CN103014810A - 钛铁合金氧化物纳米管阵列光阳极及其制备与应用 - Google Patents

钛铁合金氧化物纳米管阵列光阳极及其制备与应用 Download PDF

Info

Publication number
CN103014810A
CN103014810A CN201110280367XA CN201110280367A CN103014810A CN 103014810 A CN103014810 A CN 103014810A CN 201110280367X A CN201110280367X A CN 201110280367XA CN 201110280367 A CN201110280367 A CN 201110280367A CN 103014810 A CN103014810 A CN 103014810A
Authority
CN
China
Prior art keywords
ferro
titanium
titanium oxide
electrode
visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110280367XA
Other languages
English (en)
Other versions
CN103014810B (zh
Inventor
赵国华
李明芳
田弘毅
刘梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201110280367.XA priority Critical patent/CN103014810B/zh
Publication of CN103014810A publication Critical patent/CN103014810A/zh
Application granted granted Critical
Publication of CN103014810B publication Critical patent/CN103014810B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种钛铁合金氧化物纳米管阵列光阳极及其制备方法,该产品可应用于染料废水的可见光电催化氧化降解。在高温氩弧熔融法制备的钛铁合金基体上,采用电化学阳极氧化法原位直立生长出一层高度有序的二元氧化物纳米管阵列光阳极。与传统的将窄带金属氧化物沉积在TiO2纳米管中得到的复合光电催化剂相比,本发明制备的钛铁合金氧化物纳米管阵列光阳极,由于具有稳定有序的纳米管结构和Fe2O3的高度均匀的分子水平的掺杂,因而比传统TiO2和Fe2O3的复合光电催化剂具有更高的比表面积,更强的光化学稳定性和更高的可见光电催化活性,可应用于可见光电催化氧化降解有机染料废水。该电极制备工艺简单,能利用太阳光中占最大比例的可见光,有望降低废水光电催化氧化降解的处理成本,具有广泛的研究和应用价值。

Description

钛铁合金氧化物纳米管阵列光阳极及其制备与应用
技术领域
本发明涉及材料化学领域,尤其是涉及一种高效稳定的可见光电催化氧化处理染料废水的钛铁合金氧化物纳米管阵列光阳极产品。
背景技术
高级氧化降解是处理环境污染物质的重要途径之一。光催化氧化作为一种高级的深度氧化技术,具有氧化能力强,可控性高,反应条件温和,材料制备易得,无直接的二次污染等优点,为环境污染的治理提供了一条全新的充满希望的途径并引起了人们的广泛关注,而实现直接有效的利用太阳光来光电催化氧化降解环境污染物无疑是未来环境控制领域的发展趋势。太阳光中可见光能量所占比重高达45%,因此研发出在可见光响应的光电催化剂在光电催化氧化技术中就具有至关重要的地位。在众多的光催化剂中,纳米结构的TiO2由于具有相对较高的光催化活性,良好的光化学稳定性,非毒性及其他方面的潜在应用价值,被广泛的应用于光降解、储氢、太阳能电池等方面。许多研究表明,许多研究表明,利用电化学阳极化的方法在钛基底上原位直立生长的纳米管状TiO2在不增加几何面积的情况下,可以获得与粉末状催化剂相媲美的比表面积。而且,因为纳米管阵列是生长在导电性良好的金属基底上的连续固体块状材料,所以其光电性质相比于粉末状TiO2会有很大程度的提高,并能克服粉末状光催化剂难以回收的难题,因而TiO2纳米管已经在光电催化领域广泛使用。但是,由于TiO2带隙很宽(Eg=3.22eV),只有波长较短的太阳光(λ<385nm)才能被其吸收,很大程度上制约了TiO2纳米管的实际应用。目前拓展TiO2纳米管吸收光谱的研究主要集中在向纳米管内填塞窄带隙的掺杂物,使TiO2纳米管的吸收带边红移,提高TiO2纳米管对太阳能的利用效率。其中Fe2O3是一种带隙为2.2eV的半导体,可以利用大部分太阳能来进行光催化氧化反应。但是Fe2O3也存在自身的问题,其极低的电子迁移率导致光生电子和空穴极易复合,导致Fe2O3的光电转换效率很低(~12%)。另一方面,Fe2O3容易发生化学和光腐蚀。新近的研究表明,有效利用TiO2纳米管良好的电荷传递和抗腐蚀性能以及Fe2O3的可见光吸收能力,能够得到高效的具有可见光响应的光催化剂材料。但是,传统的填塞式掺杂在很大程度上降低了TiO2纳米管固有的高比表面积,使得复合光催化剂的活性不能有效发挥。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供的一种能够利用可见光进行高效稳定的光电催化氧化降解染料废水的钛铁合金氧化物纳米管阵列光阳极。
本发明的目的可以通过以下技术方案来实现:
一种钛铁合金氧化物纳米管阵列光阳极,该光阳极原位生长在Ti-Fe合金基底上,具有高度有序的纳米管结构和二元氧化物的高度均匀分布,具有很强的可见光电催化活性。
一种钛铁合金氧化物纳米管阵列光阳极的制备方法,该方法包括以下步骤:
(1)将Ti板和纯度为99.99%的Fe粒混合,在氩气气氛保护下,经高温电弧熔融炉熔融得到钛铁合金,该钛铁合金中铁的质量百分比为4~6%,利用线切割机将钛铁合金切割成钛铁合金板;
(2)将步骤(1)中切割后的钛铁合金板用砂纸打磨抛光,在蒸馏水和丙酮中各超声清洗10~20min,在室温环境下,采用二电极体系,以打磨抛光、超声清洗过的钛铁合金板为阳极,铂电极为对电极,以含有0.2~0.3mol·L-1氟化铵的乙二醇溶液作为电解质溶液,恒电位+20~40V阳极化3~5h,然后用二次蒸馏水清洗干净后在氮气环境中晾干;
(3)将步骤(2)中所得钛铁合金板置于管式炉氧气气氛中进行热处理,以1~2℃/min升温速率由室温升至400~600℃并恒温1~3h,然后以1℃/min的速率降至室温,得到钛铁合金氧化物电极。
步骤(1)中所述的Ti板的纯度为99.9%,所述的Fe粒的纯度为99.99%。
一种钛铁合金氧化物纳米管阵列光阳极的应用,将该光阳极用于可见光电催化降解染料废水,具体步骤为:采用三电极体系,以钛铁合金氧化物纳米管阵列为光阳极,施加偏压+0.4~0.6V,以波长在420nm以上的可见光作为光源,光照强度为100~120mW/cm2,进行可见光电催化降解20~40mg/L的亚甲基蓝染料废水。
本发明采用电化学阳极氧化法,以高温氩弧熔炉中得到的钛铁合金为原料,在含氟离子的乙二醇溶液中得到了钛铁合金氧化物电极。不仅在纳米管管底和管壁上高度均匀地原位生长了功能性的Fe2O3,而且保留了TiO2纳米管的高比表面积和光化学性能稳定的优点。所得到的Ti-Fe合金氧化物纳米管阵列光阳极可于亚甲基兰染料废水的可见光电催化氧化降解,并可用于其它废水的可见光电催化氧化降解,具有良好的应用前景。
与现有技术相比,本发明采用钛铁合金作为基体,利用电化学阳极氧化技术在合金板上原位生长出高度直立有序的钛铁合金氧化物纳米管阵列,兼具TiO2纳米管的有序结构和光催化稳定性和Fe2O3的吸收可见光的性能,能够可见光电催化降解有机污染物。利用该纳米管阵列可以进行可见光电催化氧化降解亚甲基蓝染料废水。具体包括以下优点:
(1)与传统的TiO2纳米管阵列相比,由于采用钛铁合金而不是纯钛板作为基底材料,实现了Fe2O3在纳米管阵列内的高度均匀掺杂,不仅保留了高度有序的纳米管结构,而且可以实现光电催化剂的吸收光谱红移,使得所得到的二元氧化物纳米管阵列能利用可见光进行光电催化降解环境污染物。
(2)与单纯的Fe2O3光催化剂相比,由于将Fe2O3均匀修饰在TiO2纳米管内,光生电子和空穴的转移使得Fe2O3的光腐蚀效应大大降低。
(3)与将Fe2O3利用电沉积法修饰在TiO2纳米管内的光阳极相比,由于钛铁二元氧化物纳米管阵列原位生长在Ti-Fe合金基底上,同时保留了完整的纳米管结构和高的比表面积,因而具有更高的光催化活性和更高的稳定性。
(4)通过对电化学阳极氧化的条件参数进行控制可以制备出形貌可控的纳米管阵列,结构的可调整性增加了钛铁合金氧化物纳米管阵列的使用范围。
(5)本发明制备的钛铁合金氧化物纳米管能够利用可见光降解有机染料废水,降低了污染物的处理成本,具有商业使用潜力。
附图说明
图1为实施例1制备的钛铁合金氧化物电极的扫描电镜照片;
图2为实施例1制备的钛铁合金氧化物电极的X射线光电子能谱图(A)Ti2p,(B)Fe 2p;
图3为实施例1中制备的钛铁合金氧化物纳米管阵列的UV-Vis漫反射图(1)TiO2NTs;(2)Fe2O3/TiO2NTs;(3)TiO2-Fe2O3NTs;
图4为实施例1制备的钛铁合金氧化物电极在施加+0.5V时,间歇光照下的电流-时间曲线(1)TiO2NTs;(2)Fe2O3/TiO2NTs;(3)TiO2-Fe2O3NTs;
图5(A)为实施例1中钛铁合金氧化物电极可见光电降解亚甲基兰染料废水过程中亚甲基兰的相对浓度随时间的变化曲线,(B)为实施例1中钛铁合金氧化电极循环降解亚甲基兰染料废水过程中亚甲基兰浓度对数随时间的变化曲线;
图6为对含30mg/L亚甲基兰的染料废水在钛铁合金氧化物纳米管阵列进行的三个循环的光电催化氧化降解处理图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
(1)钛铁合金氧化物纳米管阵列光阳极的制备过程及其表征,具体步骤如下:
将Ti板(纯度99.9%)和Fe粒(纯度99.99%)以一定的比例混合,在氩气气氛保护下,在高温氩弧熔融炉中得到钛铁合金,利用线切割机将其切割成15×50×1mm大小的样品,用电感耦合等离子-原子发射光谱(Optima 2100,Perkin-Elmer)测定得到Fe在合金中的确切质量百分比为6%。将钛铁合金片依次用100#和500#砂纸打磨后,用金相砂纸打磨成镜面,然后在蒸馏水和丙酮中各超声清洗15min。室温下以预处理过的钛铁合金片为阳极,铂片电极作为对电极,电极间距1cm,以含有0.25mol/L氟化铵的乙二醇溶液作为电解质溶液,磁力搅拌下,钛铁合金板在恒电位+30V阳极化3h。取出样品用二次蒸馏水清洗干净后氮气中晾干,然后置于管式炉氧气气氛中进行热处理,以1℃/min升温速率由室温升至400或者500℃并恒温2h,最后以1℃/min的速率降至室温,得到钛铁合金氧化物纳米管阵列。
采用场发射环境扫描电子显微镜技术(Hitachi S-4800)对电极的形貌进行表征,结果见图1,表明管径约为50nm,管壁厚约10nm。采用VG ESCALAB 210光电子能谱仪表征材料的X-ray光电子能谱图。Ti 2p、Fe 2p的光电子能谱结果分别见图2(A)、(B)。Ti 2p的光电子能谱峰位于458.3和463.9eV,两者之间的间隙为5.6eV,这是由于Ti4+引起的,说明合金氧化物中Ti主要以TiO2形式存在。由图2B可以看到Fe 2p区域二重态Fe 1/2p和Fe 3/2p的存在,分别位于723.7和712.3eV,而且在这两个能谱峰之间有一个卫星谱峰,表明合金氧化物纳米管中Fe主要以Fe2O3存在,在图2(B)中没有观察到零价Fe的存在。
用紫外可见漫反射光谱(UV-Vis DRS,BWS002,BWtek)测定了光阳极的光吸收特性,结果见图3。单纯TiO2NTs的吸收带边位于385nm处,根据Eg=1240/λg,计算得到其带隙为3.22eV,其在可见光范围没有明显的吸收。Fe2O3/TiO2NTs的吸收带边为440nm,带隙值为2.82eV。对于TiO2-Fe2O3NTs,吸收带边进一步红移到466nm,Eg为2.66eV,而且在可见范围的吸收也有很大程度的升高。吸收带边的红移和带隙的变窄是由于合金纳米管阵列中掺杂Fe氧化物后,部分Fe3+离子取代了Ti4+离子,形成了新的能隙。
钛铁合金氧化物电极的光电流测试在CHI660C电化学工作站(上海辰华仪器公司)进行,钛铁合金氧化物电极作为光阳极,采用三电极体系,在1mol/L氢氧化钾溶液中测量。短弧高压氙灯作为光源(CHF-XQ-500W,北京畅拓),以滤波片遮挡,使得只有波长为420~800nm的可见光能透射到电极上,透过的可见光辐照强度为100mW/cm2。测试结果见图4,表明钛铁合金氧化物纳米管阵列电极在可见光下具有较高的可见光响应,而单纯的TiO2纳米管几乎没有可见光吸收。
(2)采用钛铁合金氧化物纳米管阵列进行可见光电催化降解有机染料废水亚甲基兰,具体步骤如下:
亚甲基兰的降解实验在50mL的烧杯中进行。采用三电极降解体系,以钛铁合金氧化物纳米管阵列为阳极,有效的光阳极面积为4cm2。用0.1mol/L硫酸钠去离子水溶液将亚甲基蓝配制为浓度为30mg/L的模拟废水,处理体积为50mL,用氢氧化钾溶液将模拟废水的pH值调为10.0。以波长在420nm以上的可见光作为光源,光照强度为100mW/cm2。用直流稳压电源(上海全力电子设备公司,WYJ-0~30V/2A×2)施加偏压+0.5V(相对于饱和甘汞电极)。每隔一定时间取样,稀释5倍后进行紫外-可见光谱测定。紫外光谱分析采用Agilent 8453紫外可见分光光度计。亚甲基兰的浓度变化以其在最大吸收波长为660nm处的吸收峰值的变化来表示。所有的结果都是三次平行实验的平均值,见图5。测试表明,钛铁合金氧化物电极的催化脱色能力远高于TiO2纳米管电极,在300min时前者的脱色率为91.7%,而相同条件下,Fe2O3/TiO2NTs对亚甲基兰的脱色率为62%,TiO2NTs对亚甲基兰的脱色率仅为13.5%。光电催化氧化降解过程中亚甲基兰的脱色反应遵循一级反应动力学过程。TiO2-Fe2O3NTs-500对亚甲基兰的PEC脱色速度常数为8.13×10-3min-1,2.5倍于Fe2O3/TiO2NTs对亚甲基兰的脱色速度常数(3.23×10-3min-1),15倍于TiO2NTs对亚甲基兰的脱色速度常数(5.35×10-4min-1)。
对含30mg/L亚甲基兰的染料废水在钛铁合金氧化物纳米管阵列进行了三个循环的光电催化氧化降解处理,见图6。第一个300min循环内,亚甲基蓝的脱色率为91.7%。经过三个循环后,300min时亚甲基蓝的脱色率仍然可以达到90.3%。差别在实验的误差范围内,表明钛铁合金氧化物电极在处理亚甲基蓝废水中非常稳定。
实施例2
一种钛铁合金氧化物纳米管阵列光阳极的制备过程,具体步骤如下:
将Ti板(纯度99.9%)和Fe粒(纯度99.99%)以一定的比例混合,在氩气气氛保护下,在高温氩弧熔融炉中得到钛铁合金,利用线切割机将其切割成15×50×1mm大小的样品,用电感耦合等离子-原子发射光谱(Optima2100,Perkin-Elmer)测定得到Fe在合金中的确切质量百分比为4%。将钛铁合金片依次用100#和500#砂纸打磨后,用金相砂纸打磨成镜面,然后在蒸馏水和丙酮中各超声清洗10min。室温下以预处理过的钛铁合金片为阳极,铂片电极作为对电极,电极间距1cm,以含有0.2mol/L氟化铵的乙二醇溶液作为电解质溶液,磁力搅拌下,钛铁合金板在恒电位+20V阳极化3h。取出样品用二次蒸馏水清洗干净后氮气中晾干,然后置于管式炉氧气气氛中进行热处理,以1℃/min升温速率由室温升至400℃并恒温1h,最后以1℃/min的速率降至室温,得到钛铁合金氧化物纳米管阵列。
采用钛铁合金氧化物纳米管阵列进行可见光电催化降解有机染料废水亚甲基兰,具体步骤如下:
亚甲基兰的降解实验在50mL的烧杯中进行。采用三电极降解体系,以钛铁合金氧化物纳米管阵列为阳极,有效的光阳极面积为4cm2。用0.1mol/L硫酸钠去离子水溶液将亚甲基蓝配制为浓度为20mg/L的模拟废水,处理体积为50mL,用氢氧化钾溶液将模拟废水的pH值调为10.0。以波长在420nm以上的可见光作为光源,光照强度为100mW/cm2。用直流稳压电源(上海全力电子设备公司,WYJ-0~30V/2A×2)施加偏压+0.4V(相对于饱和甘汞电极)。每隔一定时间取样,稀释5倍后进行紫外-可见光谱测定。紫外光谱分析采用Agilent 8453紫外可见分光光度计。亚甲基兰的浓度变化以其在最大吸收波长为660nm处的吸收峰值的变化来表示。
实施例3
钛铁合金氧化物纳米管阵列光阳极的制备过程,具体步骤如下:
将Ti板(纯度99.9%)和Fe粒(纯度99.99%)以一定的比例混合,在氩气气氛保护下,在高温氩弧熔融炉中得到钛铁合金,利用线切割机将其切割成15×50×1mm大小的样品,用电感耦合等离子-原子发射光谱(Optima 2100,Perkin-Elmer)测定得到Fe在合金中的确切质量百分比为6%。将钛铁合金片依次用100#和500#砂纸打磨后,用金相砂纸打磨成镜面,然后在蒸馏水和丙酮中各超声清洗20min。室温下以预处理过的钛铁合金片为阳极,铂片电极作为对电极,电极间距1cm,以含有0.3mol/L氟化铵的乙二醇溶液作为电解质溶液,磁力搅拌下,钛铁合金板在恒电位+40V阳极化5h。取出样品用二次蒸馏水清洗干净后氮气中晾干,然后置于管式炉氧气气氛中进行热处理,以2℃/min升温速率由室温升至600℃并恒温3h,最后以1℃/min的速率降至室温,得到钛铁合金氧化物纳米管阵列。
采用钛铁合金氧化物纳米管阵列进行可见光电催化降解有机染料废水亚甲基兰,具体步骤如下:
亚甲基兰的降解实验在50mL的烧杯中进行。采用三电极降解体系,以钛铁合金氧化物纳米管阵列为阳极,有效的光阳极面积为4cm2。用0.1mol/L硫酸钠去离子水溶液将亚甲基蓝配制为浓度为40mg/L的模拟废水,处理体积为50mL,用氢氧化钾溶液将模拟废水的pH值调为10.0,以波长在420nm以上的可见光作为光源,光照强度为120mW/cm2,用直流稳压电源(上海全力电子设备公司,WYJ-0~30V/2A×2)施加偏压+0.6V(相对于饱和甘汞电极)。每隔一定时间取样,稀释5倍后进行紫外-可见光谱测定。紫外光谱分析采用Agilent 8453紫外可见分光光度计。亚甲基兰的浓度变化以其在最大吸收波长为660nm处的吸收峰值的变化来表示。
上述的对实施例的描述是为了便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (4)

1.一种钛铁合金氧化物纳米管阵列光阳极,其特征在于,该光阳极原位生长在Ti-Fe合金基底上,具有高度有序的纳米管阵列结构和二元氧化物的高度均匀分布,具有很强的可见光电催化活性。
2.一种如权利要求1所述的钛铁合金氧化物纳米管阵列光阳极的制备方法,其特征在于,该方法包括以下步骤:
(1)将Ti板和Fe粒混合,在氩气气氛保护下,经高温电弧熔融炉熔融得到钛铁合金,该钛铁合金中铁的质量百分比为4~6%,利用线切割机将钛铁合金切割成钛铁合金板;
(2)将步骤(1)中切割后的钛铁合金板用砂纸打磨抛光,在蒸馏水和丙酮中各超声清洗10~20min,在室温环境下,采用二电极体系,以打磨抛光、超声清洗过的钛铁合金板为阳极,铂电极为对电极,以含有0.2~0.3mol·L-1氟化铵的乙二醇溶液作为电解质溶液,恒电位+20~40V阳极化3~5h,然后用二次蒸馏水清洗干净后在氮气环境中晾干;
(3)将步骤(2)中所得钛铁合金板置于管式炉氧气气氛中进行热处理,以1~2℃/min升温速率由室温升至400~600℃并恒温1~3h,然后以1℃/min的速率降至室温,得到钛铁合金氧化物电极。
3.根据权利要求2所述的一种钛铁合金氧化物纳米管阵列光阳极的制备方法,其特征在于,步骤(1)中所述的Ti板的纯度为99.9%,所述的Fe粒的纯度为99.99%。
4.一种如权利要求1所述的钛铁合金氧化物纳米管阵列光阳极的应用,其特征在于,将该光阳极用于可见光电催化降解染料废水,具体步骤为:采用三电极体系,以钛铁合金氧化物纳米管阵列为光阳极,施加偏压+0.4~0.6V,以波长在420nm以上的可见光作为光源,光照强度为100~120mW/cm2,进行可见光电催化降解20~40mg/L的亚甲基蓝染料废水。
CN201110280367.XA 2011-09-20 2011-09-20 钛铁合金氧化物纳米管阵列光阳极及其制备与应用 Expired - Fee Related CN103014810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110280367.XA CN103014810B (zh) 2011-09-20 2011-09-20 钛铁合金氧化物纳米管阵列光阳极及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110280367.XA CN103014810B (zh) 2011-09-20 2011-09-20 钛铁合金氧化物纳米管阵列光阳极及其制备与应用

Publications (2)

Publication Number Publication Date
CN103014810A true CN103014810A (zh) 2013-04-03
CN103014810B CN103014810B (zh) 2016-03-30

Family

ID=47963909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110280367.XA Expired - Fee Related CN103014810B (zh) 2011-09-20 2011-09-20 钛铁合金氧化物纳米管阵列光阳极及其制备与应用

Country Status (1)

Country Link
CN (1) CN103014810B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963551A (zh) * 2019-11-26 2020-04-07 西安建筑科技大学 一种石墨烯无机聚合物复合电极制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598075A (zh) * 2004-07-29 2005-03-23 大连理工大学 二氧化钛纳米管电极及其制备方法和应用
WO2008073968A2 (en) * 2006-12-12 2008-06-19 University Of Nevada, Reno Self-ordered nanotubes of titanium oxides and titanium alloy oxides for energy storage and battery applications
CN101798126A (zh) * 2010-04-23 2010-08-11 四川大学 一种光电催化处理工业废水的方法
EP2233614A1 (en) * 2009-03-24 2010-09-29 Danmarks Tekniske Universitet (Technical University of Denmark) Anodic growth of titanium dioxide nanostructures
CN101891146A (zh) * 2010-07-01 2010-11-24 淮阴工学院 一种磁性掺杂二氧化钛纳米管的制备方法
CN101922036A (zh) * 2010-09-11 2010-12-22 天津大学 一种在二氧化钛纳米管中掺杂四氧化三铁磁性颗粒的方法
CN102002746A (zh) * 2010-11-03 2011-04-06 厦门大学 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598075A (zh) * 2004-07-29 2005-03-23 大连理工大学 二氧化钛纳米管电极及其制备方法和应用
WO2008073968A2 (en) * 2006-12-12 2008-06-19 University Of Nevada, Reno Self-ordered nanotubes of titanium oxides and titanium alloy oxides for energy storage and battery applications
EP2233614A1 (en) * 2009-03-24 2010-09-29 Danmarks Tekniske Universitet (Technical University of Denmark) Anodic growth of titanium dioxide nanostructures
CN101798126A (zh) * 2010-04-23 2010-08-11 四川大学 一种光电催化处理工业废水的方法
CN101891146A (zh) * 2010-07-01 2010-11-24 淮阴工学院 一种磁性掺杂二氧化钛纳米管的制备方法
CN101922036A (zh) * 2010-09-11 2010-12-22 天津大学 一种在二氧化钛纳米管中掺杂四氧化三铁磁性颗粒的方法
CN102002746A (zh) * 2010-11-03 2011-04-06 厦门大学 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOPAL K. MOR, ET AL.: "Vertically Oriented Ti-Fe-O Nanotube Array Films: Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis", 《NANO LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963551A (zh) * 2019-11-26 2020-04-07 西安建筑科技大学 一种石墨烯无机聚合物复合电极制备方法
CN110963551B (zh) * 2019-11-26 2022-02-18 西安建筑科技大学 一种石墨烯无机聚合物复合电极制备方法

Also Published As

Publication number Publication date
CN103014810B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Zhu et al. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation
Wang et al. Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater
Wang et al. Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
Han et al. Visible-light-enhanced Cr (VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell
Zhai et al. Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution
CN105442012A (zh) 一种复合纳米材料MoS2/TiO2纳米管阵列的制备方法及其应用
Wu et al. Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode
CN102941077A (zh) 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
Wang et al. Ultra-thin rGO nanosheet modified TiO2 nanotube arrays for boosted photoelectrochemical performance
CN105803476A (zh) 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用
Yang et al. Fabrication and behaviors of CdS on Bi 2 MoO 6 thin film photoanodes
CN102828219A (zh) 一种三元纳米复合材料Au/RGO-TiO2纳米管阵列及其制备方法和应用
Zhang et al. A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode
Ying et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent
CN102703953B (zh) 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法
CN105986292A (zh) 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用
CN108855105B (zh) 铁酸锌-铁酸钴异质结复合催化剂及其制备方法和应用
He et al. Preparation of BiPO4/graphene photoelectrode and its photoelectrocatalyitic performance
Zhang et al. Fixed Z-scheme TiO2| Ti| WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production
CN108675382A (zh) 一种基于TiO2纳米管光催化剂的集成催化系统及其降解处理方法
CN102534725A (zh) 一种制备Ag2S掺杂TiO2纳米管电极的方法
Wang et al. Amorphous TiO2 granular nanodisks on porous Ti foam for highly effective solar cells and photocatalysts
Yang et al. Photoelectrocatalytic reduction of CO2 into formic acid using WO3–x/TiO2 film as novel photoanode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20180920

CF01 Termination of patent right due to non-payment of annual fee