CN103036647B - 基于mfsk调制方式的物理层网络编码的无线通信方法 - Google Patents

基于mfsk调制方式的物理层网络编码的无线通信方法 Download PDF

Info

Publication number
CN103036647B
CN103036647B CN201210528227.4A CN201210528227A CN103036647B CN 103036647 B CN103036647 B CN 103036647B CN 201210528227 A CN201210528227 A CN 201210528227A CN 103036647 B CN103036647 B CN 103036647B
Authority
CN
China
Prior art keywords
signal
modulation
mfsk
user
via node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210528227.4A
Other languages
English (en)
Other versions
CN103036647A (zh
Inventor
于启月
张德有
孟维晓
李亚添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201210528227.4A priority Critical patent/CN103036647B/zh
Publication of CN103036647A publication Critical patent/CN103036647A/zh
Application granted granted Critical
Publication of CN103036647B publication Critical patent/CN103036647B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

基于MFSK调制方式的物理层网络编码的无线通信方法,涉及无线通信领域。它是通过压缩数据通信的时隙数目进而实现提高无线通信系统的性能。其方法:分别将两个用户节点发送的编码后的比特信息进行MFSK调制,并同时发送给中继节点;中继节点进行相加获得和信号;并进行判决后映射为网络编码的比特信息;然后进行MFSK调制后向两个用户节点广播;两个用户分别对广播的调制信号进行解调,并分别将与保存在本地缓存中的对应的调制信号进行按位进行比特异或运算后输出,从而实现基于MFSK调制方式的物理层网络编码的无线通信。本发明适用于基于MFSK调制方式的物理层网络编码的无线通信。

Description

基于MFSK调制方式的物理层网络编码的无线通信方法
技术领域
本发明涉及无线通信领域。
背景技术
自从Cai等人提出网络编码(Network Coding,NC)技术以来,网络编码已成为提高网络吞吐量,增强鲁棒性,改善系统负载均衡和安全性的有效手段,受到了学术界和科研人员的广泛关注,无论是在理论还是实际应用中都获得了很多非常重要的成果。
例如当一个接收节点在同一个时隙同时收到多个发送节点发送的信号时,它们之间会形成对彼此的干扰,这对于传统的802.11网络是一个巨大的挑战,传统的传输方式一般采用适当的调度策略尽量减少或者避免这种干扰的出现。显然,当系统中有多个节点进行信息的交换时,使用这种方法的效率相当低。而网络编码技术创造性的融合了编码和路由的想法,通过将来自不同链路的信息进行整合,使得各个传输节点既具有对信息的转发功能又具有对信息进行编码的能力,其本质就是利用路由节点的计算能力换取网络的信息处理能力。通过采用网络编码方式,系统的性能可以达到最大流最小割定理所确定的理论极限。
Liew等人将网络编码的思想进一步应用到物理层,首次提出了物理层网络编码(Physical Layer Network Coding,PNC)的概念。PNC是在物理层处理电磁波信号接收和调制的新型网络编码技术,其核心思想是在中继节点引入一种恰当的调制解调技术,将物理层电磁波信号的叠加映射到伽罗华域中的数据比特流的异或运算,使干扰变成编码算法的一部分,从而达到消除干扰的目的。物理层网络编码技术不仅消除了来自不同用户信号间的相互干扰问题,而且还通过减少传输时隙的方式进一步提高了网络的吞吐量。因此,PNC的概念一经提出,立即引起了广泛的重视和研究。
频移键控调制又称数字频率调制,是数字信号传输中使用最早的一种调制方式。由于数字信号具有固定的高低电平,所以对载波频率的调制过程可用键控的方法来实现。根据所处理的基带信号的进制不同,可分为二进制频移键控调制(Binary Frequency ShiftKeying,BFSK)和多进制频移键控调制(Mary Frequency Shift Keying,MFSK)。在BFSK调制方式中,传送的信号中只包含f0和f1两个载频分量,而MFSK是BFSK的推广,它使用M个不同的载波频率代表M个不同的数字信息。MFSK与BFSK相比,具有更多的状态,其特点是频谱利用率更高。频移键控调制方式由于实现起来比较简单,抗噪声和抗衰减性能好,稳定可靠,是中低速数据传输的理想选择。
由于当前对PNC的研究仅限于相移键控(Phase Shift Keying,PSK)调制,正交幅度调制(Quadrature Amplitude Modulation,QAM)等几种简单的调制方式,PNC出色的抗噪声性能和改善网络吞吐量的能力也只在基于这些调制方式的系统中得到了证明。
无论是在国内还是国外,对基于频移键控调制的物理层网络编码的研究还比较少,对基于频移键控调制的PNC的性能还缺乏了解。
发明内容
本发明是通过压缩数据通信的时隙数目进而实现提高无线通信系统的性能,从而提供一种基于MFSK调制方式的物理层网络编码的无线通信方法。
基于MFSK调制方式的物理层网络编码的无线通信方法,在含有两个用户节点和一个中继节点的网络中,它的无线通信方法由以下步骤实现:
步骤一、分别将两个用户节点发送的编码后比特信息S1和S2进行MFSK调制,获得两个用户节点的调制信号s1(t)和s2(t),两个用户分别将对应的调制信号s1(t)和s2(t)保存在本地缓存中;
步骤二、将步骤一获得的两个用户节点的调制信号s1(t)和s2(t)同时发送给中继节点;
步骤三、中继节点接收步骤二中两个用户节点发送的调制信号s1(t)和s2(t),并将所述两个用户节点发送的调制信号s1(t)和s2(t)相加,获得和信号rR(t);
步骤四、中继节点NR根据预设的判决规则对步骤三获得的和信号rR(t)进行判决,获得判决信号
步骤五、中继节点根据物理层网络编码的映射规则将步骤四获得的判决信号映射为比特信息SR
步骤六、中继节点将步骤五获得的比特信息SR进行MFSK调制,获得调制信号sR(t);
步骤七、中继节点将步骤六获得的调制信号sR(t)向两个用户节点广播步骤六获得的调制信号sR(t);
步骤八、两个用户分别对步骤七中中继节点广播的调制信号sR(t)进行解调,两个用户分别获得解调后信号;
步骤九、每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号进行按位进行比特异或运算,获得运算后数据输出,从而实现基于MFSK调制方式的物理层网络编码的无线通信。
步骤四中所述预设的判决规则为:
当xi-xj>δ时,其中:i=0,1...M-1,j≠i,则认为中继节点收到和信号rR(t)中只含有频率为fi的信号,即:其中:i=0,1...M-1;M为大于2的正整数;
当|xi-xj|<δ且满足xi-xk>δ和xj-xk>δ时,其中:k=0,1...M-1,k≠j≠i,则认为中继节点收到的和信号中含有频率为fi和频率为fj的信号,此时:其中:i,j=0,1...M-1,i≠j。
步骤九中每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号进行按位进行比特异或运算,获得运算后数据的具体方法是:
两个用户分别通过公式:
S 1 ⊕ S R = S 1 ⊕ S 1 ⊕ S 2 = S 2
和:
S 2 ⊕ S R = S 2 ⊕ S 1 ⊕ S 2 = S 1
获得运算后数据。
两个用户节点和一个中继节点均采用半双工的工作方式。
本发明的有益效果是:本发明基于物理层网络编码技术,减少了N个用户通过中继节点进行信息交换所需的时隙数目,相比于传统传输方式下的2N个时隙,物理层网络编码方式仅需N+1个时隙就能实现这N个用户节点之间的信息交换过程,通过压缩所需时隙的数目,物理层网络编码可以提高系统的整体性能。本发明成功实现了在含有多个用户节点但只有一个中继节点的网络中基于物理层网络编码的用户间信息的交换。
附图说明
图1为由三节点线性网络组成一般网络的结构示意图;
图2为三节点线性网络中PNC的结构示意图;其中实线表示时隙1,虚线表示时隙2;
图3为基于MFSK调制的PNC的原理示意图;
图4为用户N1和N2的和信号在中继节点NR的判别原理示意图;
图5为和信号rR(t)的判决过程示意图;
图6为基于MFSK调制方式的PNC的映射示意图;
图7为基于MFSK调制方式的PNC的误码率仿真示意图;
图8为不同调制方式下PNC的误码率的仿真示意图;
图9为基于MFSK调制方式的PNC的信道容量仿真示意图;
图10为不同调制方式下PNC的信道容量仿真示意图;
具体实施方式
具体实施方式一、结合图1至图10说明本具体实施方式,基于MFSK调制方式的物理层网络编码的无线通信方法,在含有两个用户节点和一个中继节点的网络中,它的无线通信方法由以下步骤实现:
步骤一、分别将两个用户节点发送的编码后比特信息S1和S2进行MFSK调制,获得两个用户节点的调制信号s1(t)和s2(t),两个用户分别将对应的调制信号s1(t)和s2(t)保存在本地缓存中;
步骤二、将步骤一获得的两个用户节点的调制信号s1(t)和s2(t)同时发送给中继节点;
步骤三、中继节点接收步骤二中两个用户节点发送的调制信号s1(t)和s2(t),并将所述两个用户节点发送的调制信号s1(t)和s2(t)相加,获得和信号rR(t);
步骤四、中继节点NR根据预设的判决规则对步骤三获得的和信号rR(t)进行判决,获得判决信号
步骤五、中继节点根据物理层网络编码的映射规则将步骤四获得的判决信号映射为比特信息SR
步骤六、中继节点将步骤五获得的比特信息SR进行MFSK调制,获得调制信号sR(t);
步骤七、中继节点将步骤六获得的调制信号sR(t)向两个用户节点广播步骤六获得的调制信号sR(t);
步骤八、两个用户分别对步骤七中中继节点广播的调制信号sR(t)进行解调,两个用户分别获得解调后信号;
步骤九、每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号进行按位进行比特异或运算,获得运算后数据输出,从而实现基于MFSK调制方式的物理层网络编码的无线通信。
步骤四中所述预设的判决规则为:
当xi-xj>δ时,其中:i=0,1...M-1,j≠i,则认为中继节点收到和信号rR(t)中只含有频率为fi的信号,即:其中:i=0,1...M-1;M为大于2的正整数;
当|xi-xj|<δ且满足xi-xk>δ和xj-xk>δ时,其中:k=0,1...M-1,k≠j≠i,则认为中继节点收到的和信号中含有频率为fi和频率为fj的信号,此时:其中:i,j=0,1...M-1,i≠j。
步骤九中每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号进行按位进行比特异或运算,获得运算后数据的具体方法是:
两个用户分别通过公式:
S 1 ⊕ S R = S 1 ⊕ S 1 ⊕ S 2 = S 2
和:
S 2 ⊕ S R = S 2 ⊕ S 1 ⊕ S 2 = S 1
获得运算后数据。
两个用户节点和一个中继节点均采用半双工的工作方式。
工作原理:本发明是一种在双向中继信道(Two-Way Relaying Channel,TWRC)的一对用户节点进行数据交换时,在中继节点处实现物理层网络编码的无线通信方法。
本发明是一种基于多进制频移键控调制的物理层网络编码的算法,其特征在于,中继节点NR对收到的来自用户N1,N2的数据进行物理层网络编码后,再广播给用户N1和N2,从而实现它们之间的数据交换。
如图1所示,任何通信系统均可以看作是由三节点线性网络扩展而来的,因此对三节点线性网络进行研究,有助于我们对更复杂的网络进行分析。本发明中采用了一种在三节点线性网络中进行物理层网络编码的方法,即基于频移键控调制的物理层网络编码方法,该方法对于物理层网络编码在更复杂网络中的应用具有重要的参考价值。
为了提高这个系统的工作效率,在进行物理层网络编码时两个用户应尽量使用数据量基本相同的数据帧,即两个用户节点N1和N2发送的数据帧的长度应该相等。
更进一步地,为了能够使这个系统能够可靠稳定地工作,两个用户节点N1和N2和中继节点NR处均应进行功率控制,通过采用功率控制技术,避免了两个用户发送的信号到达中继节点时不会因为太小或者太大而不能被接收机处理的情形,同时对两个用户节点发送的已调信号进行功率控制,还可以保证在它们到达中继节点时都可以被中继节点的接收机检测到,而不会出现其中一个因为功率太低而完全湮没在另一个信号中的情况。对中继节点的发送信号进行功率控制的原因与对用户节点进行功率控制的想法相同,同样是为了防止因为中继节点发送的已调信号超出了用户节点的接收机的判决门限而不能被正确接收。
为了使节点的发送过程与接收过程在不同的时隙进行,所有节点均应采用半双工的工作方式,即在一个时隙内,每个节点,无论是用户节点还是中继节点只能处于发送状态或者接收状态中的一种。
PNC网络也可以工作在全双工方式,此时节点的收发过程在一个时隙内完成,与半双工方式不同的是,此时接收和发送过程不能共用同一个信道(或者共用同一个信道但使用不同的编码来区分)。中继节点接收本时隙的用户信息,同时向两个用户节点广播上一个时隙的网络编码信息。
下面结合附图详细说明本发明的工作工程。
节点N1,N2表示接入双向中继信道中的两个用户节点,如图2所示,S1和S2分别表示节点N1和N2要发送的比特信息,在实际系统中,应该以数据包或数据帧的形式来传输每个用户的信息,本专利为分析方便,特将一帧的数据分解为一个个的比特信息位,用户信息按比特进行传输;节点NR为该网络的中继节点,在这个由两个用户节点和一个中继节点组成的网络中,正是由于NR的存在,才使得物理层网络编码成为可能,SR表示经过物理层网络编码后NR映射出比特信息。
整个三节点线性网络的物理层网络编码过程仅包含两个时隙,时隙1和时隙2。为了尽可能详尽地说明的整个物理层网络编码的工作流程,在图3中,本专利给出了三节点线性网络中基于多进制频移键控调制的物理层网络编码的原理框图,本专利将对物理层网络编码在每个时隙内的工作过程分别予以阐述,
三节点线性网络中基于MFSK调制的物理层网络编码在时隙1内的工作工程主要包含以下六个关键过程。
步骤一:两个用户节点N1和N2各自发送它们经过编码后的比特信息S1和S2,并分别对数据消息S1和S2进行MFSK调制,得到已调信号s1(t)和s2(t)。
为了使信源和信道尽可能的匹配,使信道中传输的信息量达到最大,也即为了提高信息传输的有效性,我们通常的做法是对信源进行某种有效性编码,比如说PCM编码、伪噪声编码等,使信源的分布更加接近高斯白噪声的分布,从而达到增加信源熵的目的。另一方面为了能在接收端对传输过程中产生的误码进行一定程度的纠错,在实际应用中,我们还会通过在信源中加入冗余的方式来增加传输过程的可靠性。引入纠错编码,例如分组码、卷积码等,虽然降低了信源的编码效率,使系统的复杂度增加,但由于在接收端可以对收到的码元进行检错和纠正,可以带来一定编码增益,因此,纠错编码非常适用于那些对误码率有一定要求的场合。两个用户节点N1和N2既可以进行信源编码也可以进行信道编码,还可以将二者结合起来使用,然而在一个实际的通信系统中,往往使用的是后者,即同时使用信源编码和信道编码。
对于陆地移动通信这样的可变参数信道,由于持续较长的深衰落谷值的影响,比特差错经常是成串发生的,然而信道编码仅在检测和校正单个差错和不太长的差错串时才有效。交织技术可以很好的解决这样一类问题,通过比特交织,可以把一条消息中的相继比特分散开,即一条消息中的相继比特以非相继方式被发送。这样,在传输过程中即使发生了成串差错,恢复成一条相继比特串的消息时,差错也就变成单个(或长度很短),这时再用利纠错编码的纠错功能纠正差错,就可以恢复出原来的发送信息。对于N1和N2发送的消息,也可以采用交织的思想,来进一步提高物理层网络编码抗深度衰落的能力。
频移键控调制是信息传输中使用较早的一种调制方式,它是用载波的不同频率表示不同的比特信息,频移键控调制具有很强的抗干扰、抗噪声、抗衰减的能力,同时还很容易实现,因此频移键控调制在通信系统中得到了广泛的应用(GMSK在GSM系统中的应用)。同时由于多进制调制方式具有的状态数更多,表示的信息量更大,因此更高阶数调制必将成为未来高速通信系统调制方式的首选。基于此,发明一种能将多进制频移键控调制与物理层网络编码进行联合的技术就显得特别有意义。
步骤二:将已调信号s1(t)和s2(t)同时向中继节点NR发送。
为了保证两个用户节点N1和N2发送的已调信号到达中继节点NR的时刻尽可能相同(这有这样,它们同相相加后才能获得最大的接收和信号),除了它们所经历的链路条件要尽可能相同外,N1和N2发送信号的时刻也要尽可能的相同。为了达到这一目的,两个用户节点应该使用同一套系统进行授时。
本专利只考虑了两个用户N1和N2各自只有一根发送天线的情形,实际上为了改善系统的性能,可以给两个用户节点各自分配多根天线,同时也给中继节点分配多对天线,利用MIMO技术提高信道的容量,同时也可以提高信道的可靠性,降低误码率,前者是利用MIMO信道提供的空间复用增益,后者是利用MIMO信道提供的空间分集增益。
步骤三:中继节点NR将收到的两个已调信号s1(t)和s2(t)直接相加得到和信号rR(t)。
发自两个用户节点N1和N2的已调信号到s1(t)和s2(t)达中继节点NR后,不经过MFSK解调,而是直接相加得到由s1(t)和s2(t)组成的混合信号(和信号)。这是物理层网络编码有别于网络编码之处,网络编码是中继节点对收到的来自每一个用户的信息分别进行解调和判决,以便得到每一个用户所对应的比特信息,然后对所有得到信息比特进行异或运算,并将这个结果作为网络编码的码字,并向用户节点广播。
步骤四:中继节点NR根据特定的判决规则对接收到的和信号rR(t)进行判决。
中继节点NR接收到和信号rR(t)以后,按照如图4所示的原理框图,对rR(t)进行判决,以便得到两个用户节点N2和N2发送的已调信号的具体形式。为便于说明判决过程,本专利使用(fi,fj)表示两个用户节点N1和N2实际的发送信号,fi∩fj表示中继节点NR判决出的两个用户的发送信号,其中i,j=0,1...M-1。为了在中继节点NR处获得比较小的差错概率,本专利将判决规则设计如下。
情形一:当xi-xj>δ时,其中:i=0,1...M-1,j≠i,则认为中继节点收到和信号rR(t)中只含有频率为fi的信号,即:其中:i=0,1...M-1;
情形二:当|xi-xj|<δ且满足xi-xk>δ和xj-xk>δ时,其中:k=0,1...M-1,k≠j≠i,则认为中继节点收到的和信号中含有频率为fi和频率为fj的信号,此时:其中:i,j=0,1...M-1,i≠j。
由于只有两个用户节点N1和N2,因此收到的和信号rR(t)中至多含有两个频率分量,因此对于三节点线性PNC网络,判决规则只有上述两种。图5给出了rR(t)被判别为的所有可能的情形。
步骤五:中继节点NR根据PNC的映射规则将判决信号映射为比特信息SR
根据判决规则判决出两个用户节点N1和N2发送的已调信号以后(可能判对,也可能判错),需要对进行满足PNC映射关系的映射过程,即通过设计合适的映射准则,将映射为比特信息SR(也称作网络编码的码字)。如图6所示,本专利给出了基于多进制频移键控调制方式的物理层网络编码的映射原理框图。
具体来说,根据对和信号的判决结果fi∩fj可知,两个用户节点N1和N2发送的已调信号的载波频率分别为fi和fj,或者为fj和fi,由于采用是MFSK调制方式,因此我们可以推知两个用户节点发送的比特信息必为“i”和“j”(均为二进制数),对“i”和“j”按位进行异或运算,此时可以得到一个新的二进制数“k”,“k”就是网络编码的码字SR
至此,三节点线性网络中基于多进制频移键控调制的物理层网络编码在时隙1内的六个过程已经说明完毕,下面说明基于多进制频移键控调制的物理层网络编码在时隙2内的四个子过程。
步骤六:中继节点NR对网络编码的码字SR重新进行MFSK调制。
为了将在时隙1中得到的网络编码的码字SR发送给两个用户节点N1和N2,需对SR重新进行调制,为了保证系统制式的统一,减少系统开销,本专利仍然选用多进制频移键控调制方式。其它的调制方式,例如MQAM调制,MPSK调制等,也可以实现这一过程,前提是只要用户节点知道中继节点具体选用的是何种调制方式,这种上行(从用户节点到中继节点)和下行(从中继节点到用户节点)链路选用不同调制方式的情形在实际系统中也是很常见的,因此研究这种特殊的物理层网络编码技术对于实现不同调制类型的网络进行互联或者同一类型的网络不同调制方式的链路进行互联等情形具有非常重要的意义。
步骤七:中继节点NR向两个用户节点N1和N2广播SR调制后的信号sR(t)。
为了尽可能减少信息传输所需的时隙数目,从而达到提高传输效率的目的,中继节点NR在向两个用户节点N1和N2发送消息时选用广播的方式,即中继节点NR同时向两个(对于多个用户节点也一样)用户节点N1和N2发送SR经过MFSK调制后的信号sR(t)。
步骤八:两个用户节点N1和N2分别对sR(t)进行解调。
用户节点N1和N2收到广播信号sR(t)以后,各自分别对sR(t)进行解调,以便重新得到网络编码的码字SR。sR(t)选用何种类型的调制方式,解调时仍选用同样地调制方式,否则不能准确解码。在本专利中sR(t)是由MFSK调制得到的,因此解调时仍需选用MFSK方式对sR(t)进行解调。
步骤九:将SR与保存在用户缓存中的信息进行按位比特异或得到所要接收的信息。
对于用户节点N1和N2,它们在向中继节点NR发送自己信息的同时,在它们的本地缓存中要复制一份同样地信息。这样既可保证当传输过程出现不可纠正的误码时,能够快速重发,对于物理层网络编码的译码过程也具有非常独特的作用。
对于用户N1,当它通过对sR(t)进行解调得到网络编码的码字SR以后,将SR与储存在N1缓存中的它的发送信息S1进行按位比特异或操作,即可得到用户N2发送的信息,这里是比特级的,对于更高级别的情况(帧,包等)也是一样的。
用户N2的情况与N1类似,即通过将SR与S2进行按位比特异或得到发自用户N1的码元信息S1,可以用下面两个式子表示两个用户节点N1和N2获取所需信息的过程。
对于用户节点N1 S 1 ⊕ S R = S 1 ⊕ S 1 ⊕ S 2 = S 2
对于用户节点N2 S 2 ⊕ S R = S 2 ⊕ S 1 ⊕ S 2 = S 1
至此,经过时隙1和时隙2共十个过程之后,用户节点N1和节点N2就完成了一次信息的交换过程。
以下通过具体的仿真实验验证本发明的效果:
为了检验发明的效果,以M=2,4,8,16为例,我们使用MATLAB对PNC的误码率进行了仿真,并与理论曲线作对比。仿真参数的设置如表1所示,仿真结果在图7和图8中给出。
表1
从图7可以看出,随着M的增加,基于MFSK调制方式的PNC的误码率性能会得到显著改善。图8进一步比较了基于16FSK和16QAM两种调制方式的PNC的误码率性能,从图8中不难看出,在Eb/N0相同的情况下基于16FSK调制方式的PNC相比于基于16QAM调制方式的PNC,抗噪声的能力有了很大的提升,这是由于16FSK占用带宽更宽的原因。
图9给出了M取不同值时PNC的信道容量的变化情况。从图中可以很明显地看出,基于MFSK调制方式的PNC的信道容量随着M的增加而增加。对于基于2FSK调制方式的PNC,其信道容量只有1/2帧/时隙,而对于基于16FSK调制方式的PNC,其信道容量达到了2帧/时隙,因此,增加进制数对提高信息传输速率是很有效的。
图10进一步比较了基于16FSK和16QAM两种调制方式的PNC的信道容量。从图10中我们不难看出,PNC网络的信道容量仍优于NC网络和传统网络的信道容量。以16FSK调制方式为例,当Eb/N0接近10dB时,PNC网络的信道容量可以达到2帧/时隙,而NC网络和传统网络的吞吐量分别只有4/3帧/时隙和1帧/时隙,即PNC网络相比于NC网络和传统网络吞吐量分别有50%和100%的提高。同时还应该注意到,相比于基于16QAM调制方式的PNC,基于16FSK调制方式的PNC可以更快的达到信道容量的极限值。显然,这是因为基于16FSK调制方式的PNC的误码率更低。

Claims (3)

1.基于MFSK调制方式的物理层网络编码的无线通信方法,其特征是:在含有两个用户节点和一个中继节点的网络中,它的无线通信方法由以下步骤实现:
步骤一、分别将两个用户节点发送的编码后比特信息S1和S2进行MFSK调制,获得两个用户节点的调制信号s1(t)和s2(t),两个用户分别将对应的调制信号s1(t)和s2(t)保存在本地缓存中;
步骤二、将步骤一获得的两个用户节点的调制信号s1(t)和s2(t)同时发送给中继节点;
步骤三、中继节点接收步骤二中两个用户节点发送的调制信号s1(t)和s2(t),并将所述两个用户节点发送的调制信号s1(t)和s2(t)相加,获得和信号rR(t);
步骤四、中继节点NR根据预设的判决规则对步骤三获得的和信号rR(t)进行判决,获得判决信号
步骤四中所述预设的判决规则为:
当xi-xj>δ时,其中:i=0,1…M-1,j≠i,则认为中继节点收到和信号rR(t)中只含有频率为fi的信号,即:其中:i=0,1…M-1;M为大于2的正整数;
且满足xi-xk>δ和xj-xk>δ时,其中:k=0,1…M-1,k≠j≠i,则认为中继节点收到的和信号中含有频率为fi和频率为fj的信号,此时:其中:i,j=0,1…M-1,i≠j;
xi为针对频率fi时ri(t)经积分器积分后获得的结果;xj为针对频率fj时rj(t)经积分器积分后获得的结果;δ为判决门限;fi和fj为两个用户节点N1和N2发送的已调信号的载波频率,或者fj和fi为两个用户节点N1和N2发送的已调信号的载波频率;xk为针对频率fk时rk(t)经积分器积分后获得的结果;
步骤五、中继节点根据物理层网络编码的映射规则将步骤四获得的判决信号映射为比特信息SR
步骤六、中继节点将步骤五获得的比特信息SR进行MFSK调制,获得调制信号sR(t);
步骤七、中继节点将步骤六获得的调制信号sR(t)向两个用户节点广播步骤六获得的调制信号sR(t);
步骤八、两个用户分别对步骤七中中继节点广播的调制信号sR(t)进行解调,两个用户分别获得解调后信号;
步骤九、每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号按位进行比特异或运算,获得运算后数据输出,从而实现基于MFSK调制方式的物理层网络编码的无线通信。
2.根据权利要求1所述的基于MFSK调制方式的物理层网络编码的无线通信方法,其特征在于步骤九中每个用户分别将步骤八中获得的解调后信号与步骤一中保存在本地缓存中的对应的调制信号进行按位进行比特异或运算,获得运算后数据的具体方法是:
两个用户分别通过公式:
S1⊕SR=S1⊕S1⊕S2=S2
和:
S2⊕SR=S2⊕S1⊕S2=S1
获得运算后数据。
3.根据权利要求1所述的基于MFSK调制方式的物理层网络编码的无线通信方法,其特征在于两个用户节点和一个中继节点均采用半双工的工作方式。
CN201210528227.4A 2012-12-10 2012-12-10 基于mfsk调制方式的物理层网络编码的无线通信方法 Expired - Fee Related CN103036647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210528227.4A CN103036647B (zh) 2012-12-10 2012-12-10 基于mfsk调制方式的物理层网络编码的无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210528227.4A CN103036647B (zh) 2012-12-10 2012-12-10 基于mfsk调制方式的物理层网络编码的无线通信方法

Publications (2)

Publication Number Publication Date
CN103036647A CN103036647A (zh) 2013-04-10
CN103036647B true CN103036647B (zh) 2015-07-22

Family

ID=48023170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210528227.4A Expired - Fee Related CN103036647B (zh) 2012-12-10 2012-12-10 基于mfsk调制方式的物理层网络编码的无线通信方法

Country Status (1)

Country Link
CN (1) CN103036647B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052578B (zh) * 2014-06-24 2017-09-26 东南大学 一种适用于全双工物理层网络编码系统中多次译码检测的方法
CN104954095A (zh) * 2015-04-21 2015-09-30 中国人民解放军军械工程学院 一种无人机组网通信的方法
CN105099618A (zh) * 2015-06-03 2015-11-25 香港中文大学深圳研究院 一种基于物理层网络编码的解码方法及相应数据处理方法
CN105099619B (zh) * 2015-06-03 2020-11-03 香港中文大学深圳研究院 一种物理层网络编码的多倍采样方法及相应数据处理方法
CN105099501B (zh) * 2015-06-03 2020-06-23 香港中文大学深圳研究院 一种物理层网络编码的双倍采样法及相应数据处理方法
CN105680986A (zh) * 2015-12-23 2016-06-15 中国人民解放军军械工程学院 基于ldlc和物理层网络编码的通信方法
CN116367110A (zh) * 2022-12-08 2023-06-30 中国科学院空间应用工程与技术中心 一种基于物理层网络编码的车队通信系统和方法
CN116346224B (zh) * 2023-03-09 2023-11-17 中国科学院空间应用工程与技术中心 一种基于rgb-led的双向可见光通信方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355441A (zh) * 2011-06-30 2012-02-15 哈尔滨工业大学 基于物理层网络编码的双向中继2fsk通信系统中继节点解调映射方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050368B2 (en) * 2007-05-29 2011-11-01 Texas Instruments Incorporated Nonlinear adaptive phase domain equalization for multilevel phase coded demodulators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355441A (zh) * 2011-06-30 2012-02-15 哈尔滨工业大学 基于物理层网络编码的双向中继2fsk通信系统中继节点解调映射方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Physical layer implementation of network coding in two-way relay networks》;Hongjuan;《Communicatio(ICC),2012 IEEE International Conference on》;20120615;第671页至第675页 *

Also Published As

Publication number Publication date
CN103036647A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
CN103036647B (zh) 基于mfsk调制方式的物理层网络编码的无线通信方法
US11050532B2 (en) Method and system for non-orthogonal multiple access communication
EP3616327B1 (en) Method and system for non-orthogonal multiple access communication
KR101036092B1 (ko) 네트워크 부호화 방법 및 네트워크 부호화 장치
CN102983945B (zh) 一种在多用户信道中实现物理层网络编码的无线通信方法
CN103078705A (zh) 基于mqam调制方式的物理层网络编码的无线通信方法
CN102549935B (zh) 在第一信号源与第二信号源之间传输信号的方法、中继站和系统
US7305609B2 (en) M-ary modulation for wireless systems
CN101710851A (zh) 利用相关网络编码实现非相关接收的收发方法
Liang et al. Adaptive-TTCM-aided near-instantaneously adaptive dynamic network coding for cooperative cognitive radio networks
Fang et al. SR-DCSK cooperative communication system with code index modulation: A new design for 6G new radios
CN102055564B (zh) 一种用于物理层网络编码的空间复用方法
CN104052578A (zh) 一种适用于全双工物理层网络编码系统中多次译码检测的方法
CN102487315A (zh) 多源多中继协作通信方法、通信设备及协作通信系统
CN103220254B (zh) 一种指示和确定传输格式组合的方法、设备及系统
Lu et al. High-throughput cooperative communication with interference cancellation for two-path relay in multi-source system
Pan et al. Mapping codebook-based physical network coding for asymmetric two-way relay channels
Patel et al. Performance Analysis & implementation of different modulation techniques in Almouti MIMO scheme with Rayleigh channel
CN104158628A (zh) 基于唯一可译码的中继转发方法
CN109005013A (zh) 一种提高频谱效率的空时编码方法
CN102684759A (zh) 物联网节点天线增强技术
Ji et al. A new differential space-time modulation scheme for MIMO systems with four transmit antennas
Ji et al. A new differential space-time modulation scheme based on weyl group
Tikko et al. Performance analysis of MIMO–OFDM system with relaying techniques in Rayleigh fading channel
Kim et al. A technique to exploit cooperation for packet retransmission in wireless ad hoc networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150722

Termination date: 20151210

EXPY Termination of patent right or utility model