CN103018205A - 一种ArF激光光学薄膜角度散射测量装置 - Google Patents
一种ArF激光光学薄膜角度散射测量装置 Download PDFInfo
- Publication number
- CN103018205A CN103018205A CN2012105206088A CN201210520608A CN103018205A CN 103018205 A CN103018205 A CN 103018205A CN 2012105206088 A CN2012105206088 A CN 2012105206088A CN 201210520608 A CN201210520608 A CN 201210520608A CN 103018205 A CN103018205 A CN 103018205A
- Authority
- CN
- China
- Prior art keywords
- detection device
- laser
- polarization detection
- light polarization
- scattered light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 33
- 239000010409 thin film Substances 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 47
- 230000010287 polarization Effects 0.000 claims abstract description 44
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005350 fused silica glass Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 abstract description 4
- 230000003746 surface roughness Effects 0.000 abstract description 3
- 238000004141 dimensional analysis Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种ArF激光光学薄膜角度散射测量装置,包括:用于产生测量激光的ArF准分子激光器;在测量激光的光路上依次设有ArF准分子激光扩束准直装置,可变光阑,偏振光起偏器和分束器;测量激光经过分束器后分为两条光路,其中一条光路上设有参比光偏振探测装置;另外一条光路上设有旋转样品台;测量激光照射在所述旋转样品台上的样品后,透射光路上设有透射光偏振探测装置,散射光路上设有散射光偏振探测装置。本发明的ArF激光光学薄膜角度散射测量装置是一个专门针对ArF激光波长光学元件建立的角度散射测量装置;通过测试入射平面内的散射光空间分布,可以计算得到一维表面粗糙度,进而分析多层膜在生长过程中微观结构的变化。
Description
技术领域
本发明涉及准分子级光学薄膜元件角度散射测量领域,具体涉及一种ArF激光光学薄膜角度散射测量装置。
背景技术
随着ArF准分子激光在许多领域中显示出的巨大优势,迫切需求在紫外(UV)/深紫外(DUV)/真空紫外(VUV)范围内制备出低损耗、高聚集密度及长寿命的光学薄膜。其中薄膜损耗主要包括薄膜的吸收损耗和散射损耗两种。散射损耗的后果是反射与透射能量降低,同时带来杂散光,影响整个光学系统的性能。在ArF准分子激光器中,光线在谐振腔中多次振荡,如果高反射镜的散射损耗较大,对于ArF准分子激光器的输出功率有着十分重要的影响。因此,精确表征薄膜的散射损耗对于其光学薄膜元件的制备研究具有重要意义。
光学薄膜的散射可分为体内散射和界面散射(或表面散射)。体内散射起因于薄膜内部折射率的不均匀性。由于蒸发薄膜都具有柱状结构,其孔隙和柱体的折射率差异很大,因而产生散射。体内散射对入射光线的影响与体内吸收相仿,它使薄膜中的光强度随着薄膜厚度的增加而按指数规律衰减,它们两者对于透射光或者反射光的影响难以区别,所以测量体内散射相对困难。表面散射主要由表面缺陷和表面微观粗糙度所引起,可以通过散射的标量理论和矢量理论计算。标量理论产生于20世纪60年代,理论值与实验结果得到较好的符合。但是由于忽略了散射光线的方向和偏振等因素,只考察总积分散射这一项物理量,就不容易从中得到较多的关于表面微观物理量的信息。矢量理论则是20世纪70年代提出的新理论。它弥补了标量理论的不足,在分析计算中考虑了散射光的方位和偏振特性。因此利用矢量理论能计算出薄膜表面散射光在空间各方向的强度分布图,它能够较好地体现表面各种空间频率的微粗糙度的大小与状态,能够体现出更多的表面结构特征。
目前大多数的散射测量都是基于标量理论设计的积分散射测试装置,而利用矢量理论建立的角度散射测量装置还缺乏相应的成熟产品,尤其是针对ArF激光光学薄膜元件的角度散射测量。
发明内容
根据ArF激光光学薄膜元件角度散射特性精密测量的实际需要,考虑到已经建立的针对标量理论设计的积分散射测试装置的不足,本发明提出一种ArF激光光学薄膜元件角度散射测量装置。
为了解决上述技术问题,本发明的技术方案具体如下:
一种ArF激光光学薄膜角度散射测量装置,包括:用于产生测量激光的ArF准分子激光器;
在测量激光的光路上依次设有ArF准分子激光扩束准直装置,可变光阑,193nm偏振光起偏器和分束器;
测量激光经过分束器后分为两条光路,其中一条光路上设有193nm参比光偏振探测装置;另外一条光路上设有旋转样品台;
测量激光照射在所述旋转样品台上的样品后,透射光路上设有193nm透射光偏振探测装置,散射光路上设有193nm散射光偏振探测装置。
在上述技术方案中,所述ArF准分子激光扩束准直装置,可变光阑,193nm偏振光起偏器,分束器,193nm参比光偏振探测装置,193nm透射光偏振探测装置,193nm散射光偏振探测装置,以及旋转样品台均分别处于真空腔体内。
在上述技术方案中,所述真空腔体用熔石英或CaF2进行密封。
在上述技术方案中,所述旋转样品台可以绕其圆心,在水平方向0-360度范围内连续转动。
在上述技术方案中,所述193nm散射光探测装置安装在一个旋转臂上,可以在测量激光入射平面内0-180度范围内转动。
在上述技术方案中,所述193nm参比光偏振探测装置,所述193nm透射光偏振探测装置以及所述193nm散射光探测装置分别为一个光电倍增管。
本发明与现有技术相比,具有如下有益效果:
1.本发明的ArF激光光学薄膜角度散射测量装置是一个专门针对ArF激光波长光学元件建立的角度散射测量装置;
2.本发明的ArF激光光学薄膜角度散射测量装置,通过测试入射平面内的散射光空间分布,可以计算得到一维表面粗糙度,进而分析多层膜在生长过程中微观结构的变化。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明的ArF激光光学薄膜角度散射测量装置一种具体实施方式的结构示意图;
图2是图1所示具体实施方式中的光路原理图。
图中附图标记表示为:
0-ArF准分子激光器;1、2、3、4-矩形真空腔体;
5- ArF准分子激光扩束准直装置;6-可变光阑;7-偏振光起偏器;8-分束器;9-193nm参比光偏振探测装置;10-旋转样品台;11-193nm透射光偏振探测装置;12-193nm散射光偏振探测装置。
具体实施方式
下面结合附图对本发明做以详细说明。
本发明的ArF激光光学薄膜角度散射测量装置的主体包括一个起偏装置、三套193nm波长偏振光探测装置和一个样品台。
本发明的ArF激光光学薄膜角度散射测量装置的系统示意图如图1所示,测量装置系统光路原理图如图2所示,该测量装置主要包括:ArF准分子激光器0、矩形真空腔体1、矩形真空腔体2、矩形真空腔体3、矩形真空腔体4、ArF准分子激光扩束准直装置5、可变光阑6、193nm偏振光起偏器7、分束器8、193nm参比光偏振探测装置9、旋转样品台10、193nm透射光偏振探测装置11、193nm散射光偏振探测装置12,及控制和数据获取系统。所述193nm参比光偏振探测装置9,所述193nm透射光偏振探测装置11以及所述193nm散射光探测装置12分别为一个光电倍增管。
本发明的ArF激光光学薄膜角度散射测量装置的真空腔体管路由四个大小不同的矩形真空腔体和连接这些矩形真空腔体之间的圆形管路组成,这四个矩形真空腔体均为径向垂直水平面固定放置在一个金属柜上方。其中,矩形真空腔体1沿水平入射光路方向前后相对开有两个开口;矩形真空腔体2除了沿水平入射光路方向前后相对开有两个开口,在垂直入射光路方向也有一个开口;矩形真空腔体3只在沿垂直入射光路方向有一个前开口;矩形真空腔体4只在沿水平入射光路方向有一个前开口。矩形真空腔体1的前开口用熔石英或CaF2进行密封,并在该开口的边上安装通入N2气的连接管路,在后开口通过一段矩形真空管路与矩形真空腔体2的前开口相连;矩形真空腔体2垂直入射光路方向的开口通过一段矩形真空管路与矩形真空腔体3的开口相连;矩形真空腔体2的后开口通过一段矩形真空管路与矩形真空腔体4的开口相连。
矩形真空腔体1底板上安装了一组ArF准分子激光扩束准直装置5即ArF激光扩束镜和准直镜,以及一个可变光阑6。
矩形真空腔体2底板上安装了一个偏振光起偏器7,在偏振光起偏器7后面是一个分束器8。
矩形真空腔体3底板上安装193nm参比光偏振探测装置9,其包括一个检偏器和一个探测器。
矩形真空腔体4轴向上部的密封板上有一个大小适度的开口,利用一个带有密封胶圈的盖子进行密封。矩形真空腔体4内部包括193nm透射光偏振测量装置11、旋转样品台10、193nm散射光偏振探测装置12。旋转样品台10的形状为圆形,圆心位于入射光线上。旋转样品台10的可以根据实际测量光学元件的大小选择合适尺寸,可以利用步进电机驱动使样品台围绕圆心在水平方向0-360度范围内连续转动。193nm散射光探测装置12位于样品台入射光一侧,包含一个检偏器和一个探测器,安装在一个旋转臂上,可以绕样品台的圆心旋转,旋转角度在入射平面内0-180度范围内连续转动。
样品数据获得和控制系统由计算机、步进电机控制卡、驱动器等组成,利用可编程软件Labview实现仪器控制、数据采集和过程监控等功能。样品数据获得和控制系统图1中未示出。
本发明的ArF激光光学薄膜角度散射测量装置在正式测量之前,为了避免空气中氧气和水蒸汽在低于200nm产生的吸收,在真空腔体1的前端开始通入高纯N2气,充满整个腔体管路,并在矩形真空腔体3和矩形真空腔体4各开一个出气孔,排出N2气,整个腔体中通入高纯N2气30分钟以上,直至测试系统的100% 线测量结果完全稳定后,才开始进行样品扫描。
角度散射测量过程中,根据光学元件的大小,设定矩形真空腔体1中的可变光阑6的大小;设定偏振光起偏器7选择偏振态,并据此分别设定矩形真空腔体3中参比光偏振探测装置9的检偏器状态,以及矩形真空腔体4中透射光偏振探测装置11的检偏器状态;在样品没有放入旋转样品台10之前,分别记录193nm参比光偏振探测装置探测器9的读数和193nm透射光偏振探测装置11探测器的读数,并用193nm透射光偏振探测装置11探测器的读数除193nm参比光偏振探测装置9探测器的读数,得到的数值作为参考百线值;
然后将样品放入旋转样品台10,设定193nm散射光偏振探测装置12探测器的角度范围;分别记录193nm参比光偏振探测装置9探测器的读数和193nm散射光偏振探测装置12探测器的读数,并用193nm散射光偏振探测装置12探测器的读数除193nm参比光偏振探测装置9探测器的读数,得到的数值再除前面得到的参考百线值。由此确定相应入射光强I0下,ArF激光光学薄膜元件随角度变化的散射光强I。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (6)
1.一种ArF激光光学薄膜角度散射测量装置,其特征在于, 包括:用于产生测量激光的ArF准分子激光器;
在测量激光的光路上依次设有ArF准分子激光扩束准直装置,可变光阑,193nm偏振光起偏器和分束器;
测量激光经过分束器后分为两条光路,其中一条光路上设有193nm参比光偏振探测装置;另外一条光路上设有旋转样品台;
测量激光照射在所述旋转样品台上的样品后,透射光路上设有193nm透射光偏振探测装置,散射光路上设有193nm散射光偏振探测装置。
2.根据权利要求1所述的测量装置,其特征在于,所述ArF准分子激光扩束准直装置,可变光阑,193nm偏振光起偏器,分束器,193nm参比光偏振探测装置,193nm透射光偏振探测装置,193nm散射光偏振探测装置,以及旋转样品台均分别处于真空腔体内。
3.根据权利要求1所述的测量装置,其特征在于,所述真空腔体用熔石英或CaF2进行密封。
4.根据权利要求1所述的测量装置,其特征在于,所述旋转样品台可以绕其圆心,在水平方向0-360度范围内连续转动。
5.根据权利要求1所述的测量装置,其特征在于,所述193nm散射光探测装置安装在一个旋转臂上,可以在测量激光入射平面内0-180度范围内转动。
6.根据权利要求1-5任一项所述的测量装置,其特征在于,所述193nm参比光偏振探测装置,所述193nm透射光偏振探测装置以及所述193nm散射光探测装置分别为一个光电倍增管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105206088A CN103018205A (zh) | 2012-12-06 | 2012-12-06 | 一种ArF激光光学薄膜角度散射测量装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105206088A CN103018205A (zh) | 2012-12-06 | 2012-12-06 | 一种ArF激光光学薄膜角度散射测量装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103018205A true CN103018205A (zh) | 2013-04-03 |
Family
ID=47967056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105206088A Pending CN103018205A (zh) | 2012-12-06 | 2012-12-06 | 一种ArF激光光学薄膜角度散射测量装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103018205A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104034697A (zh) * | 2014-06-25 | 2014-09-10 | 天津大学 | 一种制造表面粗糙度影响激光测量性能的试验装置及方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435418A (zh) * | 2011-09-15 | 2012-05-02 | 中国科学院长春光学精密机械与物理研究所 | ArF激光光学薄膜元件综合偏振测量装置及测量方法 |
-
2012
- 2012-12-06 CN CN2012105206088A patent/CN103018205A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435418A (zh) * | 2011-09-15 | 2012-05-02 | 中国科学院长春光学精密机械与物理研究所 | ArF激光光学薄膜元件综合偏振测量装置及测量方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104034697A (zh) * | 2014-06-25 | 2014-09-10 | 天津大学 | 一种制造表面粗糙度影响激光测量性能的试验装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102435418B (zh) | ArF激光光学薄膜元件综合偏振测量装置及测量方法 | |
CN102621072B (zh) | 一种偏振和双折射测量系统 | |
CN102589850B (zh) | 一种波片相位延迟的精密测量系统及其实现方法 | |
CN101726362B (zh) | 太赫兹偏振分析器及太赫兹偏振测量方法 | |
CN101813619B (zh) | 利用偏振可控的太赫兹波测量双折射晶体光轴方向的方法 | |
JP2011169640A (ja) | テラヘルツ分光用デバイスおよびその製造方法、ならびにテラヘルツ分光装置 | |
CN104964932B (zh) | 一种测量太赫兹垂直透射谱和反射谱的一体化系统及应用 | |
CN105628343A (zh) | 一种波片检测装置及方法 | |
CN103411756B (zh) | 一种精确测量波片相位延迟量的方法 | |
JP2002504673A (ja) | 複屈折特性測定方法および装置 | |
CN105334144A (zh) | 一种基于光散射的单分散气溶胶粒径及浓度测量装置 | |
CN103033341A (zh) | 大测试角度ArF激光偏振光学薄膜元件光谱测试装置 | |
CN107345893A (zh) | 一种粒子散射相函数测量装置及测量方法 | |
CN102889981A (zh) | 侧面泵浦激光晶体热焦距的测量装置和测量方法 | |
CN103926173B (zh) | 一种气体介质中分子扩散系数的测量装置及方法 | |
US20040233434A1 (en) | Accuracy calibration of birefringence measurement systems | |
EP2013594B1 (en) | Measurement of linear and circular diattenuation in optical elements | |
CN101963495A (zh) | 测量各向异性物质的物理参数的装置及方法 | |
CN103424363A (zh) | 非旋转式旋光溶液测量仪及采用该测量仪测量旋光溶液旋光率的方法 | |
CN101482504B (zh) | 材料激光空间散射特性的检测方法 | |
JP2011169638A (ja) | テラヘルツ分光用デバイスおよびその製造方法、ならびにテラヘルツ分光装置 | |
CN115112028A (zh) | 一种基于激光椭偏系统的薄膜厚度测量装置及测量方法 | |
CN103018205A (zh) | 一种ArF激光光学薄膜角度散射测量装置 | |
CN102252975B (zh) | 基于前向简并四波混频的超高灵敏度同位素检测方法 | |
CN113295278B (zh) | 高精度Stokes-Mueller通道光谱偏振检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130403 |