发明的方法制备氧化铁磁性纳米粒子的方法及其制备所得的氧化铁磁性纳米粒子从燃料油中除去含硫化合物的应用。应当明白,本发明制备的氧化铁磁性纳米粒子可应用在其他需要脱硫的场合,例如工业生产脱硫。本发明的纳米粒子的制备方法和脱硫方法都很简单,且便于操作,成本低,特别适合大规模工业化生产。
综合以上所述,本说明书中所述的只是本发明的较佳具体实施例。凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在本发明的权利要求保护范围内。

Claims (18)

1.一种制备氧化铁磁性纳米粒子的方法,其特征在于,所述方法包括如下步骤:
i)将水溶性亚铁盐和水溶性铁盐按摩尔比1:2在碱性和柠檬酸盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs);
ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-c-MNPs);以及
iii)用表面活性剂修饰步骤ii)获得的嗜硫元素-c-MNPs,将嗜硫元素-c-MNPs从水相转移到有机相中;
其中所述嗜硫元素是铜,所述含有嗜硫元素的化合物是亚铜盐,所述表面活性剂是十六烷基三甲基铵盐(CTAB),由此得到CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs)。
2.如权利要求1所述的方法,其特征在于,所述水溶性亚铁盐是氯化亚铁,所述水溶性铁盐是三氯化铁,以及所述柠檬酸盐是柠檬酸钠。
3.如权利要求2所述的方法,其特征在于,所述氯化亚铁的浓度范围是0.04M至1.00M,所述三氯化铁的浓度范围是0.08M至2.00M,以及所述柠檬酸钠的浓度范围是0.20M至1.00M。
4.如权利要求1所述的方法,其特征在于,所述亚铜盐是氯化亚铜。
5.如权利要求4所述的方法,其特征在于,所述氯化亚铜的浓度范围是6×10-3M至0.25M。
6.如权利要求1所述的方法,其特征在于,所述CTAB的浓度范围是0.08M至0.200M。
7.如权利要求1至6中任一项所述的方法,其特征在于,所述氧化铁磁性纳米粒子的平均粒径制成1-1.4μm。
8.一种如权利要求1至7中任一项方法中制备的氧化铁磁性纳米粒子。
9.一种从物质中除去含硫化合物的方法,其特征在于,所述方法包括:使如权利要求1至7中任一项方法中制备的氧化铁磁性纳米粒子与所述含有含硫化合物的物质在适合吸附至少一部分含硫化合物的条件下接触。
10.如权利要求9所述的方法,其特征在于,所述含硫化合物是噻吩类化合物。
11.如权利要求10所述的方法,其特征在于,所述噻吩类化合物包括噻吩、苯并噻吩、二苯并噻吩、4,6-二甲基二苯并噻吩以及在4-和/或6-位上具有一或二个烷基的噻吩类化合物。
12.如权利要求9或10所述的方法,其特征在于,所述方法还包括通过施加梯度磁场将吸附后的所述氧化铁磁性纳米粒子从所述物质分离出来。
13.如权利要求12所述的方法,其特征在于,所述方法还包括将分离出来的所述氧化铁磁性纳米粒子用酸溶液处理,使所述氧化铁磁性纳米粒子再生。
14.如权利要求13所述的方法,其特征在于,所述酸溶液的pH值为1至6。
15.如权利要求13所述的方法,其特征在于,所述方法还包括对所述再生的氧化铁磁性纳米粒子施加磁场,使其分离出来并用水洗涤,回收得到可循环再用的氧化铁磁性纳米粒子。
16.如权利要求9或10所述的方法,其特征在于,所述氧化铁磁性纳米粒子的用量为5至10g/每升含有含硫化合物的物质。
17.如权利要求9或10所述的方法,其特征在于,在100rpm速率和40-60℃下,所述氧化铁磁性纳米粒子与所述含有含硫化合物的物质搅拌15-25分钟。
18.如权利要求9或10所述的方法,其特征在于,所述含有含硫化合物的物质是汽油、柴油、润滑油或其他燃料油。
CN201110351136.3A 2011-11-08 2011-11-08 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法 Active CN103084147B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201110351136.3A CN103084147B (zh) 2011-11-08 2011-11-08 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法
US13/672,298 US9034174B2 (en) 2011-11-08 2012-11-08 Iron oxide magnetic nanoparticle, its preparation and its use in desulfurization
AU2012101651A AU2012101651A4 (en) 2011-11-08 2012-11-08 Iron oxide magnetic nanoparticle, its preparation and its use in desulfurization
HK13107321.0A HK1180633A1 (zh) 2011-11-08 2013-06-24 氧化鐵磁性納米粒子、其製備方法及其用於脫硫的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110351136.3A CN103084147B (zh) 2011-11-08 2011-11-08 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法

Publications (2)

Publication Number Publication Date
CN103084147A CN103084147A (zh) 2013-05-08
CN103084147B true CN103084147B (zh) 2015-02-25

Family

ID=47325010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110351136.3A Active CN103084147B (zh) 2011-11-08 2011-11-08 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法

Country Status (4)

Country Link
US (1) US9034174B2 (zh)
CN (1) CN103084147B (zh)
AU (1) AU2012101651A4 (zh)
HK (1) HK1180633A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157414B (zh) * 2013-03-28 2014-10-01 天津理工大学 一种聚缩水甘油表面接枝的铁磁纳米粒子的制备方法
US20150041399A1 (en) * 2013-08-08 2015-02-12 Duncan Mark Arthur Tennant Ferrous Nanoparticle Oil Extraction
CN103436287B (zh) * 2013-09-23 2015-08-19 南通宝聚颜料有限公司 一种金属氧化物改性纳米氧化铁催化剂进行柴油氧化脱硫的方法
WO2015044446A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Method and system for the recovery of oil, using water that has been treated using magnetic particles
WO2015044444A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Water treatment suited for oil production wells
US10138410B2 (en) 2013-09-30 2018-11-27 Total E&P Danmark A/S Method and system for the enhanced recovery of oil, using water that has been depleted in ions using magnetic particles
US9969943B2 (en) 2013-09-30 2018-05-15 Maersk Olie Og Gas A/S Use of magnetic nanoparticles for depletion of aromatic compounds in oil
CN106537234A (zh) 2014-04-07 2017-03-22 加利福尼亚大学董事会 高度可调节的磁性液晶
CN106040258B (zh) * 2016-05-27 2018-08-10 南京工程学院 一种磁性纳米合金与介孔锆钛复合氧化物核壳型催化材料
US20170353475A1 (en) 2016-06-06 2017-12-07 Glasswall (Ip) Limited Threat intelligence cloud
US11001763B2 (en) 2016-10-06 2021-05-11 H2Szero, Llc Mixed metal oxide sorbent composition and method for removing organosulfur from liquid hydrocarbon streams
CN106732482B (zh) * 2017-02-23 2019-08-06 中国石油大学(北京) 一种靶向锚定剂及其制备方法和应用
CN106824093A (zh) * 2017-02-23 2017-06-13 中国石油大学(北京) 一种用于油品脱硫的磁性吸附剂及其制备方法和应用
US10507452B2 (en) 2017-05-03 2019-12-17 Savannah River Nuclear Solutions, Llc Controlled release of hydrogen from composite nanoparticles
EP3674444B1 (en) 2018-12-27 2023-08-16 Vito NV An electrochemical process for producing magnetic iron oxide nanoparticles
US11307129B2 (en) 2020-03-23 2022-04-19 Savannah River Nuclear Solutions, Llc Automatic gas sorption apparatus and method
CN113134341A (zh) * 2021-04-14 2021-07-20 中国石油大学(北京) 一种磁性核壳结构碳材料及其制备方法和在脱硫上的应用
CN113925061A (zh) * 2021-11-18 2022-01-14 陕西理工大学 一种磁性纳米铁氧体材料的制备方法及其应用
CN117229820B (zh) * 2023-09-22 2024-03-22 山东海嘉石油化工有限公司 一种适用于煤层气羟基氧化铁脱硫剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1560199A (zh) * 2004-03-11 2005-01-05 天津大学 用于深度净化燃料油中硫化物的脱硫吸附剂及其制备方法
KR20090004374A (ko) * 2007-06-29 2009-01-12 주식회사 케이티 산화철계 나노입자의 제조방법 및 그에 따라 제조된산화철계 나노입자
CN101450302A (zh) * 2008-12-17 2009-06-10 中国科学院大连化学物理研究所 一种碳四烯烃脱硫吸附剂及制法和应用
CN102051177A (zh) * 2010-09-30 2011-05-11 济南大学 水溶性荧光磁性纳米微粒及其制备方法
CN102180522A (zh) * 2011-03-28 2011-09-14 陕西宏炬电子科技有限公司 一种窄粒径分布纳米磁性氧化铁的可控制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822317B2 (ja) 1996-04-15 1998-11-11 日鉄鉱業株式会社 抗菌性チタニア及びその製造方法
US6417423B1 (en) 1998-09-15 2002-07-09 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
CN1312046C (zh) 2005-07-07 2007-04-25 华中科技大学 一种超顺磁氧化铁复合纳米颗粒的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1560199A (zh) * 2004-03-11 2005-01-05 天津大学 用于深度净化燃料油中硫化物的脱硫吸附剂及其制备方法
KR20090004374A (ko) * 2007-06-29 2009-01-12 주식회사 케이티 산화철계 나노입자의 제조방법 및 그에 따라 제조된산화철계 나노입자
CN101450302A (zh) * 2008-12-17 2009-06-10 中国科学院大连化学物理研究所 一种碳四烯烃脱硫吸附剂及制法和应用
CN102051177A (zh) * 2010-09-30 2011-05-11 济南大学 水溶性荧光磁性纳米微粒及其制备方法
CN102180522A (zh) * 2011-03-28 2011-09-14 陕西宏炬电子科技有限公司 一种窄粒径分布纳米磁性氧化铁的可控制备方法

Also Published As

Publication number Publication date
US9034174B2 (en) 2015-05-19
CN103084147A (zh) 2013-05-08
AU2012101651A4 (en) 2012-12-13
US20130126394A1 (en) 2013-05-23
HK1180633A1 (zh) 2013-10-25

Similar Documents

Publication Publication Date Title
CN103084147B (zh) 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法
Yang et al. Ultrahigh sorption and reduction of Cr (VI) by two novel core-shell composites combined with Fe3O4 and MoS2
Yang et al. Adsorption and reduction of Cr (VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution
Ma et al. Efficient adsorption of Selenium (IV) from water by hematite modified magnetic nanoparticles
Zhang et al. Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar
Ali New generation adsorbents for water treatment
Wang et al. Biochar-supported starch/chitosan-stabilized nano-iron sulfide composites for the removal of lead ions and nitrogen from aqueous solutions
Shawabkeh et al. Copper and zinc sorption by treated oil shale ash
Li et al. Competitive adsorption of tylosin, sulfamethoxazole and Cu (II) on nano-hydroxyapatitemodified biochar in water
Liu et al. Influence of complexing agent on the removal of Pb (II) from aqueous solutions by modified mesoporous SiO2
Duan et al. Preparation of halloysite nanotubes-encapsulated magnetic microspheres for elemental mercury removal from coal-fired flue gas
Liu et al. Effective removal of Cr (VI) from aqueous solution through adsorption and reduction by magnetic S-doped Fe-Cu-La trimetallic oxides
Pi et al. The effective removal of Congo Red using a bio-nanocluster: Fe3O4 nanoclusters modified bacteria
Cai et al. Simultaneous removal of chromium (VI) and phosphate from water using easily separable magnetite/pyrite nanocomposite
Tripathy et al. L-Cysteine-functionalized mesoporous magnetite nanospheres: synthesis and adsorptive application toward arsenic remediation
Zhang et al. Nitrogen-doped magnetic biochar made with K3 [Fe (C2O4) 3] to adsorb dyes: Experimental approach and density functional theory modeling
Song et al. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: Effects and mechanisms
Yadav et al. Technological advancement in the remediation of heavy metals employing engineered nanoparticles: A step towards cleaner water process
Yang et al. Deep and efficient removal of vanadium from molybdate solution using magnetic γ-Fe2O3 nanoparticles
CN103331161A (zh) 用于柴油脱硫反应的催化剂、制备方法及应用
Ji et al. Morphology control enables [SnS4] 4− clusters and MgFe-LDHs dual active sites for the adsorption of mercury and arsenic ions
Duan et al. Copper (II)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency
Ali et al. Adsorptive desulfurization of model and real fuel via wire-, rod-, and flower-like Fe3O4@ MnO2@ activated carbon made from palm kernel shells as newly designed magnetic nanoadsorbents
Qin et al. Selective removal of Hg2+ from acidic wastewaters using sulfureted Fe2TiO5: Underlying mechanism and its application as a regenerable sorbent for recovering Hg from waste acids of smelters
Chen et al. Dissolved‑selenium removal using magnetic nanoparticles: A state-of-the-art review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1180633

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1180633

Country of ref document: HK