CN103081327A - 具有肖特基二极管的整流器装置 - Google Patents

具有肖特基二极管的整流器装置 Download PDF

Info

Publication number
CN103081327A
CN103081327A CN2011800384519A CN201180038451A CN103081327A CN 103081327 A CN103081327 A CN 103081327A CN 2011800384519 A CN2011800384519 A CN 2011800384519A CN 201180038451 A CN201180038451 A CN 201180038451A CN 103081327 A CN103081327 A CN 103081327A
Authority
CN
China
Prior art keywords
diode
schottky diode
rectifier unit
schottky
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800384519A
Other languages
English (en)
Other versions
CN103081327B (zh
Inventor
A·格拉赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
German Auto Parts Co Ltd Thorne Lattice
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN103081327A publication Critical patent/CN103081327A/zh
Application granted granted Critical
Publication of CN103081327B publication Critical patent/CN103081327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种整流器装置,其具有压入式二极管,所述压入式二极管包含肖特基二极管作为半导体元件。肖特基二极管在二极管损耗随温度增加而升高的工作区域中运行。

Description

具有肖特基二极管的整流器装置
技术领域
本发明涉及一种整流器装置,其具有二极管、尤其是压入式二极管。这种整流器装置尤其用在机动车发电机系统中。
背景技术
在机动车发电机系统中,为了交流电流或者三相电流的整流通常使用由硅制成的二极管。例如,将6个二极管互连成B6整流器电桥。这些二极管通常实施为所谓的压入式二极管。压入式二极管在一侧压入到整流器的冷却体中并且由此与整流器的冷却体在电方面和在热方面牢固地且持久地连接。
在整流器运行期间,在二极管上降落电损耗功率Pel,其由正向损耗或导通损耗PF和反向损耗PR组成并且被转换成热。所述热通过整流器导出至发电机的冷却空气或抽吸空气。因为在发电机转速较低时机动车发电机的冷却功率还相对较低,另一方面电功率输出随着发电机转速增加而快速升高,所以存在一个转速,在所述转速时二极管温度最高(所述转速通常在2500-3500转/分钟的范围内)。所述工作点称作热点。二极管的最大允许阻挡层温度必须至少针对热点中的运行设计。
对于对称的整流器装置而言,例如在B6电桥中,得到平均电正向损耗功率PF,其由导通电流或正向电流IFAV的算术平均与二极管的取决于温度的导通电压UF(T)的积构成:
PF=IFAV·UF(T)    (1)
对于机动车二极管,导通电压UF(T)随着温度而减小。在相关的电流范围中,温度系数TKUF例如是大约-1mV/K。
当替代常规的pn二极管而使用具有低导通电压UF的肖特基二极管时,可以减小正向损耗PF。由于肖特基二极管的导通损耗更小,发动机的效率和输出功率提高。特别有利地,使用所谓的高效二极管(HED),其具有取决于反向电压的反向电流。HED例如是沟道MOS势垒肖特基二极管(TMBS)或沟道结势垒肖特基二极管(TJBS)。例如在DE69428996T2和DE102004053761A1中描述这种二极管。
在传统的pn二极管中反向损耗通常是可忽略的,而在肖特基二极管或HED中由于导通电压较低而在高温度下出现显著的反向损耗。在大致相应于发电机电压的反向电压UR下,平均反向损耗PR适用:
PR=0.5·IR(T)·UR    (2)
在给定的反向电压UR下反向电流IR(T)同样取决于温度。所述反向电流随着温度快速升高。反向电流可以在相关的温度范围中借助于两个常数loo和Ea来表达。在此,loo描述在无穷高的温度下的电流(单位为安培)而EA描述激活能量(单位为开尔文)。适用:
IR ( T ) ≈ Ioo · e - ( Ea T ) - - - ( 3 )
借助所说明的相关性在图1中示出了在IFAV=50A的导通电流和UR=14V的反向电压下HED的平均总损耗功率P(W)关于阻挡层温度Tj的曲线图。在此,选择具有参数loo=4?107A和Ea=9300K的二极管。
在低温度下,反向损耗相对于正向损耗可以忽略。因为反向电压由于负温度系数而随着温度增加而下降,所以系统在热学上是稳定的。在较高温度下,反向损耗PR升高并且最后甚至超过正向损耗PF。随后,总损耗功率P(W)随着温度增加而增大。在图1中,将如下位置绘制成拐点A,从所述位置开始总损耗功率随着温度而增大。拐点A的阻挡层温度以TA表示。在所示示例中TA=200℃。
如果阻挡层温度Tj超过TA处的所述拐点,则存在热学不稳定性的危险,因为反向电流由于随着温度升高的反向电流升高而可以越来越高。这相应于由出现反向电流的反馈效应引起的热漂移。
出于上述原因,包含实现为压入式二极管的肖特基二极管的整流器装置始终在工作区域中运行,所述工作区域位于拐点A以下,即在二极管损耗随温度增加而减小的工作区域中。
发明内容
在具有在权利要求1中说明的特征的整流器装置中,增大了整流器装置的工作区域。这主要通过如下方式来实现:整流器装置不仅在二极管损耗随温度增加而减小的工作区域中运行而且在二极管损耗随温度增加又增大的区域中运行。在此,通过以下还要阐述的设计准则实现:整流器装置也可以在二极管损耗随温度增加又增大的区域中可靠运行。
附图说明
以下参照图2至5更详细地阐述本发明。附图示出:
图2:具有总共六个以B6电桥形式连接的肖特基二极管的整流器装置,
图3:用于阐述压入式二极管的结构的概略图,
图4:用于阐述沟道MOS势垒肖特基二极管的概略图,
图5:用于阐述根据本发明的整流器装置的工作区域的曲线图。
具体实施方式
图2示出具有总共六个以B6电桥形式彼此连接的肖特基二极管D1至D6的整流器装置。所述整流器电桥电路设置用于三相机动车发电机。以U、V、W表示电桥电路的相端子,以B+表示电桥电路的正直流电源。当然具有其他相数量——例如5、6或7个相的整流器装置也是可能的。
在图2中示出的整流器装置的整流器二极管安装在压入式壳体中。整流器二极管尤其可以是压入式二极管,其作为半导体元件包含至少一个肖特基二极管。
图3示出用于阐述常用的压入式二极管100的结构的概略图,其以部分剖切的横截面示出。所述二极管100具有基座102,所述基座102具有基座底部101。台座103与基座102一体连接,在所述台座103上在其方面例如通过焊接(焊料105b)施加有半导体芯片。半导体芯片104在其方面例如又通过焊接(焊料105a)通过头部圆柱106和头部圆锥107与头部引线108连接。优选居中设置的台座103由环绕的壁109和通过壁109和台座103形成的沟槽110包围。从台座103来看,在壁109的另一边具有连接到滚花区域111a上的挤压区域111,在压入整流器二极管100时力可以垂直于半导体芯片104的平面作用到所述滚花区域上。头部圆锥107、头部圆柱106、半导体芯片104和台座103由封装113包围,所述封装113由保护套筒112限定。台座103和头部圆柱106朝着半导体芯片在边缘上具有倒棱。所述倒棱例如可以以焊料填充。此外,在芯片的边缘上施加有钝化部114,所述钝化部114将芯片和芯片边缘上的焊料封闭。此外,台座103具有环绕的肩部115,其具有斜棱120,所述斜棱120伸入到封装113中。
对于在图3中示出的整流器二极管100,半导体芯片104固定在提高的台座103上,所述台座103由壁109包围。如此形成的沟槽110的长度在此是壁109的高度的两倍。优点在于,结构对于压入整流器二极管时的变形是特别牢固的。台座和壁/沟槽的组合确保了与不具有显著构造的壁109的结构相比在芯片支承面上的弯曲应力更均匀并且更低。另一优点是芯片居中不重要。优选地,壁比支座更低,尤其是在制造二极管时和在钝化时不妨碍到达芯片。
根据图3,整流器二极管100在其基座102上、例如在台座103的周边上具有肩部115。所述肩部用于建立封装与基座的形状配合。一方面,得到机械稳定性,台座在一定程度上与封装113钩连。另一方面,例如实施为浇注树脂材料的封装在制造时在干燥的情况下将二极管的头部与半导体芯片一起压到基座上。这样,在总体上得到稳定的结构。肩部115在此具有斜棱120,由此避免出现高机械应力并且避免在外部机械负载以及热负载的情况下封装中形成裂纹的危险,其在肩部的逐渐尖细的端部处产生。
当然,也可以使用压入式二极管的其他变型方案。
图4示出用于阐述沟道MOS势垒肖特基二极管(TMBS二极管)的概略图,其优选使用在根据本发明的整流器装置中。
这样的TMBS二极管由一个n+衬底1、一个n外延层2、至少两个在n外延层中通过蚀刻实现的沟槽(沟道)6、在芯片的前侧4上作为阳极电极和在芯片的背侧5上作为阴极电极的金属层以及沟槽6与前侧4上的金属层之间的氧化层7构成。
在电学上,TMBS二极管是MOS结构(金属层、氧化层7和n外延层2)和肖特基二极管(作为阳极的金属层和作为阴极的n外延层2之间的肖特基势垒)的组合。
在导通方向上,电流流经沟槽6之间的凸台区域。沟槽6本身不用于电流流动。
TMBS二极管的优点在于反向电流的减小。在反向上,不仅在MOS结构中而且在肖特基二极管中形成空间电荷区。空间电荷区随着升高的电压而扩展并且在小于TMBS的击穿电压的电压下在相邻的沟槽6之间的区域的中部相遇。由此屏蔽导致高反向电流的肖特基效应并且减小反向电流。所述屏蔽效应强烈取决于结构参数Dt(沟槽的深度)、Wm(沟槽之间的距离)、Wt(沟槽的宽度)以及To(氧化层的厚度)。
在具有二极管、尤其是压入式二极管的整流器中,整流器的例如在发电机的热点中运行时出现的热阻在整个运行时段上稳定地保持在一个确定的值以下,因为稳健的压入接触的热学特性实际上不发生变化。
通过反向电流IR(T)产生的损耗功率作为热通过整流器导出,即每个二极管的电损耗功率Pel必须作为热功率Ptherm通过整流器导出至周围空气。Ptherm在此相应于阻挡层温度Tj和周围温度或冷却温度Ta之间的温度差dT与阻挡层和周围空气之间的热阻Rth的商。热阻随着发电机转速而改变并且因此在此表示在热点中运行时出现的热阻。二极管在热方面是稳定的,只要适用:
dPel dT ≤ dPtherm dT - - - ( 4 )
因为二极管的正向损耗PF具有负温度系数,所以其在等式(4)中可以忽略。借助等式(3)中的反向电流相关性,在适用如下等式时,在高温下在根据等式(4)没有热漂移的情况下能够实现可靠的运行:
1 2 · UR · Rth · Ea T 2 · IR ( T ) ≤ 1 - - - ( 5 )
图5示出用于阐述根据本发明的整流器装置的工作区域的曲线图。在此如在图1中那样沿着横坐标绘制了温度Tj(℃)并且沿着横坐标绘制了总损耗功率P(W)。在所述实施例中,对于整流器的二极管,对于反向电压UR=14V和导通电流IFAV=50A示出了二极管的阻挡层与5卡尔文/瓦特的冷空气之间的热阻Rth。二极管可以远远在传统的阻挡层温度边界以上运行。在所示示例中,200℃的最大阻挡层温度TA扩宽直至近似250℃的温度TB。这意味着,肖特基二极管可以运行的工作区域也延伸至二极管损耗随着温度增加又升高的温度范围。
在发电机的热点中运行时,半导体的阻挡层与周围空气之间的热阻不超过一个预给定的值。例如,所述热阻小于7K/W,优选小于5K/W,并且特别优选小于3K/W。
二极管的最大允许阻挡层温度(如以上已经介绍的那样)根据如下公式确定:
1 2 · UR · Rth · Ea T 2 · IR ( T ) ≤ 1
优选使用沟道MOS势垒肖特基二极管作为肖特基二极管(如以上已经介绍的那样),其沟槽深度是1μm至3μm并且其沟槽与沟槽的距离是0.5μm至1μm。
替选地,使用沟道结势垒肖特基二极管(TJBS二极管)作为肖特基二极管,其沟槽深度是1μm至3μm并且其沟槽与沟槽的距离是0.5μm至1μm。
优选地,肖特基二极管是具有0.65eV至0.75eV的肖特基势垒的二极管。

Claims (11)

1.整流器装置,其具有二极管、尤其是压入式二极管,所述二极管包含肖特基二极管作为半导体元件,其特征在于,所述肖特基二极管(D1-D6)在二极管损耗随温度增加而升高的工作区域中运行。
2.根据权利要求1所述的整流器装置,其特征在于,在发电机的热点中运行时,所述半导体元件的半导体的阻挡层与周围空气之间的热阻不超过一个预给定的值。
3.根据权利要求2所述的整流器装置,其特征在于,在所述发电机的热点中运行时,所述半导体的阻挡层与周围空气之间的热阻小于7K/W。
4.根据权利要求2所述的整流器装置,其特征在于,在所述发电机的热点中运行时,所述半导体的阻挡层与周围空气之间的热阻小于5K/W。
5.根据权利要求2所述的整流器装置,其特征在于,在所述发电机的热点中运行时,所述半导体的阻挡层与周围空气之间的热阻小于3K/W。
6.根据以上权利要求中任一项所述的整流器装置,其特征在于,二极管的最大允许的阻挡层温度根据如下公式来确定:
1 2 · UR · Rth · Ea T 2 · IR ( T ) ≤ 1 .
7.根据以上权利要求中任一项所述的发电机,其特征在于,沟道MOS势垒肖特基二极管(TMBS)用作肖特基二极管。
8.根据权利要求7所述的整流器装置,其特征在于,沟道MOS势垒肖特基二极管(TMBS)用作肖特基二极管,其中,沟槽深度是1-3μm并且沟槽与沟槽的距离是0.5-1μm。
9.根据权利要求1至6中任一项所述的整流器装置,其特征在于,沟槽结势垒肖特基二极管(TJBS)用作肖特基二极管。
10.根据权利要求9所述的整流器装置,其特征在于,沟道结势垒肖特基二极管(TJBS)用作肖特基二极管,其中,沟槽深度是1-3μm并且沟槽与沟槽的距离是0.5-1μm。
11.根据以上权利要求中任一项所述的整流器装置,其特征在于,所述肖特基二极管是具有0.65eV至0.75eV的肖特基势垒的二极管。
CN201180038451.9A 2010-08-04 2011-06-07 具有肖特基二极管的整流器装置 Active CN103081327B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010038879A DE102010038879A1 (de) 2010-08-04 2010-08-04 Gleichrichteranordnung, welche Einpressdioden aufweist
DE102010038879.3 2010-08-04
PCT/EP2011/059342 WO2012016733A1 (de) 2010-08-04 2011-06-07 Gleichrichteranordnung, welche schottkydioden aufweist

Publications (2)

Publication Number Publication Date
CN103081327A true CN103081327A (zh) 2013-05-01
CN103081327B CN103081327B (zh) 2016-09-14

Family

ID=44209845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180038451.9A Active CN103081327B (zh) 2010-08-04 2011-06-07 具有肖特基二极管的整流器装置

Country Status (8)

Country Link
US (1) US20140001927A2 (zh)
EP (1) EP2601735B1 (zh)
JP (1) JP5693721B2 (zh)
KR (1) KR101862424B1 (zh)
CN (1) CN103081327B (zh)
DE (1) DE102010038879A1 (zh)
TW (1) TWI659540B (zh)
WO (1) WO2012016733A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289220A (zh) * 2019-07-07 2019-09-27 陕西航空电气有限责任公司 一种结温250℃的碳化硅二极管芯片绝缘保护方法
CN110728025A (zh) * 2019-09-16 2020-01-24 中国振华集团永光电子有限公司(国营第八七三厂) 一种肖特基模块封装二极管热阻计算方法
CN111108607A (zh) * 2017-07-27 2020-05-05 激光系统 半导体装置
CN111693840A (zh) * 2020-06-18 2020-09-22 山东宝乘电子有限公司 一种利用反向特性测试肖特基二极管热阻的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012214056B4 (de) * 2012-08-08 2020-10-29 Robert Bosch Gmbh Hoch temperaturwechselfeste Einpressdiode
CN106057913A (zh) * 2016-06-30 2016-10-26 南通康比电子有限公司 一种新型沟槽式势垒肖特基二极管及其生产工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677796A (zh) * 2004-03-29 2005-10-05 株式会社电装 用于车辆的ac发电机
CN101065848A (zh) * 2004-11-24 2007-10-31 罗伯特·博世有限公司 半导体装置和整流装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
DE19549202B4 (de) * 1995-12-30 2006-05-04 Robert Bosch Gmbh Gleichrichterdiode
DE10005183A1 (de) * 2000-02-05 2001-08-09 Bosch Gmbh Robert Gleichrichteranordnung
DE102004053761A1 (de) * 2004-11-08 2006-05-18 Robert Bosch Gmbh Halbleitereinrichtung und Verfahren für deren Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677796A (zh) * 2004-03-29 2005-10-05 株式会社电装 用于车辆的ac发电机
CN101065848A (zh) * 2004-11-24 2007-10-31 罗伯特·博世有限公司 半导体装置和整流装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108607A (zh) * 2017-07-27 2020-05-05 激光系统 半导体装置
CN111108607B (zh) * 2017-07-27 2023-08-22 激光系统 半导体装置
CN110289220A (zh) * 2019-07-07 2019-09-27 陕西航空电气有限责任公司 一种结温250℃的碳化硅二极管芯片绝缘保护方法
CN110728025A (zh) * 2019-09-16 2020-01-24 中国振华集团永光电子有限公司(国营第八七三厂) 一种肖特基模块封装二极管热阻计算方法
CN111693840A (zh) * 2020-06-18 2020-09-22 山东宝乘电子有限公司 一种利用反向特性测试肖特基二极管热阻的方法

Also Published As

Publication number Publication date
CN103081327B (zh) 2016-09-14
TWI659540B (zh) 2019-05-11
JP2013539208A (ja) 2013-10-17
US20130207525A1 (en) 2013-08-15
KR101862424B1 (ko) 2018-05-29
US20140001927A2 (en) 2014-01-02
DE102010038879A1 (de) 2012-02-09
KR20130045904A (ko) 2013-05-06
WO2012016733A1 (de) 2012-02-09
TW201230345A (en) 2012-07-16
JP5693721B2 (ja) 2015-04-01
EP2601735B1 (de) 2018-04-04
EP2601735A1 (de) 2013-06-12

Similar Documents

Publication Publication Date Title
CN103081327A (zh) 具有肖特基二极管的整流器装置
US8969995B2 (en) Semiconductor device and rectifier system
US10957691B2 (en) Semiconductor device, semiconductor device manufacturing method, and power conversion apparatus
CN104576710B (zh) 半导体装置
TW201413981A (zh) 閘控二極體、電池充電組合及發電機組合
US10355084B1 (en) Semiconductor device, method of manufacturing the same and power conversion device
WO2014148400A1 (ja) 半導体装置
CN101803029B (zh) 半导体装置及其制造方法
CN102598264B (zh) 用于电子电路的保护元件
EP2763302A1 (en) Rectifier of alternating-current generator for vehicle
TWI528567B (zh) A power semiconductor device, a rectifying device and a power supply device
CN213752685U (zh) 一种散热型碳化硅二极管
TW202335308A (zh) 寬能隙半導體元件與其製造方法
JP2011234614A (ja) 整流器ブリッジ回路
CN114566552B (zh) 一种降低反向漏电流的肖特基二极管
CN107689352A (zh) 一种高散热性的smp贴片式二极管
CN210325780U (zh) 一种二极管用方钉头引线
KR101621150B1 (ko) 전력 정류 디바이스
TW202015242A (zh) 車用整流裝置、整流器、發電裝置以及動力系統
CN114497236A (zh) 一种大功率散热型碳化硅肖特基二极管
KR20200041770A (ko) 차량용 정류기 장치, 정류기, 발전기 장치 및 동력 전달 장치
JPH04130454U (ja) 高速ダイオード

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180211

Address after: Stuttgart, Germany

Co-patentee after: The German auto parts Co. Ltd. Thorne lattice

Patentee after: Robert Bosch Ltd.

Address before: Stuttgart, Germany

Patentee before: Robert Bosch Ltd.