CN103018010B - 一种光源光谱调制装置 - Google Patents

一种光源光谱调制装置 Download PDF

Info

Publication number
CN103018010B
CN103018010B CN201210499382.8A CN201210499382A CN103018010B CN 103018010 B CN103018010 B CN 103018010B CN 201210499382 A CN201210499382 A CN 201210499382A CN 103018010 B CN103018010 B CN 103018010B
Authority
CN
China
Prior art keywords
light
optical
light source
unit
digital micromirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210499382.8A
Other languages
English (en)
Other versions
CN103018010A (zh
Inventor
孙红胜
王加朋
宋春晖
孙广尉
张玉国
李世伟
魏建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhenxing Metrology and Test Institute
Original Assignee
Beijing Zhenxing Metrology and Test Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhenxing Metrology and Test Institute filed Critical Beijing Zhenxing Metrology and Test Institute
Priority to CN201210499382.8A priority Critical patent/CN103018010B/zh
Publication of CN103018010A publication Critical patent/CN103018010A/zh
Application granted granted Critical
Publication of CN103018010B publication Critical patent/CN103018010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种光源光谱调制装置,包括光源、第一汇聚光学单元、色散单元、数字微镜阵列、第二汇聚光学单元和均匀混光单元;其中,第一汇聚光学单元,汇聚光源的光辐射;色散单元,将经所述第一汇聚光学单元汇聚的光辐射色散成像;数字微镜阵列,位于所述色散单元的焦面处,通过对每个微小反射镜的翻转状态的控制从而对不同光谱位置和光谱带宽进行选择;第二汇聚光学单元,将经所述数字微镜阵列反射的光辐射再次汇聚使其进入均匀混光单元;均匀混光单元,将分离的单色光辐射再次混合重组。本发明通过对光源光谱重新分布,能够对光源的光谱分布特性进行更改,可以应用到光学仪器校准和仿真测试领域,该技术可以提升光学仪器的校准精度和仿真测试能力。

Description

一种光源光谱调制装置
技术领域
本发明涉及一种光源光谱调制装置,属于光学测试技术领域。
背景技术
目前,在光学仪器校准和仿真测试工作中,标准源以黑体辐射标准源、钨灯标准光源和氘灯标准光源为主,这些光源的光谱曲线相对平缓,通过相对光谱响应曲线进行校准,可以修正差异,所以在多数光学仪器的校准和仿真测试中尽管存在一定的偏差,基本上能够满足使用要求。但是当观测目标和标准辐射源的主要参数,如:光谱分布、空间分布、光源辐亮度等相差较大时,测量结果就会存在较大的差异。以往的参数校准中,输出光谱强度不能够进行全面控制,完全依赖于光源的光谱分布和单色仪光谱传输特性,在光学仪器的参数校准和测试过程中,只能对光学仪器的光谱特性和空间成像特性单独进行参数校准,缺少相应手段。
在现阶段,我国预先研究的高分辨率光学载荷研制中,有很多成像光谱类光学载荷,急需一种能够提供与被测目标光谱能量分布近似的校准技术,同时实现光谱特性和空间几何特性同时校准和测试,使光学载荷的校准过程与实际工作状态近似保持一致,进而提升光学载荷和光学仪器数据校准或测试的准确性。
发明内容
本发明的技术解决方案:
一种光源光谱调制装置,包括光源、第一汇聚光学单元、色散单元、数字微镜阵列、第二汇聚光学单元和均匀混光单元;其中,
第一汇聚光学单元,汇聚所述光源的光辐射,使其进入所述色散单元;
色散单元,将经所述第一汇聚光学单元汇聚的光辐射色散成像;
数字微镜阵列,为数百万个微小反射镜组成的阵列,位于所述色散单元的焦面处,每个微小反射镜有两个转角状态,通过对每个微小反射镜的翻转状态的控制实现不同光谱位置和光谱带宽的选择;
第二汇聚光学单元,将经所述数字微镜阵列反射的光辐射再次汇聚使其进入所述均匀混光单元;
均匀混光单元,将分离的单色光辐射再次混合重组。
所述装置还包括消光陷阱,吸收经所述数字微镜阵列反射后光辐射的杂散光。
所述色散单元包括入射狭缝、准直光学元件、色散光学元件和光谱成像光学元件。
所述均匀混光单元为光学积分球。
本发明与现有技术相比的有益效果:
本发明的克服了现有技术不足,能够实现光源相对光谱强度的任意调制,可以输出具有特殊光谱分布的光辐射,为光学仪器校准和仿真测试提供具有任意光谱分布特征的光源。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施例,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明光源光谱调制装置的结构示意图;
图2为本发明综合控制和数据处理单元;
图3为本发明装置输入和输出光谱曲线对比示意图。
附图标记说明:
1.光源、2.第一汇聚光学单元、3.入射狭缝、4.准直光学元件、5.色散光学元件、6.光谱成像光学元件、7.数字微镜阵列、8.第二汇聚光学单元、9.均匀混光单元、10.消杂光陷阱
具体实施方式
下面将结合附图对本发明的具体实施例进行详细说明。在下面的描述中,出于解释而非限制性的目的,阐述了具体细节,以帮助全面地理解本发明。然而,对本领域技术人员来说显而易见的是,也可以在脱离了这些具体细节的其它实施例中实践本发明。
在此需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
下面参照附图对本发明的实施例进行说明。
如图1所示为本发明光源光谱调制装置的结构示意图,所述装置包括光源1、第一汇聚光学单元2、色散单元、数字微镜阵列7、第二汇聚光学单元8和均匀混光单元9,其中,为了满足不同波段的使用要求,光源1可以有多种选择,比如黑体辐射源、钨灯、氘灯等,也可以多个光源进行组合,形成复合光源。本实施例中光源1选择欧司朗卤钨灯,该光源接口灵活,可切换。
所述第一汇聚光学单元2,汇聚所述光1源的光辐射,使其进入所述色散单元;第一汇聚光学单元2可采用三片透镜分离式光学结构。第一片透镜前表面距离灯丝70±0.1mm,前表面半径16.5mm,厚度4±0.1mm,后表面半径1146mm。第二片透镜与第一片透镜间距3.9±0.1mm,前表面半径-28.9mm,厚度4±0.1mm,后表面半径15mm。第三片透镜与第二片透镜间距2.6±0.1mm,前表面半径27.4mm,厚度2.5±0.1mm,后表面半径-26.6mm,后表面距离入射狭缝73.7±0.1mm。光阑位于第二片透镜与第三片透镜之间,距离第二片透镜后表面1.8±0.1mm。
所述色散单元,用于将经所述第一汇聚光学单元2汇聚的光辐射色散成像。所述色散单元可以由最基础的几个部分构成,包括入射狭缝3、准直光学元件4、色散光学元件5和光谱成像光学元件6。其中,光源1出射的光辐射经过汇聚光学系统后,能量集中在入射狭缝3处。入射狭缝理想条件下为无限高度无限窄的缝隙,考虑进入后续系统能量的要求,实际上为有限高度和有限宽度的缝隙。本实施例中,入射狭缝3采用斜楔式双向开闭狭缝机构,狭缝高度20±0.2mm,狭缝宽度可调节范围0mm~1mm,分度值为0.1mm,可以连续地、对称地和流畅地改变狭缝宽度。光辐射经过入射狭缝3后进入所述准直光学元件4,实现经过狭缝入射3的光线的准直,使光束近似平行地照射到所述色散元件5上。所述色散元件5可以将光线以不同角度色散开,具体的色散方式可以选择光栅衍射分光、棱镜分光或者傅立叶变换分光等方式。光谱成像光学元件6可以将色散开的光谱分别汇聚成像,使各色连续光谱线平直的分布在焦面上。
所述色散单元也可以采用IV型凹面全息光栅代替常用的色散单元中的准直光学元件4、色散元件5和光谱成像光学元件6,它将入射狭缝3处的光辐射色散并成像到数字微镜阵列上。光栅尺寸50mm×50mm,刻线密度160g/mm,表面镀Al+MgF2膜,在0.4μm~0.8μm波长范围内具有较好的光谱传输特性。入射臂长度200±1mm,出射臂长度200±1mm,光轴与光栅法线夹角为30°,波长550nm的一级光谱主光线与光栅法线夹角为-24.3°。
数字微镜阵列,为数百万个微小反射镜组成的阵列,位于所述色散单元的焦面处,每个微小反射镜有两个转角状态,通过对每个微小反射镜的翻转状态的控制对不同光谱位置和光谱带宽进行选择。转角状态由实际所选用的数字微镜阵列决定。本实施例中,数字微镜阵列为矩形,微镜个数为1024个×768个,比例为4∶3,每个微镜像元尺寸为13.68μm×13.68μm,对角线长度为0.7英寸。两个转角状态分别为-12°和+12°,可以将入射光线向两个角度进行反射。光栅色散开的光谱均匀分布在数字微镜阵列上,数字微镜阵列长轴方向上为光谱方向,短轴方向为光谱强度空间分布方向。在实施案例中将数字微镜阵列中微镜-12°摆角定义为工作角度,该角度的光线经第二汇聚光学单元收集到均匀混光积分球中。+12°摆角为系统中的杂散光,为达到较好的测试效果,需要进行杂散光抑制消除影响。通过改变每一个微镜角度的角度,可以实现整个数字微镜阵列上光谱的调制,其中改变长轴方向的微镜角度可以实现光谱位置的选择,改变短轴方向上可以实现对应光谱相对输出能量的改变。
第二汇聚光学单元8,将经所述数字微镜阵列7反射的光辐射再次汇聚使其进入所述均匀混光单元9,第二汇聚光学单元8为三片透镜分离式光学结构,它的光轴与数字微镜阵列法线成-12°角布置,该角度可以使经数字阵列反射的光辐射进入第二汇聚光学单元8。第二汇聚光学单元8的第一片透镜前表面距离所述数字微镜阵列7的距离为70±0.1mm,表面半径16.5mm,厚度4±0.1mm,后表面半径1146mm。第二片透镜与第一片透镜间距3.9±0.1mm,前表面半径-28.9mm,厚度4±0.1mm,后表面半径15mm。第三片透镜与第二片透镜间距2.6±0.1mm,前表面半径27.4mm,厚度2.5±0.1mm,后表面半径-26.6mm,后表面距离均匀混光系统73.7±0.1mm。光阑位于第二片透镜与第三片透镜之间,距离第二片透镜后表面1.8±0.1mm。
本发明还可以包括消光陷阱10,吸收经所述数字微镜阵列反射后光辐射的杂散光。所述消光陷阱10可通过设置消杂光螺纹、消杂光光阑、喷涂高吸收率黑漆等手段实现。
所述均匀混光单元9将分离的单色光辐射再次混合重组。所述均匀混光单元9可以选择光学积分球,经过积分球后实现分离光谱融合。积分球为圆形球壳,直径为200mm,采用铝合金压铸成型,球壳内壁涂有聚四氟乙烯漫反射材料。在其一侧开有直径为50mm的圆孔,作为光输出开口。在垂直于开口面法线方向开直径10mm小圆孔,作为光输入端口。在垂直于开口面法线的另一方向开直径为10mm小圆孔,安装硅光电二极管作为光照度检测端口。三圆孔面的法线互相正交,并且均通过积分球球心。硅光电二极管型号可以选用LXD10×10CE,输出电流信号,送入数据处理单元进行分析和显示。
本发明还包括一综合控制和数据处理单元,如图2所示,本发明还包括一综合控制和数据处理单元,用于对目标光源光谱进行分析,可以得到对应数字微镜阵列控制指令信息,由此可以对数字微镜阵列反射镜进行摆角控制,其至少应包括光源光谱分析模块、指令生成和输出模块、指令接收和控制模块。其中光源光谱分析模块用于对最终要得到的光源光谱进行分析,得到光源的相对光谱曲线。指令生成和输出控制模块用于接收光源光谱分析模块分析得到的光谱曲线数据信息,生成对数字微镜阵列每一个微反射镜的控制信息。所述指令接收和控制模块用于接收指令生成和输出控制模块生成的控制信息,对数字微镜阵列反射镜摆角进行控制,从而实现了数字微镜阵列上光谱位置和相对光谱强度的调制。
本发明的工作原理:光源1出射的光辐射经过汇聚光学单元2汇聚后进入色散单元3,色散单元将光源1的光谱色散开,均匀的分布在色散单元的焦面上。数字微镜阵列安装在色散单元的焦面上,数字微镜阵列长轴方向上为光谱方向,短轴方向为光谱强度空间分布方向。通过综合控制和数据处理单元可以实现数字微镜阵列中每一个微镜的摆角控制,进而实现了数字微镜阵列上光谱位置和相对光谱强度的调制。处于工作角度的光线进入汇聚光学单元8,经汇聚的光辐射进入均匀混光单元,进行光源光谱重组和融合。处于非工作角度的光辐射进入消杂光消光陷阱10,可以减少杂散辐射对装置的影响。
因此利用本发明,如图3所示,能够实现光源相对光谱强度的任意调制,可以输出与普通光源不一样光谱分布的光辐射,其中包括光谱带宽、光谱相对强度和光谱范围等,它可以为光学仪器校准和仿真测试提供具有任意光谱分布特征的光源,可以大大提升校准和测试的精度,具有非常好的应用前景。
本发明的实施例的许多特征和优点根据该详细描述是清楚的,因此所附权利要求旨在覆盖这些实施例的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本发明的实施例限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (3)

1.一种光源光谱调制装置,其特征在于,所述装置包括光源、第一汇聚光学单元、色散单元、数字微镜阵列、第二汇聚光学单元和均匀混光单元;其中,
第一汇聚光学单元,汇聚所述光源的光辐射,使其进入所述色散单元;
色散单元,将经所述第一汇聚光学单元汇聚的光辐射色散成像;
数字微镜阵列,为数百万个微小反射镜组成的阵列,位于所述色散单元的焦面处,每个微小反射镜有两个转角状态,通过对每个微小反射镜的翻转状态的控制实现不同光谱位置和光谱带宽的选择;
第二汇聚光学单元,将经所述数字微镜阵列反射的光辐射再次汇聚使其进入所述均匀混光单元;
均匀混光单元,将分离的单色光辐射再次混合重组,所述均匀混光单元为光学积分球,其为圆形球壳,球壳内壁涂有聚四氟乙烯漫反射材料,直径为200mm,在其一侧开有直径为50mm的圆孔,作为光输出开口,在垂直于开口面法线方向开直径10mm小圆孔,作为光输入端口,在垂直于开口面法线的另一方向开直径为10mm小圆孔,安装硅光电二极管作为光照度检测端口。
2.根据权利要求1所述的光源光谱调制装置,其特征在于所述装置还包括消光陷阱,吸收经所述数字微镜阵列反射后光辐射的杂散光。
3.根据权利要求1所述的光源光谱调制装置,其特征在于所述色散单元包括入射狭缝、准直光学元件、色散光学元件和光谱成像光学元件。
CN201210499382.8A 2012-11-30 2012-11-30 一种光源光谱调制装置 Active CN103018010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210499382.8A CN103018010B (zh) 2012-11-30 2012-11-30 一种光源光谱调制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210499382.8A CN103018010B (zh) 2012-11-30 2012-11-30 一种光源光谱调制装置

Publications (2)

Publication Number Publication Date
CN103018010A CN103018010A (zh) 2013-04-03
CN103018010B true CN103018010B (zh) 2016-01-13

Family

ID=47966869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210499382.8A Active CN103018010B (zh) 2012-11-30 2012-11-30 一种光源光谱调制装置

Country Status (1)

Country Link
CN (1) CN103018010B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698005B (zh) * 2013-12-11 2016-01-20 中国科学院长春光学精密机械与物理研究所 自校准光源光谱调谐器
CN103868590B (zh) * 2014-04-03 2016-01-27 哈尔滨工业大学 一种光谱范围可调节的连续宽带短波光源
CN103884426A (zh) * 2014-04-10 2014-06-25 西安工业大学 一种基于数字微镜器件的颜色目标发生器
CN104359554B (zh) * 2014-12-04 2016-06-29 北京振兴计量测试研究所 一种紫外光谱可调谐光源
CN105467597B (zh) * 2015-11-27 2018-03-09 北京振兴计量测试研究所 一种多光谱星光光源
CN106092936B (zh) * 2016-07-28 2022-06-24 青岛崂应海纳光电环保集团有限公司 一种光谱能量调节装置
CN107192667B (zh) * 2017-04-28 2023-09-01 中国科学院西安光学精密机械研究所 一种光谱可调光源及其光谱调节方法
CN107255608B (zh) * 2017-06-08 2020-04-24 北京航空航天大学 一种基于单光电探测器的颗粒粒度测量仪
CN107607201A (zh) * 2017-08-14 2018-01-19 中国科学院长春光学精密机械与物理研究所 一种成像光谱仪光谱杂散光测量系统
KR102617540B1 (ko) * 2018-09-14 2023-12-26 에스엘 주식회사 조명 장치
CN109682473A (zh) * 2019-01-02 2019-04-26 上海倍蓝光电科技有限公司 一种光谱分布可调的均匀光源系统
CN110108359A (zh) * 2019-04-23 2019-08-09 合刃科技(深圳)有限公司 光谱标定装置及方法
CN112147622B (zh) * 2020-09-02 2024-02-06 Oppo广东移动通信有限公司 测距装置、测距方法、摄像头及电子设备
CN114441036B (zh) * 2020-11-06 2024-06-07 北京振兴计量测试研究所 一种光学载荷绝对光谱响应度校准装置和方法
CN112710385B (zh) * 2020-11-26 2023-11-10 上海航天控制技术研究所 一种用于光电敏感器测试的光学陷阱
CN112697397B (zh) * 2020-12-08 2022-03-01 中国科学院长春光学精密机械与物理研究所 一种dmd杂散光检测装置及检测方法
CN113784464B (zh) * 2021-11-10 2022-03-08 深圳汝原科技有限公司 一种多源混光装置和干燥设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303291A (zh) * 2008-06-05 2008-11-12 苏州大学 基于数字微镜器件的多通道多目标超光谱成像方法及系统
CN101532907A (zh) * 2009-04-27 2009-09-16 长春理工大学 基于光源电调制的光学透过率测试装置
CN202471390U (zh) * 2012-01-16 2012-10-03 中国科学院西安光学精密机械研究所 光谱权重可调型光谱模拟系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI260427B (en) * 2004-07-09 2006-08-21 Hon Hai Prec Ind Co Ltd Grating spectrograph
US20080174777A1 (en) * 2006-04-11 2008-07-24 University Of Wyoming Spectrometers using 2-dimensional microelectromechanical digital micromirror devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303291A (zh) * 2008-06-05 2008-11-12 苏州大学 基于数字微镜器件的多通道多目标超光谱成像方法及系统
CN101532907A (zh) * 2009-04-27 2009-09-16 长春理工大学 基于光源电调制的光学透过率测试装置
CN202471390U (zh) * 2012-01-16 2012-10-03 中国科学院西安光学精密机械研究所 光谱权重可调型光谱模拟系统

Also Published As

Publication number Publication date
CN103018010A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103018010B (zh) 一种光源光谱调制装置
CN102155990B (zh) 一种中阶梯光栅光谱仪的装调方法
TWI245114B (en) Apparatus for measuring imaging spectrograph
CN102809428B (zh) 小型中阶梯光栅光谱仪的装调方法
JP2013174604A (ja) 広幅分光計
CN103148942B (zh) 基于反卷积的双光路光谱测量装置
CN104502304B (zh) 基于虚拟狭缝技术的微型固化近红外光谱仪
CN102778293A (zh) 小型中阶梯光栅光谱仪的光路结构
CN105353516B (zh) 单一探测器对光瞳光轴分区域成像的双光束合成传感器
CN104126112A (zh) 旨在测量brdf、bsdf以及bdtf的光学系统
CN103175612A (zh) 一种星载成像光谱仪在轨偏振测量系统
CN105004421B (zh) 以光栅为分界的成像光谱仪
CN104406691B (zh) 一种基于单个自由曲面的成像光谱仪分光系统
CN104019893A (zh) Offner结构成像光谱仪
CN209895098U (zh) 光源切换复用单元同轴度调试系统
CN112013955A (zh) 一种光谱成像方法和装置
JP3095167B2 (ja) マルチチャネルフーリエ変換分光装置
WO2023070879A1 (zh) 一种相机全系统的波像差检测系统及检测方法
CN109323762A (zh) 一种凹面光栅双单色仪的装配系统及方法
CN212008328U (zh) Icp-aes光路系统
CN205785524U (zh) 一种基于旋转滤光片单色器的高光谱成像仪
CN104729711A (zh) 一种次镜改进型成像光谱仪
JP4560517B2 (ja) 物体からの光強度を測定する携帯型装置と、そのような装置の使用方法
CN105865626A (zh) 一种基于旋转滤光片单色器的高光谱成像仪
CN102494772A (zh) 一种适用于大视场前置光学系统的装调方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant