CN103034014A - THz (Terahertz) wave modulator - Google Patents
THz (Terahertz) wave modulator Download PDFInfo
- Publication number
- CN103034014A CN103034014A CN2012105804880A CN201210580488A CN103034014A CN 103034014 A CN103034014 A CN 103034014A CN 2012105804880 A CN2012105804880 A CN 2012105804880A CN 201210580488 A CN201210580488 A CN 201210580488A CN 103034014 A CN103034014 A CN 103034014A
- Authority
- CN
- China
- Prior art keywords
- field effect
- oxide semiconductor
- effect transistor
- metal oxide
- terahertz wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 46
- 230000005669 field effect Effects 0.000 claims abstract description 31
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 30
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/30—Metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/13—Function characteristic involving THZ radiation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/15—Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种太赫兹波调制器,包括太赫兹波可透过的半导体衬底(1)、在半导体衬底(1)上按一定周期分布的金属氧化物半导体场效应管阵列(2)、在金属氧化物半导体场效应管阵列(2)上制备的超材料谐振单元阵列(3)、第一金属板(4)和第二金属板(5);第一金属板(4)与金属氧化物半导体场效应管的源极及漏极相连接;第二金属板(5)与金属氧化物半导体场效应管的栅极相连接。本发明中的金属氧化物半导体场效应管的工作电压很低,使得以其制备的太赫兹波调制器可于低电压下工作。金属氧化物半导体场效应管的开关时间极短,为10~100ns量级,使得以其制备的太赫兹波调制器的调制速率可大于10MHz。
The invention discloses a terahertz wave modulator, which comprises a terahertz wave permeable semiconductor substrate (1), a metal oxide semiconductor field effect transistor array (2) distributed on the semiconductor substrate (1) according to a certain period ), the metamaterial resonant unit array (3), the first metal plate (4) and the second metal plate (5) prepared on the metal oxide semiconductor field effect transistor array (2); the first metal plate (4) and The source and the drain of the metal oxide semiconductor field effect transistor are connected; the second metal plate (5) is connected with the gate of the metal oxide semiconductor field effect transistor. The working voltage of the metal oxide semiconductor field effect transistor in the present invention is very low, so that the terahertz wave modulator prepared with it can work at low voltage. The switching time of the metal oxide semiconductor field effect transistor is extremely short, on the order of 10-100 ns, so that the modulation rate of the terahertz wave modulator prepared with it can be greater than 10 MHz.
Description
技术领域technical field
本发明涉及一种调制器,具体涉及一种太赫兹波调制器,属于太赫兹通信、探测和成像等领域。The invention relates to a modulator, in particular to a terahertz wave modulator, and belongs to the fields of terahertz communication, detection and imaging.
背景技术Background technique
太赫兹(THz)波是指0.1THz到10THz的电磁波,波长大概在0.03mm-3mm范围,介于微波与红外之间。与其他波段的电磁波相比,太赫兹波具有光子能量小、穿透力强等特性,为通信、军事、医学、安全检查等领域带来了深远的影响。其中,调制速率大于10MHz的高速太赫兹波调制器是太赫兹通信系统中必不可少的器件之一,而目前太赫兹波调制器的调制速率主要受限于衬底材料的性能和器件结构。Terahertz (THz) waves refer to electromagnetic waves from 0.1THz to 10THz, with a wavelength in the range of 0.03mm-3mm, between microwave and infrared. Compared with electromagnetic waves in other bands, terahertz waves have the characteristics of small photon energy and strong penetrating power, which has brought profound impacts on the fields of communication, military, medicine, security inspection and so on. Among them, a high-speed terahertz wave modulator with a modulation rate greater than 10 MHz is one of the essential devices in a terahertz communication system, but the current modulation rate of a terahertz wave modulator is mainly limited by the performance of the substrate material and the device structure.
近年来所报道的太赫兹波调制器中有利用半导体块状材料对太赫兹波进行调制的方法。中国计量学院的李九生等基于超高电阻率的硅片,利用808nm激光照射产生光生载流子,从而改变硅片折射率的方法对太赫兹波进行调制。由于超高电阻率硅片中载流子的复合寿命较长,所以其调制速率仅有0.2Kbps。砷化镓中载流子的寿命较短,可用作制备高速太赫兹调制器的衬底。捷克的L.Fekete等人采取在交替层叠的氧化硅和氧化镁周期结构中嵌入一层砷化镓缺陷层的方法以构成一维光子晶体,利用砷化镓在810nm激光照射下产生的光生载流子的浓度变化来调制光子晶体的透过特性,从而实现高速调制太赫兹波的目的。但由于砷化镓中载流子的复合寿命较短,响应时间约为130ps量级,所以虽然理论上对太赫兹波的调制速率可达到GHz量级,但为了获得较高的光生载流子浓度和较大的调制深度,810nm调制激光的光通量需达到0.8μJ/cm2的极高量级,其对应的连续波输出激光功率则需要达到105W以上,这使得该种调制器在实际应用中受到极大的限制。Among the terahertz wave modulators reported in recent years, there is a method of modulating terahertz waves by using semiconductor bulk materials. Based on ultra-high resistivity silicon wafers, Li Jiusheng from China Jiliang Institute used 808nm laser irradiation to generate photogenerated carriers, thereby changing the refractive index of silicon wafers to modulate terahertz waves. Due to the long recombination lifetime of carriers in ultra-high resistivity silicon wafers, the modulation rate is only 0.2Kbps. Gallium arsenide has a short lifetime of carriers and can be used as a substrate for the preparation of high-speed terahertz modulators. L. Fekete et al. from the Czech Republic adopted a method of embedding a defect layer of gallium arsenide in an alternately stacked periodic structure of silicon oxide and magnesium oxide to form a one-dimensional photonic crystal. The change of the concentration of the carrier modulates the transmission characteristics of the photonic crystal, so as to realize the purpose of high-speed modulation of the terahertz wave. However, due to the short recombination life of carriers in GaAs, the response time is about 130 ps, so although the modulation rate of terahertz waves can reach GHz in theory, in order to obtain higher photogenerated carriers Concentration and large modulation depth, the luminous flux of the 810nm modulated laser needs to reach a very high level of 0.8μJ/cm 2 , and the corresponding continuous wave output laser power needs to reach more than 10 5 W, which makes this modulator in practice application is severely limited.
参见图1,最近有研究人员提出一种基于高电子迁移率晶体管和超材料结构的高速太赫兹波调制器,但是该种高电子迁移率晶体管的层结构比金属氧化物半导体场效应管复杂,制备工艺流程长,成本较高,而且其寄生电容较大,限制了调制器的调制速率。Referring to Figure 1, some researchers have recently proposed a high-speed terahertz wave modulator based on high electron mobility transistors and metamaterial structures, but the layer structure of this kind of high electron mobility transistors is more complex than that of metal oxide semiconductor field effect transistors. The preparation process is long, the cost is high, and its parasitic capacitance is large, which limits the modulation rate of the modulator.
发明内容Contents of the invention
针对现有技术存在的不足,本发明目的是提供一种制备成本低,可于低电压下工作且调制速率大于10MHz的太赫兹波调制器。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a terahertz wave modulator with low manufacturing cost, which can work at low voltage and whose modulation rate is greater than 10 MHz.
为了实现上述目的,本发明是通过如下的技术方案来实现:In order to achieve the above object, the present invention is achieved through the following technical solutions:
本发明提供的太赫兹调制器包括太赫兹波可透过的半导体衬底、在半导体衬底上按一定周期分布的金属氧化物半导体场效应管阵列、在金属氧化物半导体场效应管阵列上制备的超材料谐振单元阵列、第一金属板和第二金属板;第一金属板与金属氧化物半导体场效应管的源极及漏极相连接;第二金属板与金属氧化物半导体场效应管的栅极相连接。The terahertz modulator provided by the present invention includes a terahertz wave-permeable semiconductor substrate, a metal oxide semiconductor field effect transistor array distributed in a certain period on the semiconductor substrate, and a metal oxide semiconductor field effect transistor array prepared on the metal oxide semiconductor field effect transistor array. The metamaterial resonant unit array, the first metal plate and the second metal plate; the first metal plate is connected to the source and drain of the metal oxide semiconductor field effect transistor; the second metal plate is connected to the metal oxide semiconductor field effect transistor connected to the grid.
上述半导体衬底采用的是P型硅衬底。The above-mentioned semiconductor substrate adopts a P-type silicon substrate.
上述金属氧化物半导体场效应管的开关时间为10~100ns。The switching time of the metal oxide semiconductor field effect transistor is 10-100 ns.
上述超材料谐振单元阵列中的超材料谐振单元的制备材料为金。The preparation material of the metamaterial resonant unit in the above metamaterial resonant unit array is gold.
上述超材料谐振单元的厚度为200nm~2000nm。The thickness of the metamaterial resonance unit is 200nm-2000nm.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
由于金属氧化物半导体场效应管的工作电压很低,使得以其制备的太赫兹波调制器可于低电压下工作,且金属氧化物半导体场效应管结构简单,制备成本低廉,工艺成熟,便于器件的小型化和集成化;由于金属氧化物半导体场效应管开关时间极短(10~100ns),因此,可制成调制速率大于10MHz的高速太赫兹波调制器。Because the working voltage of metal oxide semiconductor field effect transistor is very low, the terahertz wave modulator prepared by it can work at low voltage, and the structure of metal oxide semiconductor field effect transistor is simple, the preparation cost is low, the process is mature, and it is convenient Miniaturization and integration of devices; due to the extremely short switching time of metal oxide semiconductor field effect transistors (10-100ns), it can be made into a high-speed terahertz wave modulator with a modulation rate greater than 10MHz.
附图说明Description of drawings
图1为现有技术制备的基于高电子迁移率晶体管和超材料的太赫兹波调制器(其中数字的含义为:半导体衬底11,高电子迁移率晶体管阵列22,超材料谐振单元阵列33,连接高电子迁移率晶体管源极和漏极的第一金属板44,连接高电子迁移率晶体管栅极的第二金属板55);Figure 1 is a terahertz wave modulator based on high electron mobility transistors and metamaterials prepared in the prior art (where the numbers mean:
图2为本发明的太赫兹波调制器的结构示意图;Fig. 2 is a schematic structural diagram of a terahertz wave modulator of the present invention;
图3为本发明的太赫兹波调制器表面的单个超材料谐振单元示意图。Fig. 3 is a schematic diagram of a single metamaterial resonant unit on the surface of the terahertz wave modulator of the present invention.
具体实施方式Detailed ways
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, creative features, goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific embodiments.
参见图2和图3,本发明的太赫兹调制器包括太赫兹波可透过的半导体衬底1、在半导体衬底1上按一定周期分布的金属氧化物半导体场效应管阵列2、在金属氧化物半导体场效应管阵列2上制备的超材料谐振单元阵列3、第一金属板4和第二金属板5。金属氧化物半导体场效应管阵列2和超材料谐振单元阵列3通过金属线连接。2 and 3, the terahertz modulator of the present invention includes a terahertz wave-
其中,第一金属板4与金属氧化物半导体场效应管的源极及漏极相连接;第二金属板5与金属氧化物半导体场效应管的栅极相连接。Wherein, the first metal plate 4 is connected to the source and drain of the MOSFET; the second metal plate 5 is connected to the gate of the MOSFET.
半导体衬底1对太赫兹波的透过率很高,可采用P型硅衬底或其它对太赫兹波透明的半导体材料。The
金属氧化物半导体场效应管阵列2中的金属氧化物半导体场效应管的开关时间为10~100ns。The switching time of the MOSFETs in the
超材料谐振单元阵列3中的超材料谐振单元的制备材料为金,其厚度为200nm~2000nm。The preparation material of the metamaterial resonance unit in the metamaterial resonance unit array 3 is gold, and its thickness is 200nm˜2000nm.
工作时:in working:
当栅极与源极、漏极间,即第二金属板5与第一金属板4间的电压小于金属氧化物半导体场效应管的阈值电压时,金属氧化物半导体场效应管内没有形成通道。此时,当太赫兹波照射到超材料谐振单元阵列3时,由于超材料谐振单元的共振效应很强,太赫兹波的透过率很低,相当于调制器处于“关”的状态;When the voltage between the gate, the source and the drain, that is, between the second metal plate 5 and the first metal plate 4 is lower than the threshold voltage of the MOSFET, no channel is formed in the MOSFET. At this time, when the terahertz wave irradiates the metamaterial resonant unit array 3, due to the strong resonance effect of the metamaterial resonant unit, the transmittance of the terahertz wave is very low, which is equivalent to the modulator being in the “off” state;
当栅极与源极、漏极间,即第二金属板5与第一金属板4间的电压大于金属氧化物半导体场效应管的阈值电压时,金属氧化物半导体场效应管内能够形成通道,电子可从源极进入通道,金属氧化物半导体场效应管表面的超材料谐振单元的谐振效应被破坏,结果导致太赫兹波透过率大大提高,相当于调制器处于“开”的状态。由于金属氧化物半导体场效应管的开关时间极短(10~100ns),因此,通过在栅极施加高速调制的电压信号,就能够达到对入射到调制器的太赫兹波进行高速调制的目的。When the voltage between the gate, the source and the drain, that is, between the second metal plate 5 and the first metal plate 4 is greater than the threshold voltage of the metal oxide semiconductor field effect transistor, a channel can be formed in the metal oxide semiconductor field effect transistor, Electrons can enter the channel from the source, and the resonance effect of the metamaterial resonant unit on the surface of the MOSFET is destroyed. As a result, the transmittance of the terahertz wave is greatly improved, which is equivalent to the modulator being in the "on" state. Since the switching time of MOSFETs is extremely short (10-100 ns), high-speed modulation of the terahertz wave incident on the modulator can be achieved by applying a high-speed modulated voltage signal to the gate.
本发明中的金属氧化物半导体场效应管的工作电压很低,使得以其制备的太赫兹波调制器可于低电压下工作。金属氧化物半导体场效应管的开关时间极短,为10~100ns量级,使得以其制备的太赫兹波调制器的调制速率可大于10MHz。The working voltage of the metal oxide semiconductor field effect transistor in the present invention is very low, so that the terahertz wave modulator prepared with it can work at low voltage. The switching time of the metal oxide semiconductor field effect transistor is extremely short, on the order of 10-100 ns, so that the modulation rate of the terahertz wave modulator prepared with it can be greater than 10 MHz.
本发明还可采用其他具有高速电子迁移率和快速响应时间的晶体管,如铝镓氮/氮化镓高电子移动度三极管(AlGaN/GaN HE MT),亦可以采用不同尺寸和形状的超材料谐振单元。The present invention can also adopt other transistors with high-speed electron mobility and fast response time, such as AlGaN/GaN High Electron Mobility Transistor (AlGaN/GaN HE MT), and metamaterial resonances of different sizes and shapes can also be used unit.
本发明的太赫兹波调制器的制备方法如下:The preparation method of the terahertz wave modulator of the present invention is as follows:
首先在其半导体衬底1上,生长金属氧化物半导体场效应管的外延结构;再利用光刻、刻蚀、蒸镀等工艺制备源极、漏极和栅极,制成金属氧化物半导体场效应管阵列2;然后在金属氧化物半导体场效应管阵列表面蒸镀超材料谐振单元阵列3;最后制备第一金属板4和第二金属板5以及连接金属氧化物半导体场效应管阵列2和超材料谐振单元阵列3的金属线。First, grow the epitaxial structure of the metal oxide semiconductor field effect transistor on its
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105804880A CN103034014A (en) | 2012-12-26 | 2012-12-26 | THz (Terahertz) wave modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105804880A CN103034014A (en) | 2012-12-26 | 2012-12-26 | THz (Terahertz) wave modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103034014A true CN103034014A (en) | 2013-04-10 |
Family
ID=48021039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105804880A Pending CN103034014A (en) | 2012-12-26 | 2012-12-26 | THz (Terahertz) wave modulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103034014A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346406A (en) * | 2013-05-20 | 2013-10-09 | 电子科技大学 | Terahertz wave spatial external modulator based on high electron mobility transistor |
CN103984124A (en) * | 2014-05-15 | 2014-08-13 | 东南大学 | Multi-frequency response TeraHertz wave modulator |
CN104078771A (en) * | 2014-07-17 | 2014-10-01 | 东南大学 | Digital programmable super surface |
CN104090322A (en) * | 2014-05-28 | 2014-10-08 | 电子科技大学 | Terahertz optical window integrated with infrared radiation resisting structure and manufacturing method |
CN104635358A (en) * | 2013-11-06 | 2015-05-20 | 中国科学院苏州纳米技术与纳米仿生研究所 | Terahertz modulator based on ferroelectric film and manufacturing method thereof |
CN105005159A (en) * | 2015-07-02 | 2015-10-28 | 北京航空航天大学 | High-speed graphene terahertz modulator |
CN105305091A (en) * | 2015-10-13 | 2016-02-03 | 复旦大学 | Tunable gradient meta-surface-based reflection electromagnetic wave modulator and design method thereof |
CN105549227A (en) * | 2015-12-18 | 2016-05-04 | 成都浩博依科技有限公司 | Terahertz wave space external modulator based on GaN semiconductor material heterojunction field-effect transistor structure |
CN105652475A (en) * | 2016-01-14 | 2016-06-08 | 电子科技大学 | THz wave rapid modulator based on coplanar waveguide combined transistor |
CN105679778A (en) * | 2016-03-04 | 2016-06-15 | 天津大学 | Terahertz detector chip |
CN105892103A (en) * | 2016-04-12 | 2016-08-24 | 电子科技大学 | SOI (silicon-on-insulator) substrate graphene transistor terahertz double-frequency point frequency-selecting modulator and preparation method thereof |
CN107144985A (en) * | 2017-06-21 | 2017-09-08 | 电子科技大学 | A kind of netted automatically controlled terahertz wave modulator of HEMT arrays being dislocatedly distributed |
CN108417589A (en) * | 2018-01-16 | 2018-08-17 | 电子科技大学 | Wavefront fast scanning imaging modulator based on high electron mobility transistor |
CN110426867A (en) * | 2019-07-31 | 2019-11-08 | 电子科技大学 | A kind of broadband Terahertz modulator based on gradual change opening |
CN111240050A (en) * | 2020-03-11 | 2020-06-05 | 电子科技大学 | A terahertz wave modulator based on silicon-based metamaterials |
CN114883807A (en) * | 2022-05-17 | 2022-08-09 | 东南大学 | Metamaterial terahertz modulator based on negative differential resistance effect |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383291A (en) * | 2008-09-26 | 2009-03-11 | 中国科学院微电子研究所 | A preparation method of ZnO back gate nanowire field effect transistor |
-
2012
- 2012-12-26 CN CN2012105804880A patent/CN103034014A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383291A (en) * | 2008-09-26 | 2009-03-11 | 中国科学院微电子研究所 | A preparation method of ZnO back gate nanowire field effect transistor |
Non-Patent Citations (2)
Title |
---|
DAVID SHREKENHAMER, ET AL.: "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors", 《OPTICS EXPRESS》 * |
M. SAKOWICZ, ET AL.: "Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects", 《JOURNAL OF APPLIED PHYSICS》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014187150A1 (en) * | 2013-05-20 | 2014-11-27 | 电子科技大学 | High electron mobility transistor-based terahertz wave space external modulator |
CN103346406A (en) * | 2013-05-20 | 2013-10-09 | 电子科技大学 | Terahertz wave spatial external modulator based on high electron mobility transistor |
US9590739B2 (en) | 2013-05-20 | 2017-03-07 | University Of Electronic Science And Technology Of China | High electron mobility transistor-based terahertz wave space external modulator |
CN104635358A (en) * | 2013-11-06 | 2015-05-20 | 中国科学院苏州纳米技术与纳米仿生研究所 | Terahertz modulator based on ferroelectric film and manufacturing method thereof |
CN103984124A (en) * | 2014-05-15 | 2014-08-13 | 东南大学 | Multi-frequency response TeraHertz wave modulator |
CN103984124B (en) * | 2014-05-15 | 2017-01-25 | 东南大学 | Multi-frequency response TeraHertz wave modulator |
CN104090322A (en) * | 2014-05-28 | 2014-10-08 | 电子科技大学 | Terahertz optical window integrated with infrared radiation resisting structure and manufacturing method |
CN104078771B (en) * | 2014-07-17 | 2016-08-31 | 东南大学 | A kind of Digital Programmable surpasses surface |
CN104078771A (en) * | 2014-07-17 | 2014-10-01 | 东南大学 | Digital programmable super surface |
CN105005159A (en) * | 2015-07-02 | 2015-10-28 | 北京航空航天大学 | High-speed graphene terahertz modulator |
CN105305091A (en) * | 2015-10-13 | 2016-02-03 | 复旦大学 | Tunable gradient meta-surface-based reflection electromagnetic wave modulator and design method thereof |
CN105549227A (en) * | 2015-12-18 | 2016-05-04 | 成都浩博依科技有限公司 | Terahertz wave space external modulator based on GaN semiconductor material heterojunction field-effect transistor structure |
CN105652475B (en) * | 2016-01-14 | 2018-06-19 | 电子科技大学 | A kind of terahertz wave modulator based on co-planar waveguide binding crystal pipe |
CN105652475A (en) * | 2016-01-14 | 2016-06-08 | 电子科技大学 | THz wave rapid modulator based on coplanar waveguide combined transistor |
CN105679778A (en) * | 2016-03-04 | 2016-06-15 | 天津大学 | Terahertz detector chip |
CN105679778B (en) * | 2016-03-04 | 2019-02-22 | 天津大学 | A terahertz detector chip |
CN105892103A (en) * | 2016-04-12 | 2016-08-24 | 电子科技大学 | SOI (silicon-on-insulator) substrate graphene transistor terahertz double-frequency point frequency-selecting modulator and preparation method thereof |
CN105892103B (en) * | 2016-04-12 | 2019-05-14 | 电子科技大学 | SOI substrate grapheme transistor THz wave dual-frequency point frequency-selecting modulator and preparation method thereof |
CN107144985A (en) * | 2017-06-21 | 2017-09-08 | 电子科技大学 | A kind of netted automatically controlled terahertz wave modulator of HEMT arrays being dislocatedly distributed |
CN108417589A (en) * | 2018-01-16 | 2018-08-17 | 电子科技大学 | Wavefront fast scanning imaging modulator based on high electron mobility transistor |
CN110426867A (en) * | 2019-07-31 | 2019-11-08 | 电子科技大学 | A kind of broadband Terahertz modulator based on gradual change opening |
CN110426867B (en) * | 2019-07-31 | 2020-09-25 | 电子科技大学 | A broadband terahertz modulator based on gradient aperture |
CN111240050A (en) * | 2020-03-11 | 2020-06-05 | 电子科技大学 | A terahertz wave modulator based on silicon-based metamaterials |
CN114883807A (en) * | 2022-05-17 | 2022-08-09 | 东南大学 | Metamaterial terahertz modulator based on negative differential resistance effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103034014A (en) | THz (Terahertz) wave modulator | |
Zhang et al. | Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes | |
CN102279476B (en) | High-speed electrically-modulating terahertz modulator | |
JP6431978B2 (en) | Terahertz modulator, method for modulating high-speed terahertz wave, and method for manufacturing terahertz modulator with symmetrical dielectric resonance cavity | |
CN103268891B (en) | A kind of thin film transistor (TFT), amorphous silicon flat panel detection substrate and preparation method | |
CN104362213B (en) | A kind of gallium aluminium nitrilo solar blind ultraviolet detector and preparation method thereof | |
CN107452844B (en) | Hyperbolic metamaterial composite grating reinforced high-frequency quantum dot single photon source | |
CN102081274A (en) | Vanadium dioxide thin film phase transition characteristic-based terahertz wave modulation device and method | |
CN105824138A (en) | Light-operated terahertz modulator based on graphene/silicon-doped compound double-layer structure | |
CN102520532A (en) | High-speed terahertz modulator and production method thereof | |
Liu et al. | A highly sensitive and fast graphene nanoribbon/CsPbBr 3 quantum dot phototransistor with enhanced vertical metal oxide heterostructures | |
CN107144985A (en) | A kind of netted automatically controlled terahertz wave modulator of HEMT arrays being dislocatedly distributed | |
Wang et al. | High-responsivity and fast-response ultraviolet phototransistors based on enhanced p-GaN/AlGaN/GaN HEMTs | |
CN203760501U (en) | GaN-based plasmon detector | |
Yang et al. | Textured V-pit green light emitting diode as a wavelength-selective photodetector for fast phosphor-based white light modulation | |
CN106410001B (en) | A kind of AlGaN bases UV LED | |
CN113253489B (en) | Terahertz multichannel modulator and preparation method thereof | |
Xu et al. | ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction | |
CN202394003U (en) | TeraHertz high-speed modulator | |
CN101964500B (en) | Single frequency terahertz (THz) light source | |
CN106340553B (en) | Electron transport passage is the quanta cascade infrared detector of oblique transition microstrip type | |
CN104701729B (en) | Silicon substrate laser and preparation method thereof | |
CN203596359U (en) | UV light emitting diode | |
Dong et al. | Plasmon-enhanced self-powered GaN/ZnTe core/shell nanopillar array photodetector | |
CN103400900B (en) | ZnO quantum dot base deep UV sensor and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130410 |