CN103075641A - 非接触式管道磁检测方法 - Google Patents

非接触式管道磁检测方法 Download PDF

Info

Publication number
CN103075641A
CN103075641A CN2013100206940A CN201310020694A CN103075641A CN 103075641 A CN103075641 A CN 103075641A CN 2013100206940 A CN2013100206940 A CN 2013100206940A CN 201310020694 A CN201310020694 A CN 201310020694A CN 103075641 A CN103075641 A CN 103075641A
Authority
CN
China
Prior art keywords
pipeline
magnetic
path
mark
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100206940A
Other languages
English (en)
Other versions
CN103075641B (zh
Inventor
侯曲波
胡祥云
廖柯熹
余杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUAN HUIZHENG PIPELINE TECHNOLOGY Co Ltd
Original Assignee
SICHUAN HUIZHENG PIPELINE TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN HUIZHENG PIPELINE TECHNOLOGY Co Ltd filed Critical SICHUAN HUIZHENG PIPELINE TECHNOLOGY Co Ltd
Priority to CN201310020694.0A priority Critical patent/CN103075641B/zh
Publication of CN103075641A publication Critical patent/CN103075641A/zh
Application granted granted Critical
Publication of CN103075641B publication Critical patent/CN103075641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种非接触式管道磁检测方法,石油天然气埋地金属管道的损伤检测技术。本发明的非接触式管道磁检测方法,包括以下步骤:步骤1、初步分析,确定工期步骤2、地面清理,标记路线步骤3、管道检测步骤4、检测数据的分析处理步骤5、数据结果的处理。本发明的非接触式管道磁检测方法,克服了现有接触式探测管道局部缺陷的方法中种种弊端,如需盲目开挖,对管道进行清理消磁,最后还要对管道进行均匀磁化的繁琐过程;利用地球磁场对管道进行均匀磁化,不需对被检工件的表面进行清理或其他预处理,即可对工件表面的检测在线检测,大大简化了检测过程,使速度快,效率高,且探测深度大大加深。

Description

非接触式管道磁检测方法
技术领域
本发明涉及石油天然气埋地金属管道的损伤检测技术,尤其是一种利用非接触式的磁力层析技术对管道非接触的损伤检测方法。
背景技术
目前,接触式探测管道局部缺陷的方法是利用专业探测设备——内检探伤仪,记录预先被磁化的管道的磁场应力缺陷。该方法包括了清洗设备和探伤仪,冲洗、清洁管道内部并且保障剖面的完全通畅,在磁化管壁的同时让探伤仪通过,根据分散和饱和的磁场记录并存储磁场异常,判读所获得的信息以便判定被发现的异常的位置和特征,根据该方法确定管道所有局部缺陷的位置和参数并且推测缺陷产生的原因。该方法主要通过内部检测,而使用内检测设备价格昂贵,过程繁琐,而且要求靠近被检测物体的表面,会要求预先开挖管道,由于管道条件不具备大量盲目开挖的可能因而限制了其大规模的推广。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种非接触式管道磁检测方法,克服了现有接触式探测管道局部缺陷的方法中种种弊端,如需盲目开挖,对管道进行清理消磁,最后还要对管道进行均匀磁化的繁琐过程;利用地球磁场对管道进行均匀磁化,不需对被检工件的表面进行清理或其他预处理,即可对工件表面的检测在线检测,大大简化了检测过程,使速度快效率高,且探测深度大大加深,同时灵敏度也大大提高,漏检率大大降低,检测费用大大降低,操作风险低,易于现场实施。
本发明采用的技术方案如下:
本发明的非接触式管道磁检测方法,包括以下步骤:
步骤1、初步分析,确定工期:查看分析待测区域内的管道设计、管道运行以及操作文件,根据管道的特点,初步判断可能发生管道缺陷的位置,整理出可能需要计划修复和紧急修复的管道线路段,并确定检测修复的完成周期;
步骤2、地面清理,标记路线:对待测管道的路径进行目测,并将管道轴线两旁的灌木和植被进行清理,确保管道的轴线两旁一定范围内无灌木,并记录管道周围的地形与建筑物,通过管道路径搜索器探测管道路径,并在地面上标记管道的轴线,再利用GPS定位系统确定路径控制点或者临时参考标记位置、以及检测零点,每间隔一定距离处以及路径转角处作地位桩,并细化工程中各路径段的具体工作量和技术情况;
步骤3、管道检测:操作员采用无接触式扫描磁力计,沿着标注的管道轴线上移动,扫描步速小于等于0.25米(也即每步的步伐小于等于0.25米,根据具体的埋地深度和管道直径而决定),速度小于等于2m/s(保证磁场参数自动记录的可靠性),磁力计自动感应管道上的磁场应力值,并输入磁力计的存储器中保存;
步骤4、检测数据的分析处理:将管道路径上的磁场应力值,结合异常区沿管道轴线方向及背景“静区”中磁场强度分布的密度的关系,确定各个检测点的综合指数(其中综合指数值主要是由检测到的磁场超出背景值的程度以及磁异常处的磁场的梯度和磁异常的长度而决定,并综合此处管道的设计受压能力与实际的压力以及预计使用时间和实际的已使用时间共同决定),根据该综合指数确定磁异常的管道部分坐标,并估计该坐标处管道的缺陷危险等级,以及管道总体应力情况对管道技术情况分类;
步骤5、数据结果的处理:在管道路径上标记需挖掘校验坑的位置并进行挖掘,在校验坑内运用传统方法进行附加的接触式管道无损检测,根据校验坑的实际情况与综合指数和磁异常等级进行比较,对危险等级和诊断结果做最后的修改和确定,最后提交最后诊断检测结果。
由于采用了上述方法,不需要专门的磁化设备,而是利用地磁场这一天然磁场源对工件进行磁化;不需要对被检工件的表面进行清理或其他预处理,对工件表面的检测可在线进行;更重要的是需要盲目的开挖。它的物理基础是铁磁性工件在运行时,受工作载荷和地球磁场的共同作用,在应力和变形集中区域内会发生具有磁致伸缩性质的磁畴组织定向和不可逆的重新取向,而且这种磁状态的不可逆变化在工作载荷消除后不仅会保留,还与最大作用应力有关系,使铁磁性工件在受到应力作用时,在应力集中处有漏磁场的切向分量会出现最大值,同时法向分量改变符号且过零值点的现象,正是根据这一现象可靠地探测出受力金属部件上应力集中部位,实现对金属部件的早期诊断。本发明相对于传统检测方法本发明检测费用大大降低,防护也没有那么严格,探测深度却大大加深,同时灵敏度也能大大提高,漏检率也大大降低。
本发明的非接触式管道磁检测方法,步骤2中,确保管道的轴线两旁1米的范围内无灌木,在每间隔50米处以及路径转角处作地位桩;步骤3中,操作员沿着标注的管道轴线上移动,允许磁力计与管道间之间,在水平面上可偏离管道轴线1.5—3倍管径的距离,管道埋深上可偏离管道轴线15倍管径的距离。
由于采用了上述方法,为避免对磁力计检测过程中的影响,使其检测精度更高,因此需要控制管道的轴线两旁1米的范围内无灌木,同时,为了使管道路径上各个检测点的值更能体现出管道的真实情况,因此需要在每间隔50米处以及路径转角处作地位桩,避免漏检;本发明中,由于检测过程中由于地理环境等原因的影响,在管道正上方是无法对其进行检测,因此需要控制其允许的偏差在规定值内,在水平面上可偏离管道轴线1.5—3倍管径的距离,从而可在预测范围内相对于管道轴线中心偏移,同时也需要在管道埋深控制器偏差,从而控制地面至管道之间的距离,使得管道埋深上可偏离管道轴线15倍管径的距离,保证其检测的精确度。
本发明的非接触式管道磁检测方法,步骤4中,沿着管道纵向坐标路径的地面建筑,需依次加以标注,且每个标注点与实际坐标之间的误差≤±1.5m。
由于采用了上述方法,需要在步骤4中确定磁异常的管道部分坐标的同时,标注处纵向坐标路径的地面建筑,而后续的开挖做好准备工作,可预设开挖位置,避免实际开挖时遇地面建筑而无法实施工程,需要严格控制标注点与实际坐标之间的误差不大于±1.5m,避免实际挖掘时不能挖掘出管道的磁异常点,保证其挖掘的精确性。
本发明的非接触式管道磁检测方法,步骤5中,开挖管道基础数据提取及校验坑5个,利用超声波探伤仪扫描仪和超声波厚度计量器对管道进行附加探伤检验测试,以修正暴露的异常危险程度并计算管道的适用性。
由于采用了上述方法,如果检测暴露了危险腐蚀缺陷(大于30%壁厚损失)特殊量化参数的缺失,应选择存在其它缺陷类型(迭片,裂缝,弯曲,管道出厂缺陷,焊接接头缺陷)的其它点定义校验结果,来确定本发明的检测技术的效率,附加探伤检验测试应在不少于3个校验坑中完成,其中两个校验坑在暴露异常的区域,一个在无异常(无缺陷)区域,确认该检测项目的吻合性,使通过本发明的检测方法更加精准。其中校验坑中校验的异常危险程度(管道缺陷部分)“金属损失”的定义:“不允许的”(试验性的-大于50%管道壁厚的金属损失);“可允许的”(20%-50%管道壁厚金属损失);“可忽略的”(少于20%管道壁厚金属损失)。
本发明的非接触式管道磁检测方法,步骤3的磁力计移动过程中,需使用至少两个三分量传感器/单分量磁感应矢量传感器在定点位置测量直角坐标中的磁场矢量,形成磁场梯度的张量;步骤4中,通过模型转换分析获得的信息,根据分析结果确定背景值以及同背景值的偏差值,根据偏差值判定金属管道缺陷的存在和缺陷的位置,并且形成磁力图,在磁力图中标注缺陷的位置。
由于采用了上述方法,通过记录管道磁场“应力”(指磁力线分布状态)的各种变化来揭示具有金属缺陷部位的位置,将管道的异常状态与在机械载荷或结构变化的影响下产生的“磁应力”的变化联系起来(结构变化指内部或外部的腐蚀、机械损伤、管体变形、松弛、 地基崩塌载荷等)。在每个指定点记录磁场异常值形成的数值,为下一步与非连续段范围内的其他数值进行对比,从而选择出偏离了磁场背景值的应力变形缺陷,与之前的固定值对比后,选择出磁场集中值,根据其最大水平(应力变形缺陷),在分析信息结果的基础上确定金属缺陷的位置,并标注于磁力图上,便于进行挖掘处理。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、    本发明的非接触式管道磁检测方法,克服了现有接触式探测管道局部缺陷的方法中种种弊端,如需盲目开挖,对管道进行清理消磁,最后还要对管道进行均匀磁化的繁琐过程;
2、    本发明的非接触式管道磁检测方法,利用地球磁场对管道进行均匀磁化,不需对被检工件的表面进行清理或其他预处理,即可对工件表面的检测在线检测,大大简化了检测过程,使速度快效率高,且探测深度大大加深;
3、    本发明的非接触式管道磁检测方法,灵敏度也大大提高,漏检率大大降低,检测费用大大降低,操作风险低,易于现场实施。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是管径和埋藏深度与扫描步速的关系图;
图2是具体实施案例时危险等级记录表;
图3是具体实施案例时异常分布密度示意图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明的非接触式管道磁检测方法,包括以下步骤:
步骤1、初步分析,确定工期:查看分析待测区域内的管道设计、管道运行以及操作文件,根据管道的特点,初步判断可能发生管道缺陷的位置,整理出可能需要计划修复和紧急修复的管道线路段,并确定检测修复的完成周期;
步骤2、地面清理,标记路线:对待测管道的路径进行目测,并将管道轴线两旁的灌木和植被进行清理,确保管道的轴线两旁1米范围内无灌木,并记录管道周围的地形与建筑物,通过管道路径搜索器探测管道路径,并在地面上标记管道的轴线,再利用GPS定位系统确定路径控制点或者临时参考标记位置、以及检测零点,每间隔50米处距离处以及路径转角处作地位桩,并细化工程中各路径段的具体工作量和技术情况;
步骤3、管道检测:操作员采用无接触式扫描磁力计,沿着标注的管道轴线上移动,速度小于等于2m/s,磁力计自动感应管道上的磁场应力值,并输入磁力计的存储器中保存;在沿着标注的管道轴线上移动的过程中,允许磁力计与管道间之间,在水平面上可偏离管道轴线1.5—3倍管径的距离,管道埋深上可偏离管道轴线15倍管径的距离;磁力计移动过程中,需使用至少两个三分量传感器/单分量磁感应矢量传感器在定点位置测量直角坐标中的磁场矢量,形成磁场梯度的张量。
步骤4、检测数据的分析处理:将管道路径上的磁场应力值,结合异常区沿管道轴线方向及背景“静区”中磁场强度分布的密度的关系,确定各个检测点的综合指数,根据该综合指数确定磁异常的管道部分坐标,沿着管道纵向坐标路径的地面建筑,需依次加以标注,且每个标注点与实际坐标之间的误差≤±1.5m,并估计该坐标处管道的缺陷危险等级,以及管道总体应力情况对管道技术情况分类;根据步骤3中形成磁场梯度的张量,通过模型转换分析获得的信息,根据分析结果确定背景值以及同背景值的偏差值,根据偏差值判定金属管道缺陷的存在和缺陷的位置,并且形成磁力图,在磁力图中标注缺陷的位置。
使本发明通过记录管道磁场“应力”(指磁力线分布状态)的各种变化来揭示具有金属缺陷部位的位置,将管道的异常状态与在机械载荷或结构变化的影响下产生的“磁应力”的变化联系起来(结构变化指内部或外部的腐蚀、机械损伤、管体变形、松弛、 地基崩塌载荷等)。在每个指定点记录磁场异常值形成的数值,为下一步与非连续段范围内的其他数值进行对比,从而选择出偏离了磁场背景值的应力变形缺陷,与之前的固定值对比后,选择出磁场集中值,根据其最大水平(应力变形缺陷),在分析信息结果的基础上确定金属缺陷的位置,并标注于磁力图上,便于进行挖掘处理。
步骤5、数据结果的处理:在管道路径上标记需挖掘校验坑的位置并进行挖掘,开挖管道基础数据提取及校验坑5个,利用超声波探伤仪扫描仪和超声波厚度计量器对管道进行附加探伤检验测试,以修正暴露的异常危险程度并计算管道的适用性,在校验坑内运用传统方法进行附加的管道无损检测,最后提交最后诊断检测结果。
具体地,本发明还通过实验对该发明的效果进行验证,选取一段长为1.895KM的输油管道进行了实地的管道的检测:
步骤1、首先对该段被检测管道的设计,运行,操作文件进行了分析。该段管道的总长度为1.895km,运行的时间为1995-2013年,其中管径为426mm,管道壁厚为7mm,焊缝的类型为螺旋焊缝等参数逐一了解,定下检测周期为十天。
步骤2、在第一到第三天,对所要检测的管道的路径进行目测,并将管道管径周围的灌木和植被进行了彻底的清理,保证管道的轴线两旁0.5米的范围内无灌木,记录了管道周围的地形与建筑物,标记了管道轴线,并利用GPS定位系统确定了路径控制点或者临时参考标记位置,以及检测零点,在每个50米的距离处都打好了地位桩,特别是在路径转角处,并细化工程中各路径段的具体的工作量和技术情况。
步骤3、第四天进行检测,根据管径和埋藏深度一般在3-5米的情况附图1,检测人员带着无接触式磁力计沿标注的轴线,以小于2m/s的速度前进(保证磁场参数自动记录的可靠性)。
步骤4、第五与第六天,对数据进行处理。将前一天采集的数据进行处理,通过确定综合指数(将管道路径上的磁场应力值,结合异常区沿管道轴线方向及背景“静区”中磁场强度分布的密度的关系,确定各个检测点的综合指数,其中综合指数值主要是由检测到的磁场超出背景值的程度以及磁异常处的磁场的梯度和磁异常的长度而决定,并综合此处管道的设计受压能力与实际的压力以及预计使用时间和实际的已使用时间共同决定,该值可体现管道等级与磁场强度之间的关系,具体数值的获取,技术人员可根据管径的大小以及埋地的深度和开挖校验的情况,自行设定各等级的综合指数的边界值而确定危险等级)的方法对所得到的数据进行处理,得到“检测到的异常记录”表格(件附图2),该记录包含了磁异常边界的精确位置,检测管道部分的长度,以及综合指数(危险等级)等等。其中危险等级为一级的异常是非常危险的,需要优先修理,危险等级为二级的异常是比较危险的,可按计划进行修理。由表中可知其中44与104号的危险等级为一级,需要紧急的开挖进行进一步检测和维护修理。
步骤5、对所有的管道做危险管道的异常分布图(见附图3),随后四天我们对危险等级为一级的管道进行了开挖和进一步用传统的接触式的检测方法检测并最终给出了确切的维修建议,接着对危险等级为二级的也进行了开挖和进一步的检测和确切的维护建议。
本发明的非接触式管道磁检测方法,克服了现有接触式探测管道局部缺陷的方法中种种弊端,如需盲目开挖,对管道进行清理消磁,最后还要对管道进行均匀磁化的繁琐过程;利用地球磁场对管道进行均匀磁化,不需对被检工件的表面进行清理或其他预处理,即可对工件表面的检测在线检测,大大简化了检测过程,使速度快效率高,且探测深度大大加深;灵敏度也大大提高,漏检率大大降低,检测费用大大降低,操作风险低,易于现场实施。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (5)

1.非接触式管道磁检测方法,其特征在于:它包括以下步骤:
步骤1、初步分析,确定工期:查看分析待测区域内的管道设计、管道运行以及操作文件,根据管道的特点,初步判断可能发生管道缺陷的位置,整理出可能需要计划修复和紧急修复的管道线路段,并确定检测修复的完成周期;
步骤2、地面清理,标记路线:对待测管道的路径进行目测,并将管道轴线两旁的灌木和植被进行清理,确保管道的轴线两旁一定范围内无灌木,并记录管道周围的地形与建筑物,通过管道路径搜索器探测管道路径,并在地面上标记管道的轴线,再利用GPS定位系统确定路径控制点或者临时参考标记位置、以及检测零点,每间隔一定距离处以及路径转角处作地位桩,并细化工程中各路径段的具体工作量和技术情况;
步骤3、管道检测:操作员采用无接触式扫描磁力计,沿着标注的管道轴线上移动,速度小于等于2m/s,磁力计自动感应管道上的磁场应力值,并输入磁力计的存储器中保存;
步骤4、检测数据的分析处理:将管道路径上的磁场应力值,结合异常区沿管道轴线方向及背景“静区”中磁场强度分布的密度的关系,确定各个检测点的综合指数,根据该综合指数确定磁异常的管道部分坐标,并估计该坐标处管道的缺陷危险等级,以及管道总体应力情况对管道技术情况分类;
步骤5、数据结果的处理:在管道路径上标记需挖掘校验坑的位置并进行挖掘,在校验坑内运用传统方法进行附加的管道接触式无损检测,根据校验坑的实际情况与综合指数和磁异常等级进行比较,对危险等级和诊断结果做最后的修改,最后提交最后诊断检测结果。
2.如权利要求1所述的非接触式管道磁检测方法,其特征在于:步骤2中,确保管道的轴线两旁1米的范围内无灌木,在每间隔50米处以及路径转角处作地位桩;步骤3中,操作员沿着标注的管道轴线上移动,允许磁力计与管道间之间,在水平面上可偏离管道轴线1.5—3倍管径的距离,管道埋深上可偏离管道轴线15倍管径左右的距离。
3.如权利要求1所述的非接触式管道磁检测方法,其特征在于:步骤4中,沿着管道纵向坐标路径的地面建筑,需依次加以标注,且每个标注点与实际坐标之间的误差≤±1.5m。
4.如权利要求1所述的非接触式管道磁检测方法,其特征在于:步骤5中,开挖管道基础数据提取及校验坑5个,利用超声波探伤仪扫描仪和超声波厚度计量器对管道进行附加探伤检验测试,以修正暴露的异常危险程度并计算管道的适用性。
5.权利要求1所述的非接触式管道磁检测方法,其特征在于:步骤3的磁力计移动过程中,需使用至少两个三分量传感器/单分量磁感应矢量传感器在定点位置测量直角坐标中的磁场矢量,形成磁场梯度的张量,步骤4中,通过模型转换分析获得的信息,根据分析结果确定背景值以及同背景值的偏差值,根据偏差值判定金属管道缺陷的存在和缺陷的位置,并且形成磁力图,在磁力图中标注缺陷的位置。
CN201310020694.0A 2013-01-21 2013-01-21 非接触式管道磁检测方法 Active CN103075641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310020694.0A CN103075641B (zh) 2013-01-21 2013-01-21 非接触式管道磁检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310020694.0A CN103075641B (zh) 2013-01-21 2013-01-21 非接触式管道磁检测方法

Publications (2)

Publication Number Publication Date
CN103075641A true CN103075641A (zh) 2013-05-01
CN103075641B CN103075641B (zh) 2014-07-16

Family

ID=48152276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310020694.0A Active CN103075641B (zh) 2013-01-21 2013-01-21 非接触式管道磁检测方法

Country Status (1)

Country Link
CN (1) CN103075641B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499829A (zh) * 2013-10-16 2014-01-08 哈尔滨工业大学 一种具有gps定位功能的非接触式管道缺陷检测装置及检测方法
CN104122323A (zh) * 2014-07-23 2014-10-29 四川汇正管道技术有限公司 非磁化管道内检测方法
CN104297336A (zh) * 2014-10-22 2015-01-21 中国地质大学(武汉) 一种基于埋地钢制管道磁异常提取及解释方法
CN105467000A (zh) * 2015-12-21 2016-04-06 中国石油大学(北京) 埋地管道管体缺陷非开挖检测方法及装置
CN106970143A (zh) * 2017-04-20 2017-07-21 武汉地大华睿地学技术有限公司 一种非接触式双源磁场综合检测金属管道缺陷的方法
CN107977513A (zh) * 2017-11-30 2018-05-01 北京石油化工学院 一种基于路径搜索的天然气管网内天然气动态流动时的温度预测方法
CN109521084A (zh) * 2018-11-22 2019-03-26 大唐东北电力试验研究院有限公司 一种埋地管道弱磁检测评价方法
CN109632940A (zh) * 2018-11-20 2019-04-16 西南石油大学 一种山地管道环焊缝非接触识别定位方法
CN109655523A (zh) * 2018-11-12 2019-04-19 华孚油气工程技术成都有限公司 一种埋地铁磁管道本体修复找缺陷点的方法
CN109681785A (zh) * 2019-01-18 2019-04-26 陕西泰诺特检测技术有限公司 一种非接触式磁应力检测系统及应用方法
CN109782222A (zh) * 2018-12-28 2019-05-21 中国地质大学(武汉) 一种集成rtls的地下管线定位方法与系统
CN109799279A (zh) * 2019-03-07 2019-05-24 成都博悦金属磁记忆研究所 一种铁磁管道应力检测与监测方法
CN110822297A (zh) * 2019-11-08 2020-02-21 西南石油大学 管道安全状态评估方法与阶梯式升压管道安全复产方法
CN111307031A (zh) * 2020-03-16 2020-06-19 西南石油大学 一种埋地管道安全状态监测与预警方法
RU2724582C1 (ru) * 2019-12-27 2020-06-25 Общество с ограниченной ответственностью Научно-технический центр "Транскор-К" Способ бесконтактного выявления наличия, месторасположения и степени опасности концентраторов механических напряжений в металле ферромагнитных сооружений
CN111637367A (zh) * 2020-04-24 2020-09-08 西南石油大学 山地输气管道内腐蚀缺陷检测与评价方法
CN112504112A (zh) * 2020-12-01 2021-03-16 西南石油大学 一种山区管道应变监测安全管环与方法
CN112683913A (zh) * 2020-12-02 2021-04-20 成都龙之泉科技股份有限公司 一种密度探测的城市管网检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915364A (zh) * 2010-07-15 2010-12-15 中国海洋石油总公司 基于磁记忆检测的油管无损检测装置与方法
CN102411132A (zh) * 2011-07-29 2012-04-11 无锡强力环保科技有限公司 磁性应力无损检测系统
CN102539518A (zh) * 2011-10-31 2012-07-04 北京理工大学 变磁激励条件下金属裂纹扩展的磁性在位检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915364A (zh) * 2010-07-15 2010-12-15 中国海洋石油总公司 基于磁记忆检测的油管无损检测装置与方法
CN102411132A (zh) * 2011-07-29 2012-04-11 无锡强力环保科技有限公司 磁性应力无损检测系统
CN102539518A (zh) * 2011-10-31 2012-07-04 北京理工大学 变磁激励条件下金属裂纹扩展的磁性在位检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林嵩等: "非接触式磁检测在长输管道缺陷检测中的应用", 《CIPC2011中国国际石油天然气管道会议》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499829A (zh) * 2013-10-16 2014-01-08 哈尔滨工业大学 一种具有gps定位功能的非接触式管道缺陷检测装置及检测方法
CN104122323A (zh) * 2014-07-23 2014-10-29 四川汇正管道技术有限公司 非磁化管道内检测方法
CN104297336A (zh) * 2014-10-22 2015-01-21 中国地质大学(武汉) 一种基于埋地钢制管道磁异常提取及解释方法
CN104297336B (zh) * 2014-10-22 2017-02-08 中国地质大学(武汉) 一种基于埋地钢制管道磁异常提取及解释方法
CN105467000A (zh) * 2015-12-21 2016-04-06 中国石油大学(北京) 埋地管道管体缺陷非开挖检测方法及装置
WO2017107913A1 (zh) * 2015-12-21 2017-06-29 中国石油大学(北京) 埋地管道管体缺陷非开挖检测方法及装置
CN105467000B (zh) * 2015-12-21 2019-05-21 中国石油大学(北京) 埋地管道管体缺陷非开挖检测方法及装置
CN106970143A (zh) * 2017-04-20 2017-07-21 武汉地大华睿地学技术有限公司 一种非接触式双源磁场综合检测金属管道缺陷的方法
CN107977513B (zh) * 2017-11-30 2021-04-16 北京石油化工学院 一种基于路径搜索的天然气动态流动温度预测方法
CN107977513A (zh) * 2017-11-30 2018-05-01 北京石油化工学院 一种基于路径搜索的天然气管网内天然气动态流动时的温度预测方法
CN109655523A (zh) * 2018-11-12 2019-04-19 华孚油气工程技术成都有限公司 一种埋地铁磁管道本体修复找缺陷点的方法
CN109632940B (zh) * 2018-11-20 2020-02-28 西南石油大学 一种山地管道环焊缝非接触识别定位方法
CN109632940A (zh) * 2018-11-20 2019-04-16 西南石油大学 一种山地管道环焊缝非接触识别定位方法
CN109521084A (zh) * 2018-11-22 2019-03-26 大唐东北电力试验研究院有限公司 一种埋地管道弱磁检测评价方法
CN109782222A (zh) * 2018-12-28 2019-05-21 中国地质大学(武汉) 一种集成rtls的地下管线定位方法与系统
CN109681785A (zh) * 2019-01-18 2019-04-26 陕西泰诺特检测技术有限公司 一种非接触式磁应力检测系统及应用方法
CN109799279A (zh) * 2019-03-07 2019-05-24 成都博悦金属磁记忆研究所 一种铁磁管道应力检测与监测方法
CN110822297B (zh) * 2019-11-08 2021-02-02 西南石油大学 管道安全状态评估方法与阶梯式升压管道安全复产方法
CN110822297A (zh) * 2019-11-08 2020-02-21 西南石油大学 管道安全状态评估方法与阶梯式升压管道安全复产方法
RU2724582C1 (ru) * 2019-12-27 2020-06-25 Общество с ограниченной ответственностью Научно-технический центр "Транскор-К" Способ бесконтактного выявления наличия, месторасположения и степени опасности концентраторов механических напряжений в металле ферромагнитных сооружений
CN111307031A (zh) * 2020-03-16 2020-06-19 西南石油大学 一种埋地管道安全状态监测与预警方法
CN111307031B (zh) * 2020-03-16 2020-11-10 西南石油大学 一种埋地管道安全状态监测与预警方法
CN111637367A (zh) * 2020-04-24 2020-09-08 西南石油大学 山地输气管道内腐蚀缺陷检测与评价方法
CN111637367B (zh) * 2020-04-24 2021-03-09 西南石油大学 山地输气管道内腐蚀缺陷检测与评价方法
CN112504112A (zh) * 2020-12-01 2021-03-16 西南石油大学 一种山区管道应变监测安全管环与方法
US11402194B2 (en) 2020-12-01 2022-08-02 Southwest Petroleum University Safety pipe loop and method for strain monitoring of mountainous pipelines
CN112683913A (zh) * 2020-12-02 2021-04-20 成都龙之泉科技股份有限公司 一种密度探测的城市管网检测方法
CN112683913B (zh) * 2020-12-02 2023-05-30 成都龙之泉科技股份有限公司 一种密度探测的城市管网检测方法

Also Published As

Publication number Publication date
CN103075641B (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
CN103075641B (zh) 非接触式管道磁检测方法
US8447532B1 (en) Metallic constructions integrity assessment and maintenance planning method
EP2808677B1 (en) Method for non-contact metallic constructions assessment
US8542127B1 (en) Apparatus for the non-contact metallic constructions assessment
CN106247171B (zh) 管道缺陷检测方法、管道缺陷检测装置和管道缺陷检测设备
RU2264617C2 (ru) Способ бесконтактного выявления местоположения и характера дефектов металлических сооружений и устройство для его осуществления
CN102954997A (zh) 管道管体缺陷的非接触式磁应力检测方法
CN109632940B (zh) 一种山地管道环焊缝非接触识别定位方法
US20190145931A1 (en) Methods and systems for nondestructive material inspection
CN109655523A (zh) 一种埋地铁磁管道本体修复找缺陷点的方法
CN105738837A (zh) 一种非缺陷钢质管道自漏磁场磁感应强度的计算方法
CN104122323A (zh) 非磁化管道内检测方法
CN103196991A (zh) 连续诊断管体金属腐蚀与缺陷的全覆盖瞬变电磁检测方法
RU2614414C1 (ru) Способ комплексного наземного бесконтактного технического диагностирования подземного трубопровода
CN106093973A (zh) 一种埋地管道的轨迹测量及内部检测的方法
He et al. A novel non-contact, magnetic-based stress inspection technology and its application to stress concentration zone diagnosis in pipelines
WO2023055230A1 (en) An automated inspection apparatus for nondestructive inspection of welds on pipes for detecting one or more anomalies in pipes
Kolesnikov Magnetic tomography method (MTM) &ndash A remote non-destructive inspection technology for buried and sub sea pipelines
EP3842796A1 (en) A process of contactless detection of presence, location, and danger degree of stress concentrators of mechanical stress in metal of ferromagnetic constructions
McDonnell et al. Identifying stress concentrations on buried steel pipelines using large standoff magnetometry technology
CN103091327A (zh) 一种管道螺旋焊缝缺陷开孔取样验证方法
Qassab et al. Autonomous Inspection System for Anomaly Detection in Natural Gas Pipelines
McDonnell et al. Improved Methodology for Identification of Buried Casings using Indirect Inspection Method
Najafabadi et al. Comparison and verification of the performance specification of mfl pigs and field inspection based on error propagation and Gaussian distribution method
Rempel Anomaly detection using magnetic flux leakage technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant