CN103030113B - 制备氢和一氧化碳的方法和装置 - Google Patents

制备氢和一氧化碳的方法和装置 Download PDF

Info

Publication number
CN103030113B
CN103030113B CN201210314137.5A CN201210314137A CN103030113B CN 103030113 B CN103030113 B CN 103030113B CN 201210314137 A CN201210314137 A CN 201210314137A CN 103030113 B CN103030113 B CN 103030113B
Authority
CN
China
Prior art keywords
stream
gas
residual gas
unit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210314137.5A
Other languages
English (en)
Other versions
CN103030113A (zh
Inventor
E.S.根金
H.N.普哈姆
章晓光
K.A.鲁德维格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN103030113A publication Critical patent/CN103030113A/zh
Application granted granted Critical
Publication of CN103030113B publication Critical patent/CN103030113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了用于自合成气生产单元中产生的粗合成气产生含氢产物流和含一氧化碳产物流的装置和方法。通过非低温装置从工艺气体去除二氧化碳,在变压吸附器中从工艺气体分离含氢产物流。来自变压吸附器的残余气体被送至低温分离单元,其中低温分离单元通过低温分馏将残余气体流分离成含一氧化碳产物流、富氢流、富甲烷流和含一氧化碳中间流。至少一部分富氢流被再循环至变压吸附器。

Description

制备氢和一氧化碳的方法和装置
相关申请的交叉引用
本申请要求2011年8月30日提交的题目为“Process and Apparatus for Producing Hydrogen and Carbon Monoxide(制备氢和一氧化碳的方法和装置)”的临时申请序列号61/528,943的优先权,该临时申请的内容通过引用结合到本文中。
背景技术
氢、一氧化碳及氢和一氧化碳的混合物是化学和石油化学过程的所需原料。
烃转化为含氢和一氧化碳的气体是本领域熟知的。这类过程的实例包括催化蒸汽重整、自热催化重整、催化部分氧化和非催化部分氧化。这些方法各自具有优缺点,并产生各种比率的氢和一氧化碳,也称“合成气”。
由烃的转化形成的粗合成气然后通过各种方法分离以形成所需的氢、一氧化碳和/或氢和一氧化碳的混合物。一氧化碳的分离通常通过在低温分离单元或冷箱中低温分离进行,氢自粗合成气的分离通常通过变压吸附进行。
低温分离器需要组成和压力两方面均稳定的进给。因此,首先从粗合成气流去除一氧化碳,然后在变压吸附器中分离含氢的流,因为变压吸附器的输出在组成和压力两方面均发生变化。
业界需要用于自粗合成气分离氢和一氧化碳的方法和装置,其中所述方法和装置稳健(robust)并稳定(stable)。
业界需要用于自粗合成气分离氢和一氧化碳的方法和装置,所述方法和装置具有高的氢和一氧化碳回收率并具有高的能量效率。
发明简述
本发明涉及一种产生H2和CO的方法和装置。下面列出了所述方法的若干方面。
方面1. 一种用于自工艺气体产生含H2产物流和含CO产物流的装置,所述装置包括:
用于生成工艺气体的合成气生产单元,所述工艺气体包含H2、CO、CO2和H2O;
用于自工艺气体去除H2O的水去除单元;
用于自工艺气体去除CO2而不低温分馏工艺气体的CO2去除单元;
用于自工艺气体分离H2从而形成含H2产物流和残余气体流的变压吸附器;
用于将残余气体流中一种或多种组分的摩尔浓度幅度减小至低于1摩尔%的混合设备;
用于压缩残余气体流的压缩机;
用于接收压缩机后和混合设备后的残余气体流的低温分离单元,所述低温分离单元通过在低温分离单元中低温分馏将残余气体流分离成含CO产物流、富H2流、富甲烷流和含CO中间流;和
用于将至少一部分富H2流再循环至变压吸附器的导管。
方面2. 方面1的装置,所述装置还包括用于控制变压吸附器的控制器,所述控制器具有一系列编码指令,所述编码指令要求残余气体流在260kPa(绝对压力)和420kPa(绝对压力)之间或315kPa(绝对压力)和385kPa(绝对压力)之间的压力下取走。
方面3. 方面1或方面2的装置,所述装置还包括:
用于将至少一部分含CO中间流再循环至压缩机上游、变压吸附器下游的位置的第二导管。
方面4. 方面1-3中的任一项的装置,所述装置还包括:
用于将至少一部分富甲烷流传送至合成气生产单元以用作燃烧反应中的燃料的第三导管。
方面5. 方面1-4中的任一项的装置,所述装置还包括:
用于将至少一部分富甲烷流传送至合成气生产单元作为形成工艺气体的反应物进料的第四导管和第二压缩机。
方面6. 方面1-5中的任一项的装置,所述装置还包括:
有效地连接在压缩机和低温分离单元之间以在残余气体被送至低温分离单元之前去除H2O和CO2的干燥器。
方面7. 方面6的装置,其中所述干燥器为变温吸附器。
方面8. 方面1-7中的任一项的装置,所述装置还包括:
有效地连接在压缩机和低温分离单元之间以在残余气体被送至低温分离单元之前阻抑残余气体的压力变化的缓冲容器。
方面9. 方面1-8中的任一项的装置,所述装置还包括:
有效地连接在压缩机和低温分离单元之间以阻抑残余气体的压力变化并还在残余气体被送至低温分离单元之前减小残余气体中一种或多种组分的摩尔浓度幅度的第二混合设备。
方面10. 方面1-9中的任一项的装置,其中所述CO2去除单元有效地连接在合成气生产单元和变压吸附器之间。
方面11. 方面1-10中的任一项的装置,所述装置还包括:
有效地连接CO2去除单元与合成气生产单元以将在CO2去除单元中自所述工艺流去除的至少一部分CO2传送至合成气生产单元以用作形成工艺气体的反应物进料气体的第五导管。
方面12. 一种用于自工艺气体产生含H2产物流和含CO产物流的方法,所述方法包括:
在生产单元中生成工艺气体,所述工艺气体包含H2、CO、CO2和H2O;
自工艺气体去除H2O;
自工艺气体去除CO2而不低温分馏工艺气体;
在变压吸附器中通过变压吸附自工艺气体分离H2,从而形成含H2产物流和变压吸附器残余气体流,所述残余气体流在260kPa(绝对压力)和420kPa(绝对压力)之间或315kPa(绝对压力)和385kPa(绝对压力)之间的压力下从变压吸附器取出,取出的残余气体流的一种或多种组分具有随时间变化的摩尔浓度,在变压吸附器循环过程中,幅度高于2.5摩尔%或高于3摩尔%;
在混合设备中将残余气体流中所述一种或多种组分的摩尔浓度的幅度减小至低于1摩尔%;
在压缩机中压缩残余气体流;
在减小幅度和压缩步骤之后,将残余气体流送至低温分离单元;
在低温分离单元中通过低温分馏将残余气体流分离成含CO产物流、富H2流、富甲烷流和含CO中间流;和
将至少一部分富H2流引入到变压吸附器中。
方面13. 方面12的方法,所述方法还包括:
将至少一部分含CO中间流引入到压缩机上游、变压吸附器下游。
方面14. 方面12或方面13的方法,所述方法还包括:
将至少一部分富甲烷流引入到生产单元中作为燃料,从而通过间接热交换提供热以生成工艺气体。
方面15. 方面12-14中的任一项的方法,所述方法还包括:
压缩并随后将至少一部分富甲烷流引入到生产单元中作为形成工艺气体的反应物进料。
方面16. 方面12-15中的任一项的方法,所述方法还包括:
将来自压缩机的残余气体流送至干燥器以在将残余气体送至低温分离单元之前去除H2O和CO2
方面17. 方面16的方法,其中所述干燥器为变温吸附器。
方面18. 方面12-17中的任一项的方法,所述方法还包括:
将至少一部分来自干燥器的残余气体流送至缓冲容器以在将残余气体流送至低温分离单元之前阻抑残余气体流的压力变化。
方面19. 方面12-18中的任一项的方法,所述方法还包括:
将至少一部分来自干燥器的残余气体流送至第二混合设备从而阻抑压力变化并还在将残余气体流送至低温分离单元之前减小残余气体中所述一种或多种组分的摩尔浓度幅度。
方面20. 方面12-19中的任一项的方法,其中在通过变压吸附从工艺气体分离H2之前通过CO2去除单元去除CO2
方面21. 方面12-20中的任一项的方法,其中至少一部分自工艺气体去除的CO2被再循环至生产单元作为形成工艺气体的反应物进料气体。
方面22. 方面12-21中的任一项的方法,所述方法还包括:
测定含H2产物流中的N2浓度;和
缩短变压吸附器循环时间以降低含H2产物流中的N2浓度。
方面23. 方面12-22中的任一项的方法,所述方法使用方面1-11中的任一项的装置。
方面24. 方面12-22中的任一项的方法,所述方法还包括提供方面1-11中的任一项的装置。
多个附图视图的简要说明
附图为方法流程图,示出了本发明的一个优选实施方案。
发明详述
当用于说明书和权利要求书中所述本发明实施方案中的任何特征时,本文中用到的冠词“一个(a 或 an)”指一个或多个。“一个”的使用不将意思限制于单个特征,除非明确指明如此限制。单数或复数名词或名词短语前的冠词“该(the)”指特定的一种指定特征或特定的多种指定特征并可具有单数或复数含义,取决于使用其的上下文。形容词“任何”指一个、一些或不加选择的全部或任何量。置于第一实体和第二实体之间的术语“和/或”指以下情形之一:(1)第一实体、(2)第二实体和(3)第一实体和第二实体。置于3个或更多个实体的例举中的最后两个实体之间的术语“和/或”指例举实体中的至少一个。
表述“至少一部分”指“一部分或全部”。流的至少一部分可具有与其所源自的流相同的组成。流的至少一部分可包含其所源自的流的特定组分。
下游和上游指传递的工艺流体的预期流向。如果工艺流体的预期流向为自第一设备向第二设备,则第二设备在第一设备下游并与第一设备流体流动连通。
术语“富……”指所指气体的摩尔%浓度高于其所形成自的原始流。因此,富氢流的氢摩尔%浓度高于其所形成自的残余气体流。同样,富甲烷流的甲烷摩尔%浓度高于其所形成自的残余气体流。
本发明涉及用于自工艺气体产生含氢产物流和含CO产物流的方法和装置。
结合附图描述本发明,附图示出了所述方法和装置的过程流程图。
为简单清楚起见,略去了熟知的设备、电路和方法的详细描述以便本发明的描述不被不必要的细节所含混。
所述装置包括用于生成工艺气体12的合成气生产单元10。所述工艺气体通常被称为粗合成气并包含H2、CO、CO2和H2O。合成气(synthesis)也称合成气(syngas)。本文中用到的合成气为任何包含H2和CO的气态混合物。
合成气生产单元10可为本领域已知的用于产生粗合成气的任何设备。例如,所述合成气生产单元可以是蒸汽重整器(也称蒸汽甲烷重整器或蒸汽烃重整器)、自热重整器、部分氧化反应器(POX反应器)和/或气化器。各种合成气生产单元的结构和操作的详情可从公开的文献中得到,这里不予提供。
在合成气生产单元为POX反应器的情况下,所述装置可包括变换反应器(未示出)来改变工艺气体中H2与CO的比率。可以使用一个或多个变换反应器。所述一个或多个变换反应器可为所谓的高温变换反应器、中温变换反应器和/或低温变换反应器。
通常,“高温”变换反应器的入口温度在330℃至400℃范围内,出口温度在400℃至500℃范围内。高温变换反应器常使用氧化铁/氧化铬催化剂。
通常,“低温”变换反应器的入口温度在190℃至230℃范围内,出口温度在250℃至300℃范围内。低温变换反应器常使用的催化剂包括金属铜、氧化锌和一种或多种其他难还原的氧化物如氧化铝或氧化铬。
变换可在变换反应器的“组合”中进行,例如,使用一系列高温变换、经间接换热冷却、和低温变换。如果需要,可用床间冷却细分任一变换阶段。
通常,“中温”变换反应器的入口温度在250℃至325℃范围内,出口温度至高400℃。可以使用合适地配制的负载型铜催化剂。
所述装置还包括用于从工艺气体去除H2O的水去除单元20。通常,来自合成气生产单元的工艺气体处于高温下,热作为工艺气体的进一步处理的一部分从工艺气体回收。例如,可将工艺气体送至废热锅炉以从工艺气体提取热和生成蒸汽。可进一步冷却工艺气体以从工艺气体冷凝出水并因此从工艺气体去除H2O。废热锅炉中生成的蒸汽可被用在合成气生产单元中以生成工艺气体。
所述装置还包括用于从工艺气体去除CO2 32而不低温分馏的CO2去除单元30。所述CO2去除单元可为本领域已知的用于通过非低温装置自工艺气体去除CO2的任何设备。所述CO2去除单元可选自洗涤器、吸附器、吸收器和膜分离器中的至少一种。例如,CO2去除单元可为CO2洗涤器。CO2洗涤可用任何已知的市售洗涤技术和洗涤材料进行。Benfield碱性水溶液洗涤法、Shell Sulfinol和UOP™ Selexol™、Lurgi Rectisol®、BASF的aMDEA溶剂提取法为自可用的气体流去除CO2的工业技术的实例。或者,可通过变压吸附、化学吸附、膜分离、复合金属氧化物等提取CO2。在一些方法中,CO2去除单元的进料气体可在被引入CO2去除单元中之前在换热器中冷却。
变压吸附(PSA)可用于从气体混合物分离CO2。在PSA技术中,在高的分压下,固体分子筛对CO2的吸附比对一些其他气体更强。因此,在升高的压力下,随着气体混合物通过吸附床,CO2从该混合物去除。床的再生通过降压和吹扫实现。通常,对于临界操作,使用多个吸附容器以便连续分离CO2,其中,一个吸附床用于CO2分离,而其他的被再生。
自气体流分离CO2的另一技术为使用氧化物如氧化钙(CaO)和氧化镁(MgO)或它们的组合进行化学吸收。在升高的压力和温度下,CO2可被CaO吸收形成碳酸钙(CaCO3),从而从气体混合物去除CO2。吸收剂CaO通过CaCO3的煅烧再生,所述再生可将CaCO3变回CaO。
也可使用膜分离技术来从气体流分离CO2。用于高温CO2提取的膜包括沸石和陶瓷膜,这类膜对CO2具有选择性。但膜技术的分离效率低,通过膜分离可能不能实现CO2的完全分离。
用于提取CO2的另一技术可包括但不限于使用胺进行CO2的化学吸收。将CO2提取器的进料冷却到合适的温度来使用胺进行CO2的化学吸收。此技术基于的是烷醇胺溶剂,烷醇胺溶剂具有在较低的温度下吸收CO2的能力并易于通过升高富载溶剂(rich solvent)的温度而再生。富载溶剂再生后获得富CO2流。此技术中使用的溶剂可包括例如三乙醇胺、单乙醇胺、二乙醇胺、二异丙醇胺、二甘醇胺和甲基二乙醇胺。用于分离CO2的另一技术可为物理吸收。应注意,可有利地使用全部上述技术或上述技术的任何组合来分离CO2
额外的H2O可与CO2一道在CO2去除单元中去除。
CO2去除单元有效地连接在合成气生产单元10和变压吸附器40(在下面描述)之间。
CO2去除单元下游可有另一H2O去除单元(未示出)。
在CO2去除单元30中去除的CO2可被再循环用作形成工艺气体12的反应物进料气体8。工艺气体12中形成的CO的相对量可通过引入再循环的CO2来改变。所述装置可还包括导管33,导管33有效地连接CO2去除单元30与合成气生产单元10以便将至少一部分自工艺流在CO2去除单元30中去除的CO2 32传送至合成气生产单元10以用作形成工艺气体12的反应物进料气体8。
本文中用到的“导管”为管道(pipe)、管(tube)或任何其他通过其传送流体的不漏流体的通道。
所述装置还包含用于自工艺气体分离H2从而形成含H2产物流42和残余气体流44的变压吸附器40。变压吸附是制氢中进行纯化使用的熟知方法。变压吸附器和方法可结合任何所需数量的吸附剂床和任何已知的用于回收产物氢的处理循环。就方法的目的而言具有理想的选择性的任何适宜吸附剂材料均可用在本发明方法的实施中。合适的吸附剂包括例如沸石分子筛、活性炭、硅胶、活性氧化铝等。对于自重整气体混合物分离和纯化氢而言,沸石分子筛吸附剂通常是理想的。变压吸附器系统可包括一个或多个缓冲罐(surge tank)。
所述方法可包括测定含H2产物流中的N2浓度和控制变压吸附器的循环时间以保持N2浓度低于目标N2浓度。可缩短变压吸附器循环时间来降低含H2产物流中的N2浓度。可延长变压吸附器循环时间来提高含H2产物流中的N2浓度。
在降压(放压)和/或吹扫阶段,可自变压吸附循环形成残余气体流。
在CO2去除单元为变压吸附器或变真空吸附器的情况下,可将用于分离H2的变压吸附器与CO2去除单元整合。整合单元的实例在美国专利号4,171,206、RE 31,014、4,790,858、4,813,980、4,914,218和5,133,785中有公开。
所述装置还包括用于控制变压吸附器40的控制器(未示出)。所述控制器可具有一系列编码指令,所述编码指令要求残余气体流44在260kPa和420kPa之间或315kPa和385kPa之间的压力下从变压吸附器40取出,此压力高于通常使用的压力。残余气体流通常在较低的压力下取出的原因是因为当在较高的压力下取出残余气体时氢回收遭受损失。在较高压力下,即在260kPa和420kPa之间或315kPa和385kPa之间,取出残余气体的优势在于,下游压缩机需要的功率较低(在下面讨论)。控制器和一系列编码指令可通过控制供给压缩机的功率从而影响压缩机的吸入压力来控制压力。
所述装置还包括用于将残余气体流44中一种或多种组分的摩尔浓度幅度减小至低于1摩尔%的混合设备50。由于单数冠词指一个或多个,故当提及混合设备时,所述一种或多种组分的摩尔浓度幅度可在一个或多个混合设备中减小至低于1摩尔%。
由于在吸附步骤结束时吸附床中气体组成的变化及吸附剂对各种组分的相对亲和性,故在PSA循环的降压和/或吹扫阶段过程中,残余气体中组分的浓度将随时间而异。
组分浓度的幅度为在PSA循环过程中该组分的浓度极值与对于PSA循环而言该组分的时间平均浓度之间的差异。时间平均浓度定义为:
其中为组分的时间平均浓度,C(t)为组分的浓度随时间的函数,t为时间变量,T为PSA体系完成一个循环的时间。
所述混合设备能将所述一种或多种组分的摩尔浓度幅度减小至低于1摩尔%。技术人员可选择合适的混合设备。授予Smith, IV等人的美国专利6,719,007号描述了合适的混合设备,该专利通过引用并入本文。
所述装置还包含用于压缩来自变压吸附器的残余气体流的压缩机60。所述压缩机可包含循环回路,这是本领域熟知的。
压缩机60优选位于混合设备50下游,但压缩机60也可在混合设备50上游。
所述装置还包括用于接收压缩机60后和混合设备50后的残余气体流的低温分离单元100。通过在低温分离单元100中低温分馏,该低温分离单元用于将残余气体流分离成含CO产物流102、富H2流106、富甲烷流108和含CO中间流104。
所述含CO产物流可以是经纯化的(CO > 99.9摩尔%)CO流或是具有所需CO:H2比率的“羰基气体(oxogas)”。本文中用到的“羰基气体”为CO/H2共混物。例如,所述含CO产物流可以是CO:H2比率为1:1或CO:H2比率为1:2的羰基气体,或者可以具有任何其他所需的比率,取决于使用该羰基气体的下游产物需要。所述含CO产物流的CO摩尔浓度可为30摩尔%到100摩尔%。
富H2流106的H2摩尔浓度高于引入低温分离单元100中自其形成富H2流的残余气体流。所述富H2流可具有60摩尔%到95摩尔% H2的摩尔浓度。
所述装置包括导管107,导管107用于将至少一部分富H2流106再循环至变压吸附器40。所述富H2流可随进给到变压吸附器的工艺气体一起引入。所述富H2流可在合成气生产单元和PSA之间的任何点处与工艺气体混合。或者,所述富H2流可单独地引入变压吸附器中。
再循环所述富H2流提高系统的总H2回收率。当在260kPa(绝对压力)和420kPa(绝对压力)之间的压力下从变压吸附器取出残余气体流44时,这特别重要,因为在此较高的压力范围内取出将导致更多的氢转到残余气体中。PSA中的“局部”H2回收率降低,但由于所述富H2流的再循环,总H2回收率提高。
富甲烷流108的CH4摩尔浓度高于引入低温分离单元100中自其形成富甲烷流的残余气体流。所述富甲烷流可具有45摩尔%到85摩尔% CH4的摩尔浓度。
富甲烷流108可用作合成气生产单元10中的燃料,例如当合成气生产单元为蒸汽甲烷重整器时。所述装置可还包括导管109,导管109用于将至少一部分富甲烷流传送至合成气生产单元10以用作燃烧反应中的燃料。
此外或或者,富甲烷流108可被再循环至合成气生产单元10作为形成工艺气体12的反应物进料8。所述装置可还包括导管111和压缩机110,所述导管和压缩机用于将至少一部分富甲烷流108传送至合成气生产单元10作为形成工艺气体12的反应物进料8。
含CO中间流104含CO和其他组分物质。所述含CO中间流可具有20摩尔%到60摩尔% CO的摩尔浓度。所述含CO中间流可具有20摩尔%到60摩尔% CO的CO浓度和0.5摩尔%到3摩尔%甲烷的甲烷浓度。
所述装置可还包括导管105,导管105用于将至少一部分含CO中间流104再循环至压缩机60上游、变压吸附器40下游的位置处。含CO中间流104很可能处于比适于引入低温分离单元中的压力低的压力下并因此需要被压缩。将所述含CO流再循环回工艺气体意味着系统将能回收含CO中间流中的CO,从而提高系统的总CO回收率。
合适的低温分离单元和循环是本领域已知的。低温分离单元可包括甲烷洗循环和/或部分冷凝循环。低温分离单元的具体设计和操作当然取决于系统的所需产物。
US2010-0223952示出了适于通过低温分馏将残余气体分离成含CO产物流、富H2流、富甲烷流和含CO中间流的低温分离单元的一个实例。参照US2010-0223952中的附图和表格,流11和22可被视为含CO产物流:流11(73摩尔% H2加27摩尔% CO)为羰基气体流,流22(99摩尔% CO)为基本纯净的CO产物流。流6(87摩尔% H2)可被视为富H2流,流27(55摩尔% CH4)可被视为富甲烷流。流15(46摩尔% CO)可被视为含CO中间流。
所述装置可还包括干燥器70,干燥器70有效地连接在压缩机60和低温分离单元100之间以在残余气体被送至低温分离单元100之前去除任何痕量的H2O和CO2。干燥器70可为变温吸附器(TSA)。为去除H2O和CO2进行的变温吸附是熟知的方法。用于去除H2O和CO2的变温吸附器是已知的,例如,US 2008/0308769 A1描述了一种为变温吸附器的干燥单元。
所述装置可还包括缓冲容器90,缓冲容器90有效地连接在压缩机60和低温分离单元100之间以在残余气体被送至低温分离单元100之前阻抑残余气体的压力变化。缓冲容器90包含残余气体,该残余气体在比低温分离单元的进料气体高的压力下。自缓冲容器向低温分离单元的流动被控制以在当低温分离单元的进料因系统中的压力变化变低时补充任何流量。
所述装置可还包括额外的混合设备80,混合设备80有效地连接在压缩机60和低温分离单元100之间以阻抑残余气体的压力变化并还在残余气体被送至低温分离单元100之前减小残余气体中一种或多种组分的摩尔浓度幅度。混合设备80可具有与混合设备50相同的设计。
下面结合附图描述用于自工艺气体产生含H2产物流和含CO产物流的方法。
所述方法包括在生产单元10中生成工艺气体12。所述工艺气体为包含H2、CO、CO2和H2O的粗合成气。
所述方法包括自工艺气体去除H2O。H2O可在如上面关于装置所讨论的水去除单元20中去除。
所述方法包括自工艺气体去除CO2而不低温分馏工艺气体。CO2可例如通过吸附和/或膜分离去除。CO2可在如上面关于装置所述的CO2去除单元中去除。至少一部分自工艺气体去除的CO2可被再循环至生产单元10作为形成工艺气体12的反应物进料气体8。工艺气体12中形成的CO的相对量可通过再循环CO2来改变。
可在去除CO2之前从工艺气体去除H2O。此外,可在CO2去除步骤过程中及去除CO2之后从工艺气体去除H2O。
所述方法还包括在变压吸附器40中通过变压吸附自工艺气体分离H2从而形成含H2产物流42和变压吸附器残余气体流4。H2可在如上面关于装置所讨论的变压吸附器中分离。CO2可优选在通过变压吸附从工艺气体分离H2之前通过CO2去除单元去除。
残余气体流44在260kPa(绝对压力)和420kPa(绝对压力)之间或315kPa(绝对压力)和385kPa(绝对压力)之间的压力下取出,此压力高于通常使用的压力。残余气体流通常在低于260MPa的压力下取出的原因是因为当在较高的压力下取出残余气体时氢的回收遭受损失。在较高压力下,即在260kPa(绝对压力)和420kPa(绝对压力)之间,取出残余气体的优势在于,下游压缩机需要的功率较低。
残余气体流44被取出,该残余气体流的一种或多种组分具有随时间变化的摩尔浓度,在变压吸附器循环过程中,幅度高于2.5摩尔%或高于3摩尔%。由于在吸附步骤结束时吸附床中气体组成的变化及吸附剂对各种组分的相对亲和性,故在PSA循环的降压和/或吹扫阶段过程中,残余气体中组分的浓度将随时间而异。例如,H2浓度可自时间平均浓度变化约±3摩尔%,N2浓度可自时间平均浓度变化约±4摩尔%,CO浓度可自时间平均浓度变化约±5摩尔%,甲烷浓度可自时间平均浓度变化约±1.5摩尔%。在变压吸附器循环过程中,由于H2、N2和CO变化超过2.5摩尔%,故取出的一种或多种组分(在此情况下,3种组分)具有幅度高于2.5摩尔%的随时间变化的摩尔浓度。
所述方法包括在混合设备中将残余气体流中所述一种或多种组分的摩尔浓度幅度减小至低于1摩尔%。所述混合设备可为如上面关于装置所述。
所述方法包括在压缩机60中压缩残余气体流。
可在残余气体被压缩之前减小所述一种或多种组分的摩尔浓度幅度或者可按设计偏好在所述一种或多种组分的摩尔浓度幅度被减小之前压缩残余气体。
所述方法包括在减小幅度和压缩步骤之后将残余气体流送至低温分离单元100。所述低温分离单元可为如上面关于装置所述。
所述方法包括在低温分离单元100中通过低温分馏将残余气体流分离成含CO产物流102、富H2流106、富甲烷流108和含CO中间流104。含CO产物流102、富H2流106、富甲烷流108和含CO中间流104为如上面关于装置所述。
所述方法包括将至少一部分富H2流106引入到变压吸附器40中。所述富H2流可随进给到变压吸附器的工艺气体一起引入。所述富H2流可在合成气生产单元和PSA之间的任何点处与工艺气体混合。或者,所述富H2流可单独地引入变压吸附器中。
再循环所述富H2流将提高系统的H2回收率。当在260kPa和420kPa之间的压力下从变压吸附器取出残余气体流44时,这特别重要。
所述方法可还包括将至少一部分含CO中间流104引入到压缩机60上游、变压吸附器40下游。所述含CO中间流可在变压吸附器40后、压缩机60前任何点处引入。将所述含CO流再循环回工艺气体意味着系统将能回收含CO中间流中的CO,从而提高系统的总CO回收率。
所述方法可还包括将至少一部分富甲烷流108引入到生产单元10中作为燃料,从而提供热以生成工艺气体12。所述富甲烷流特别适于用作蒸汽甲烷重整器中的燃料。
所述方法可还包括压缩和随后将至少一部分富甲烷流108引入到生产单元10中作为形成工艺气体12的反应物进料8。
所述方法可还包括将来自压缩机60的残余气体流送至干燥器70以在将残余气体送至低温分离单元100之前去除任何痕量的H2O和CO2。所述干燥器可如上面关于装置所述。所述干燥器可为变温吸附器。
所述方法可还包括将至少一部分来自干燥器70的残余气体流送至缓冲容器90以在将残余气体流送至低温分离单元100之前阻抑残余气体流的压力变化。所述缓冲容器可如上面关于装置所述。
所述方法可还包括将至少一部分来自干燥器70的残余气体流送至混合设备80从而阻抑压力变化并还在将残余气体流送至低温分离单元100之前减小残余气体中所述一种或多种组分的摩尔浓度幅度。混合设备80可如上面关于装置所述。
虽然已结合特定的实施方案或实施例描述了本发明,但本发明不限于此,而是在不偏离本发明的范围的情况下可改变或修改为任何各种其他形式,本发明的范围由附随的权利要求书限定。当然,应理解,在任何这类实际的实施方案的开发中,必须作出众多以实施为导向性具体决定来达到开发者的特定目标,例如依从系统相关和商业相关的约束,这将随不同的实施而异。此外,应理解,虽然这样的开发努力可能复杂并耗时,但有了本发明的有益效果,对本领域技术人员来说将是一项例行的工作。

Claims (20)

1.一种用于自工艺气体产生含H2产物流和含CO产物流的装置,所述装置包括:
用于生成工艺气体的合成气生产单元,所述工艺气体包含H2、CO、CO2和H2O;
用于自工艺气体去除H2O的水去除单元;
用于自工艺气体去除CO2而不低温分馏工艺气体的CO2去除单元;
用于自工艺气体分离H2从而形成含H2产物流和残余气体流的变压吸附器;
用于将残余气体流中一种或多种组分的摩尔浓度幅度减小至低于1摩尔%的混合设备;
用于压缩残余气体流的压缩机;
有效地连接在压缩机和低温分离单元之间以在残余气体被送至低温分离单元之前阻抑残余气体的压力变化的缓冲容器;
用于接收压缩机后和混合设备后的残余气体流的低温分离单元,所述低温分离单元通过在低温分离单元中低温分馏将残余气体流分离成含CO产物流、富H2流、富甲烷流和含CO中间流;和
用于将至少一部分富H2流再循环至变压吸附器的导管。
2.权利要求1的装置,所述装置还包括用于控制变压吸附器的控制器,所述控制器具有一系列编码指令,所述编码指令要求残余气体流在260kPa和420kPa之间的绝对压力下从变压吸附器取出。
3.权利要求1的装置,所述装置还包括:
用于将至少一部分含CO中间流再循环至压缩机上游、变压吸附器下游的位置的第二导管。
4.权利要求1的装置,所述装置还包括:
用于将至少一部分富甲烷流传送至合成气生产单元以用作燃烧反应中的燃料的第三导管。
5.权利要求1的装置,所述装置还包括:
用于将至少一部分富甲烷流传送至合成气生产单元作为形成工艺气体的反应物进料的第四导管和第二压缩机。
6.权利要求1的装置,所述装置还包括:
有效地连接在压缩机和低温分离单元之间以在残余气体被送至低温分离单元之前去除H2O和CO2的干燥器。
7.权利要求6的装置,其中所述干燥器为变温吸附器。
8.权利要求1的装置,所述装置还包括:
有效地连接在压缩机和低温分离单元之间以阻抑残余气体的压力变化并还在残余气体被送至低温分离单元之前减小残余气体中一种或多种组分的摩尔浓度幅度的第二混合设备。
9.权利要求1的装置,其中所述CO2去除单元有效地连接在合成气生产单元和变压吸附器之间。
10.权利要求1的装置,所述装置还包括:
有效地连接CO2去除单元与合成气生产单元以将在CO2去除单元中自所述工艺流去除的至少一部分CO2传送至合成气生产单元以用作形成工艺气体的反应物进料气体的第五导管。
11.一种用于自工艺气体产生含H2产物流和含CO产物流的方法,所述方法包括:
在生产单元中生成工艺气体,所述工艺气体包含H2、CO、CO2和H2O;
自工艺气体去除H2O;
自工艺气体去除CO2而不低温分馏工艺气体;
在变压吸附器中通过变压吸附自工艺气体分离H2,从而形成含H2产物流和变压吸附器残余气体流,所述残余气体流在260kPa和420kPa之间的绝对压力下从变压吸附器取出,取出的残余气体流的一种或多种组分具有随时间变化的摩尔浓度,在变压吸附器循环过程中,幅度高于2.5摩尔%;
在混合设备中将残余气体流中所述一种或多种组分的摩尔浓度的幅度减小至低于1摩尔%;
在压缩机中压缩残余气体流;
将至少一部分来自干燥器的残余气体流送至缓冲容器以在将残余气体流送至低温分离单元之前阻抑残余气体流的压力变化;
在减小幅度和压缩步骤之后,将残余气体流送至低温分离单元;
在低温分离单元中通过低温分馏将残余气体流分离成含CO产物流、富H2流、富甲烷流和含CO中间流;和
将至少一部分富H2流引入到变压吸附器中。
12.权利要求11的方法,所述方法还包括:
将至少一部分含CO中间流引入到压缩机上游、变压吸附器下游。
13.权利要求11的方法,所述方法还包括:
将至少一部分富甲烷流引入到生产单元中作为燃料,从而提供热以生成工艺气体。
14.权利要求11的方法,所述方法还包括:
压缩并随后将至少一部分富甲烷流引入到生产单元中作为形成工艺气体的反应物进料。
15.权利要求11的方法,所述方法还包括:
将来自压缩机的残余气体流送至干燥器以在将残余气体送至低温分离单元之前去除H2O和CO2
16.权利要求15的方法,其中所述干燥器为变温吸附器。
17.权利要求11的方法,所述方法还包括:
将至少一部分来自干燥器的残余气体流送至第二混合设备从而阻抑压力变化并还在将残余气体流送至低温分离单元之前减小残余气体中所述一种或多种组分的摩尔浓度幅度。
18.权利要求11的方法,其中在通过变压吸附从工艺气体分离H2之前通过CO2去除单元去除CO2
19.权利要求11的方法,其中至少一部分自工艺气体去除的CO2被再循环至生产单元作为形成工艺气体的反应物进料气体。
20.权利要求11的方法,所述方法还包括:
测定含H2产物流中的N2浓度;和
缩短变压吸附器循环时间以降低含H2产物流中的N2浓度。
CN201210314137.5A 2011-08-30 2012-08-30 制备氢和一氧化碳的方法和装置 Active CN103030113B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161528943P 2011-08-30 2011-08-30
US61/528,943 2011-08-30
US61/528943 2011-08-30
US13/478,597 2012-05-23
US13/478597 2012-05-23
US13/478,597 US8808425B2 (en) 2011-08-30 2012-05-23 Process and apparatus for producing hydrogen and carbon monoxide

Publications (2)

Publication Number Publication Date
CN103030113A CN103030113A (zh) 2013-04-10
CN103030113B true CN103030113B (zh) 2015-07-22

Family

ID=46934450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210314137.5A Active CN103030113B (zh) 2011-08-30 2012-08-30 制备氢和一氧化碳的方法和装置

Country Status (4)

Country Link
US (1) US8808425B2 (zh)
EP (1) EP2565154B1 (zh)
CN (1) CN103030113B (zh)
ES (1) ES2635462T3 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2842928A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
AU2012223571B2 (en) 2011-03-01 2016-08-25 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
CA2949262C (en) 2014-07-25 2020-02-18 Shwetha Ramkumar Cyclical swing absorption process and system
BR112017009325A2 (pt) * 2014-11-03 2017-12-19 Anellotech Inc processo aperfeiçoado para recuperação de monóxido de carbono a partir de produto de pirólise rápida catalítica
SG11201702212VA (en) 2014-11-11 2017-05-30 Exxonmobil Upstream Res Co High capacity structures and monoliths via paste imprinting
EP3229938A1 (en) 2014-12-10 2017-10-18 ExxonMobil Research and Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
EP3237091B1 (en) 2014-12-23 2021-08-04 ExxonMobil Upstream Research Company Structured adsorbent beds and methods of producing the same
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
SG11201707069QA (en) 2015-05-15 2017-11-29 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
US9843062B2 (en) 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
US9840413B2 (en) 2015-05-18 2017-12-12 Energyield Llc Integrated reformer and syngas separator
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3344371B1 (en) 2015-09-02 2021-09-15 ExxonMobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
EP3599218A1 (de) * 2015-10-01 2020-01-29 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren und anlage zur erzeugung von synthesegas mit variabler zusammensetzung
KR102123224B1 (ko) 2015-10-27 2020-06-16 엑손모빌 업스트림 리서치 캄파니 복수의 밸브들을 갖는 관련 스윙 흡착 공정을 위한 장치 및 시스템
EA201891029A1 (ru) 2015-10-27 2018-10-31 Эксонмобил Апстрим Рисерч Компани Устройство и система для процессов короткоцикловой адсорбции, имеющие множество клапанов
SG11201802604TA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
FR3054216B1 (fr) * 2016-07-25 2021-07-09 Air Liquide Procede de separation d’un gaz de synthese
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
EP3429727A1 (en) 2016-03-18 2019-01-23 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN109219476A (zh) 2016-05-31 2019-01-15 埃克森美孚上游研究公司 用于变吸附方法的装置和系统
AU2017274289B2 (en) 2016-05-31 2020-02-27 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
BR112019002106B1 (pt) 2016-09-01 2023-10-31 ExxonMobil Technology and Engineering Company Processo para remover água de corrente de alimentação gasosa,sistema cíclico adsorvente por variação de ciclo rápido e contator de canal substancialmente paralelo
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US11506122B2 (en) 2016-11-09 2022-11-22 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
CN107490244B (zh) * 2017-07-27 2023-05-30 四川蜀道装备科技股份有限公司 一种低功耗co深冷分离系统及其分离方法
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
EP3758828A1 (en) 2018-02-28 2021-01-06 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
US10562769B1 (en) * 2018-09-06 2020-02-18 Air Products And Chemicals, Inc. Dual product H2 and CO production with CO turndown
EP3620431B1 (en) * 2018-09-06 2020-08-19 Air Products And Chemicals, Inc. Dual h2 and co production with co turndown
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
WO2020222932A1 (en) 2019-04-30 2020-11-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US20220233994A1 (en) * 2019-05-30 2022-07-28 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
AU2020292848A1 (en) 2019-06-13 2022-02-03 8 Rivers Capital, Llc Power production with cogeneration of further products
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho
CN110980645A (zh) * 2019-12-27 2020-04-10 乔治洛德方法研究和开发液化空气有限公司 一种蒸汽烃类重整方法
EP3878807A1 (en) * 2020-03-13 2021-09-15 Clariant International Ltd Process for the production of synthesis gas via allothermic gasification with controlled carbon dioxide reduction
CA3185775A1 (en) * 2020-08-17 2022-02-24 Steffen Spangsberg Christensen Atr-based hydrogen process and plant
CA3238610A1 (en) 2021-11-18 2023-05-25 Rodney John Allam Apparatus for hydrogen production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210638A1 (de) * 1991-09-12 1993-03-18 Linde Ag Verfahren zur gewinnung von hochreinem wasserstoff und hochreinem kohlenmonoxid
US5351491A (en) * 1992-03-31 1994-10-04 Linde Aktiengesellschaft Process for obtaining high-purity hydrogen and high-purity carbon monoxide
US6719007B2 (en) * 2001-07-10 2004-04-13 Air Products And Chemicals, Inc. Amplitude attenuation of time-variant properties of fluid streams
EP1544166A2 (en) * 2003-09-25 2005-06-22 The Boc Group, Inc. High recovery carbon monoxide production process
EP1716906A1 (en) * 2005-04-26 2006-11-02 Air Products and Chemicals, Inc. Adsorbents for rapid cycle pressure swing adsorption processes
EP1967491A2 (de) * 2007-03-06 2008-09-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Wasserstoffabtrennung aus Gasströmen mit Sauerstoffanteil

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171206A (en) 1978-08-21 1979-10-16 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures
USRE31014E (en) 1981-03-30 1982-08-17 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures
US4553981A (en) * 1984-02-07 1985-11-19 Union Carbide Corporation Enhanced hydrogen recovery from effluent gas streams
US4813980A (en) 1987-10-16 1989-03-21 Air Products And Chemicals, Inc. Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
US4790858A (en) 1988-01-29 1988-12-13 Air Products And Chemicals, Inc. Fractionation of multicomponent gas mixtures by pressure swing adsorption
US4914218A (en) 1989-02-17 1990-04-03 Ravi Kumar Adsorptive process for separating multicomponent gas mixtures
US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US5133785A (en) 1991-02-26 1992-07-28 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures by selective adsorption
US6303092B1 (en) * 1995-04-10 2001-10-16 Air Products And Chemicals, Inc. Process for operating equilibrium controlled reactions
US6500241B2 (en) * 2000-12-19 2002-12-31 Fluor Corporation Hydrogen and carbon dioxide coproduction
FR2832398B1 (fr) 2001-11-22 2004-10-01 Air Liquide Installation de production d'hydrogene et procedes pour la mise en oeuvre de cette installation
FR2838424B1 (fr) * 2002-04-15 2004-05-28 Air Liquide Procede et installation de separation d'un melange d'hydrogene et de monoxyde de carbone
JP4317213B2 (ja) * 2003-04-03 2009-08-19 フルオー・テクノロジーズ・コーポレイシヨン 炭素捕捉の配置及び方法
EP1890961B1 (fr) 2005-06-06 2017-02-22 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procede pour la production simultanee d'hydrogene et de monoxyde de carbone
US7871457B2 (en) * 2006-04-03 2011-01-18 Praxair Technology, Inc. Carbon dioxide production method
FR2934581B1 (fr) 2008-08-04 2011-02-18 Air Liquide Procede et appareil de generation et de purification de gaz de synthese.
US8640495B2 (en) 2009-03-03 2014-02-04 Ait Products and Chemicals, Inc. Separation of carbon monoxide from gaseous mixtures containing carbon monoxide
JP6378311B2 (ja) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション 物体を特徴付ける方法とシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210638A1 (de) * 1991-09-12 1993-03-18 Linde Ag Verfahren zur gewinnung von hochreinem wasserstoff und hochreinem kohlenmonoxid
US5351491A (en) * 1992-03-31 1994-10-04 Linde Aktiengesellschaft Process for obtaining high-purity hydrogen and high-purity carbon monoxide
US6719007B2 (en) * 2001-07-10 2004-04-13 Air Products And Chemicals, Inc. Amplitude attenuation of time-variant properties of fluid streams
EP1544166A2 (en) * 2003-09-25 2005-06-22 The Boc Group, Inc. High recovery carbon monoxide production process
EP1716906A1 (en) * 2005-04-26 2006-11-02 Air Products and Chemicals, Inc. Adsorbents for rapid cycle pressure swing adsorption processes
EP1967491A2 (de) * 2007-03-06 2008-09-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Wasserstoffabtrennung aus Gasströmen mit Sauerstoffanteil

Also Published As

Publication number Publication date
EP2565154A2 (en) 2013-03-06
EP2565154B1 (en) 2017-07-12
US8808425B2 (en) 2014-08-19
ES2635462T3 (es) 2017-10-03
EP2565154A3 (en) 2013-04-03
CN103030113A (zh) 2013-04-10
US20130047665A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
CN103030113B (zh) 制备氢和一氧化碳的方法和装置
CA2432224C (en) Improved hydrogen and carbon dioxide coproduction
CA2657669C (en) Steam-hydrocarbon reforming method with limited steam export
CA2683094C (en) Method and apparatus for separating acidic gases from syngas
CA2873083C (en) Method for production of co, h2 and methanol-synthesis gas from a synthesis gas, in particular from acetylene off-gas
CA2762282A1 (en) Processes for the recovery of high purity hydrogen and high purity carbon dioxide
AU2018341260B2 (en) Methods and apparatus for production of hydrogen
US20220144634A1 (en) Process and plant for producing hydrogen and for separating carbon dioxide from synthesis gas
JP4440653B2 (ja) 水素および一酸化炭素の混合物を分離するための方法および装置
KR20240017359A (ko) 이산화탄소 배출량을 낮추면서 증기 개질에 의해 순수 수소를 생산하기 위한 방법 및 플랜트
CN101850209A (zh) 一种弛放气的处理方法及处理装置
CA3209171A1 (en) Improved gas reformer for producing hydrogen
CA3208575A1 (en) Pre-combustion co2 removal in a natural gas fed steam methane reformer (smr) based hydrogen plant
US20150352483A1 (en) Method and device for generating fuel for a gas turbine
WO2015104532A1 (en) Hydrogen production processing
Samipour et al. CO2 removal from biogas and syngas
CA2532317C (en) Process for the removal of hydrogen sulphide and other sour gas components from industrial gases under pressure
CN113891850B (zh) 用于分离一氧化碳、氢气和至少一种酸性气体的混合物的方法和装置
US20220233994A1 (en) Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
ES2831352T3 (es) Doble producción de H2 y CO con regulación de CO
CN105597518A (zh) 低温甲醇洗单元co2尾气与co2产品气联合处理工艺
RU2779804C2 (ru) Способы и устройства для производства водорода
CA3218108A1 (en) Process and plant for producing pure hydrogen by steam reforming with reduced carbon dioxide emissions
CA3124749A1 (en) Methanol synthsis with co2 recycling and hydrogen separator
DK201900370A1 (en) HYDROGEN PURIFICATION TECHNOLOGY

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant