CN102999675A - 双馈变速恒频风电机组系统电磁暂态仿真方法 - Google Patents

双馈变速恒频风电机组系统电磁暂态仿真方法 Download PDF

Info

Publication number
CN102999675A
CN102999675A CN2012105334495A CN201210533449A CN102999675A CN 102999675 A CN102999675 A CN 102999675A CN 2012105334495 A CN2012105334495 A CN 2012105334495A CN 201210533449 A CN201210533449 A CN 201210533449A CN 102999675 A CN102999675 A CN 102999675A
Authority
CN
China
Prior art keywords
wind
fed
model
double
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105334495A
Other languages
English (en)
Other versions
CN102999675B (zh
Inventor
冯煜尧
杨增辉
郭强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Shanghai Municipal Electric Power Co
East China Power Test and Research Institute Co Ltd
Original Assignee
State Grid Corp of China SGCC
Shanghai Municipal Electric Power Co
East China Power Test and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Shanghai Municipal Electric Power Co, East China Power Test and Research Institute Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201210533449.5A priority Critical patent/CN102999675B/zh
Publication of CN102999675A publication Critical patent/CN102999675A/zh
Application granted granted Critical
Publication of CN102999675B publication Critical patent/CN102999675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Abstract

一种双馈变速恒频风电机组系统电磁暂态仿真方法,涉及风力发电系统,尤其涉及一种使用计算机程序进行双馈风电机组系统的建模分析的方法,包括以下步骤:建立风功率模型模拟风力机吸收的风功率;建立风机轴系模型;建立桨距控制系统模型;建立双馈异步感应电机电气仿真模型;建立电网侧变频器和转子侧变频器控制器模型;使用风电机组仿真模型,建立双馈风机单机无穷大系统模型;设置风电机组系统的仿真运行工况和故障状态,进行电磁暂态仿真,验证保护装置整定值的合理性。本发明建立符合双馈变速恒频风电机组物理特性的详细模型,进行电磁暂态和机电暂态仿真,可以考察风机在各种故障和工况下的动态特性,使风机在大规模电网中的仿真成为可能。

Description

双馈变速恒频风电机组系统电磁暂态仿真方法
技术领域
本发明涉及风力发电系统,尤其涉及一种使用计算机程序进行双馈风电机组系统的建模分析的方法。
背景技术
自二十世纪八十年代以来,风力发电的应用越来越受到全世界的普遍重视。随着科学技术的飞速发展,特别是空气动力学、尖端航天技术和大功率电力电子技术应用于新型风电机组的开发研制,风力发电在近二十年得到长足的发展。如今的风力发电正逐步走向规模化和产业化,风力发电在电网中的比例越来越大,成为除水力发电以外最成熟、最现实的一种清洁能源发电方式。大力发展风力发电,对环境保护、节约能源以及生态平衡都有重要的意义。
然而风力发电是一种特殊的电力,具有许多不同于常规能源发电的特点,风电厂的并网运行对电网的安全稳定,电能质量等诸多方面均会带来负面影响,随着风电场规模的日益扩大,风电特性对电网的影响也越发显著,成为制约风场规模和容量的严重障碍,大规模风电接入到底会对电网产生怎样的影响成为了急需解决的问题。
中国实用新型专利“双馈风电机组的仿真装置”(实用新型专利号:ZL201220127917.4授权公告号:CN202548295U)公开了一种双馈风电机组的仿真装置,包括:双馈感应发电机、风电机组原动机、监测保护设备和转子侧变流设备。风电机组原动机连接到双馈感应发电机,风电机组原动机在风力驱动下带动双馈感应发电机的转子转动。监测保护设备连接到双馈感应发电机,测量双馈感应发电机输出的电压和电流。转子侧变流设备连接到双馈感应发电机,转子侧变流设备控制双馈感应发电机的电压幅值和相位,进行有功解耦控制和无功解耦控制。该实用新型的双馈风电机组的仿真装置能够准确反映风机的物理特性和双馈感应发电机的工作状况,能够满足风电并网规范对并网风机的完整测试要求。
中国发明专利申请“一种双馈风机等效模拟的仿真建模方法”(专利申请号:201210008656.9公开号:CN102592026A)公开了一种双馈风机等效模拟的仿真建模方法,所述双馈风机的变频器部分采用受控源模拟,所述建模方法包括如下步骤:(1)建立双馈风电机组电路模型;(2)建立双馈风机等效模型;(3)建立双馈风机并网测试系统;(4)搭建多风机测试系统;其中,在步骤2中:所述双馈风机等效模型基于双馈风机变频器交流侧受控电压源和直流侧受控电流源的特性建立。该发明提供的双馈风机等效模拟的仿真建模方法,能精确模拟双馈风机的暂态特性,并可计及多台风电机组间的不同特性及其相互影响;无需计及全控型器件的高频通断,仿真效率大幅提升;仿真风机台数越多,效率提升幅度越显著;在保持精度的同时,可采用较大的仿真步长,大幅提升仿真效率。
用于稳定性研究的风电机组模型目前在国内的电力系统仿真软件中仍然没有实现,PSS/E、BPA中已有内建的风机模型,但其不适用于电网短路故障下风机的动态性能仿真。DIgSILENT/PowerFactory是一款强大的电力系统仿真软件,其内建的双馈异步风机模型能较准确地反映其实际物理特性,即能对双馈机进行详细地电磁暂态仿真,也能进行机电暂态仿真,使风机在大规模电网中的仿真成为可能。另外,PSCAD/EMTDC同样能够建立风机的电磁暂态模型,建模精度可达到器件级,因此是考察风机单机系统在各种工况和故障下动态特性的理想工具,但不适用于风机接入大网后的仿真。
发明内容
本发明的目的是提供一种双馈变速恒频风电机组系统电磁暂态仿真方法,建立符合双馈变速恒频风电机组物理特性的详细模型,以便利用该详细模型进行电磁暂态和机电暂态仿真,考察风机在各种故障和工况下的动态特性。
本发明解决上述技术问题所采用的技术方案是:
一种双馈变速恒频风电机组系统电磁暂态仿真方法,所述的风电机组包括由风力机模型、轴系模型和桨距控制系统构成的原动机模型,由感应发电机模型和转子侧变频器控制保护系统构成的双馈风电机组模型,以及电网侧变频器控制系统,所述电磁暂态仿真方法包括以下步骤:
S100)建立风力机模型,根据风速、风能转换效率与叶尖速比和叶片浆距角的关系,模拟风力机吸收的风功率;
S200)使用发电机质块和风力机质块组成的两质量块轴系结构,建立风机轴系模型,模拟风力机机械转矩与发电机电磁转矩的能量传递关系;
S300)建立桨距控制系统模型,使用桨距角控制仿真进行风电机组功率的寻优,寻求在给定风速下使风电机组输出功率的最大值;模拟风速超出额定风速时桨距控制系统的过载保护功能;
S400)根据双馈感应电机的方程和磁链方程构建双馈异步感应电机的T型等效电路,建立DFIG电气仿真模型;
S500)根据DFIG电气仿真模型双馈感应发电机定子的瞬时电磁功率方程、转子电流与定子电流的关系和转子电压方程,建立电网侧变频器和转子侧变频器控制器模型;
S600)使用以上步骤建立的风电机组仿真模型,建立双馈风机单机无穷大系统模型;
S700)设置风电机组仿真模型的初始运行工况,设置微秒级别的仿真步长,进入风电机组系统的电磁暂态仿真运行状态;
S720)对所述的风力机模型分别施加风速负阶跃和风速正阶跃信号,进行风速阶跃的电磁暂态仿真,分析风电机组的有功出力、转速、风功率、风能利用效率以及桨距角的响应,建立的双馈风机详细模型面对风速变化的动态响应特性,验证最大风能追踪的有效性;
S740)对所述的双馈风机单机无穷大系统模型施加无功阶跃信号,进行无功阶跃的电磁暂态仿真,分析风电机组的机端电压、有功出力、无功出力以及转速的变化,建立的双馈风机详细模型面对外部电网无功负荷变化的动态响应特性,验证双馈风机矢量控制中无功控制环节的动态特性;
S760)对所述的双馈风机单机无穷大系统模型分别模拟外部电网三相对称故障和非对称故障,对有、无低电压穿越功能的双馈异步风机进行故障状态的电磁暂态仿真,分析风电机组的机端电压、有功、无功、定子电流、转子电流波形,比较有、无低电压穿越功能的双馈异步风机在电网故障下的动态响应,验证双馈风机故障保护的动态特性。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一种较佳的技术方案,其特征在于所述的DFIG模块使用可投切Crowbar装置实现低电压穿越功能,当外界故障使转子侧变频器检测到转子过电流,或者变频器直流母线过电压时,Crowbar装置中的开关元件IGBT导通,Crowbar投入工作旁路转子过流,同时转子侧变频器触发信号闭锁,双馈机转子绕组直接经串联电阻Rc短路。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一种更好的技术方案,其特征在于所述的电磁暂态仿真方法还包括以下步骤:
S762)仿真分析Crowbar装置投切过程的转子电流的衰减过程,分析不同Crowbar切除时间整定值下低电压穿越功能的动态响应,验证Crowbar切除时间整定值的合理性。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一种改进的技术方案,其特征在于所述的电磁暂态仿真方法还包括以下步骤:
S764)仿真分析外界电网发生三相不对称故障时转子三相电流的瞬时值和幅值的变化,验证三相不对称故障时变频器保护的设置参数。
本发明的有益效果是:
1.本发明的双馈变速恒频风电机组系统电磁暂态仿真方法,可以建立符合双馈变速恒频风电机组物理特性的详细模型,利用该详细模型进行电磁暂态仿真,可以考察风机在各种故障和工况下的动态特性,验证保护装置整定值的合理性。
2.本发明的双馈变速恒频风电机组系统电磁暂态仿真方法,不但可以模拟双馈变速恒频风电机组的电气特性,还可以模拟风力原动机的机械运行状况,进行风力变化对风电场的影响进行仿真研究,即能对双馈机进行详细地电磁暂态仿真,也能进行机电暂态仿真,使风机在大规模电网中的仿真成为可能。
附图说明
图1是本发明双馈变速恒频风电机组系统电磁暂态仿真方法的主流程图;
图2是双馈变速恒频风电机组模型结构示意图;
图3是风电机组两质量块轴系模型示意图;
图4是风电机组轴系模型的传递函数框图;
图5是桨距控制系统框图;
图6是同步旋转坐标系下DFIG的T型等效电路;
图7是DFIG磁链定向矢量控制模型图;
图8是电网侧变频器控制系统模型图;
图9是双馈机转子侧变频器控制保护系统模型图;
图10是带有可投切Crowbar的双馈异步风电机组的模型图;
图11是使用风电机组仿真模型建立的风机单机无穷大系统模型图。
具体实施方式
为了能更好地理解本发明的上述技术方案,下面结合附图和实施例进行进一步地详细描述。
图2是双馈变速恒频风电机组模型结构示意图,风电机组包括由风力机模型110、轴系模型120和桨距控制系统130构成的原动机模块100,由感应发电机模型210和转子侧变频器控制保护系统220构成的双馈风电机组模块,以及电网侧变频器控制系统(图中未表示)。
双馈变速恒频风电机组通过其控制系统可以实现以下功能:控制发电机与电网之间的无功交换功率、控制风电机组发出的有功功率以追踪风电机组的最优运行点或者在高风速情况下限制风电机组出力。上述功能主要通过变速风电机组的转子侧变频器控制及风力机的桨距角控制实现。
转子侧变频器220用于控制双馈机转子侧电压幅值和相位,实现对风电机组的有功和无功解耦控制,完成风电机组的最大功率追踪策略,包含以下各个模块:最大风能追踪模块221、功率测量模块222、电压电流测量模块223、功率控制器224、电流控制器225以及坐标变换模块226。双馈风电机组的保护模型227也包含在双馈风电机组的模型中。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的主流程图如图1所示,包括以下步骤:
S100)建立风力机模型,根据风速、风能转换效率与叶尖速比和叶片浆距角的关系,模拟风力机吸收的风功率;
S200)使用发电机质块和风力机质块组成的两质量块轴系结构,建立风机轴系模型,模拟风力机机械转矩与发电机电磁转矩的能量传递关系;
S300)建立桨距控制系统模型,使用桨距角控制仿真进行风电机组功率的寻优,寻求在给定风速下使风电机组输出功率的最大值;模拟风速超出额定风速时桨距控制系统的过载保护功能;
S400)根据双馈感应电机的方程和磁链方程构建双馈异步感应电机(DFIG)的T型等效电路,建立DFIG电气仿真模型;
S500)根据DFIG电气仿真模型双馈感应发电机定子的瞬时电磁功率方程、转子电流与定子电流的关系和转子电压方程,建立电网侧变频器和转子侧变频器控制器模型;
S600)使用以上步骤建立的风电机组仿真模型,建立双馈风机单机无穷大系统模型;
使用风电机组仿真模型建立的双馈风机单机无穷大系统模型的一个实施例如图11所示,风电机组通过WT低压母线连接到升压变压器,升压后通过出口母线PCC连接到外部电网,设置风电机组和升压变压器、外部电网的参数,构成双馈风机单机无穷大系统,就可以进行风电机组系统的电磁暂态仿真、机电暂态仿真和故障仿真。
电磁暂态过程是指电力系统各个元件中电场和磁场以及相应的电压和电流的变化过程,电磁暂态仿真对电力系统中从几微秒到几秒之间的电磁暂态过程进行仿真,仿真的计算步长常常取。电磁暂态仿真主要的分析对象为:①由电力系统外部、故障或者操作引起的暂态过电压和过电流,如雷电过电压、操作过电压、工频过电压等;②谐振暂态,如次同步谐振、铁磁谐振等;③控制暂态,如一次与二次系统的相互作用等;④HVDC和FACTS等大功率电力电子设备中的快速暂态和非正弦的准稳态过程;⑤对于研究新型快速继电保护装置的动作原理,故障点探测原理及电磁干扰等问题,也常需进行电磁暂态过程分析。
S700)设置风电机组仿真模型的初始运行工况,设置微秒级别的仿真步长,进入风电机组系统的电磁暂态仿真运行状态;
S720)对所述的风力机模型分别施加风速负阶跃和风速正阶跃信号,进行风速阶跃的电磁暂态仿真,分析风电机组的有功出力、转速、风功率、风能利用效率以及桨距角的响应,建立的双馈风机详细模型面对风速变化的动态响应特性,验证最大风能追踪的有效性;
风速负阶跃仿真工况如下:风机初始有功出力4.5MW,无功出力0.0Mvar,滑差+8%,1.0s后风速突然减小2m/s,考察风机有功出力、转速以及风能利用效率。当风速从12.946m/s变化到10.946m/s时,风机的有功出力从4.5MW减小到2.7565MW,风机转速从1.08pu减小到0.9171pu,但风能利用效率Cp却没有变,仍是0.4473,因此该风机模型能够实现不同风速下的最佳风能追踪。
风速正阶跃在同样的初始工况下,风速作+2m/s的阶跃变化时,由于风机的最大出力限制使有功出力最终限制在5.5MW,在2.9s左右时,双馈机转速超过1.2pu,此时桨距控制投入,限制风机对风功率的获取,因此风能利用效率降低,最终,风机出力5.5MW,转速稳定在1.24pu,桨距角大约控制在4.20左右,风能利用效率为0.3543,小于初始时的0.4473。
S740)对所述的双馈风机单机无穷大系统模型施加无功阶跃信号,进行无功阶跃的电磁暂态仿真,分析风电机组的机端电压、有功出力、无功出力以及转速的变化,建立的双馈风机详细模型面对外部电网无功负荷变化的动态响应特性,验证双馈风机矢量控制中无功控制环节的动态特性;
无功阶跃响应主要验证双馈风机矢量控制中无功控制环节的动态特性。仿真工况如下:风机初始有功出力4.5MW,无功出力0Mvar,滑差+8%,1.0s后无功功率参考值作0.9MVar的阶跃,考察风机机端电压、有功、无功以及转速的变化。分析表明,无功功率参考值阶跃后,风机的无功出力能够迅速跟踪参考值的变化,而机端电压、有功出力以及发电机转速均基本保持不变。
S760)对所述的双馈风机单机无穷大系统模型分别模拟外部电网三相对称故障和非对称故障,对有、无低电压穿越功能的双馈异步风机进行故障状态的电磁暂态仿真,分析风电机组的机端电压、有功、无功、定子电流、转子电流波形,比较有、无低电压穿越功能的双馈异步风机在电网故障下的动态响应,验证双馈风机故障保护的动态特性。
1)对称故障仿真:
当外部电网出现三相对称故障时,由于风机机端电压突然下降,再加上转子侧变频器矢量控制的作用,转子电流会突然增大导致变频器过流。同时短路故障后由于有功无法送出,而电网侧变频器有功电流不会突变导致电网侧变频器向直流电容充电,因此还可能引起直流电容过压,在这种情况下,变频器必须退出运行。这时,对于有低电压穿越功能的风机,仅切除变频器,双馈机仍挂网运行,而对于无低电压穿越功能的风机则直接切机,因此,需要详细比较两者在电网故障下的动态响应。
有低电压穿越功能:
对于有低电压穿越功能的双馈异步风机,考察以下几种工况下的故障动态特性:
(1)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降福较小,Crowbar不动作;
(2)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间60ms;
(3)风机初始运行点:有功2.8MW,无功0Mvar,滑差-10%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间60ms;
(4)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间500ms;
下面逐一介绍以上几种工况下的电磁暂态仿真结果:
(1)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降幅较小,Crowbar不动作;风机单机无穷大系统如图11所示,仿真工况如下:风机初始有功出力4.5MW,无功0Mvar,初始滑差+8%,Crowbar切除时间60ms。0s时,风机升压变出口母线PCC发生三相短路故障,接地阻抗0.1+j1.0Ω,0.15s后故障清除。故障后,由于双馈机本身的暂态过程,有功、无功以及转子电流均会发生振荡,振荡衰减的速度与双馈机定、转子绕组的时间常数有关。转子侧变频器的功率控制策略中,电网电压跌落时有功参考值相应减少,无功参考值相应增加,因此可以发现故障期间双馈机有功平均值较之故障前减小,而无功则相应增加,以帮助电网电压的恢复。
(2)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间60ms;仿真工况:风机初始有功出力4.5MW,无功0Mvar,初始滑差+8%,Crowbar切除时间60ms。0s时,风机升压变出口母线PCC发生三相短路故障,接地阻抗0.01+j0.1Ω,0.15s后故障清除。故障后,机端电压迅速跌至0.2pu左右,此时Crowbar动作,双馈机有功、无功均迅速下降,同时,由于双馈机本身的暂态过程,其有功、无功包括定、转子电流均作振荡衰减。60ms左右时,Crowbar切除,转子侧变频器控制信号恢复,但此时由于故障还未清除,转子侧变频器进入故障期间的功率控制策略,此时双馈机无功出力增加,使得故障期间电网电压略有提升。0.15s后故障清除,双馈机有功、无功、转子电流再次叠加高频振荡分量,待振荡衰减后重新恢复有功、无功控制功能,回到初始运行点并继续进行最佳风能跟踪。
(3)风机初始运行点:有功2.8MW,无功0Mvar,滑差-10%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间60ms;仿真工况:风机初始有功出力2.8MW,无功0Mvar,初始滑差-10%,Crowbar切除时间60ms。0s时,风机升压变出口母线PCC发生三相短路故障,接地阻抗0.01+j0.1Ω,0.15s后故障清除。Crowbar退出后风机进入故障期间的功率控制策略,为电网电压恢复提供支撑,故障清除后风机同样能回到初始运行点。
(4)风机初始运行点:有功4.5MW,无功0Mvar,滑差+8%,故障时机端电压降幅较大,Crowbar动作,Crowbar切除时间500ms;仿真工况:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,Crowbar切除时间整定值500ms。0s时,风机升压变出口母线PCC发生三相短路故障,短路阻抗0.01+j0.1Ω,0.15s时故障清除。根据仿真分析结果,0.15s故障恢复后Crowbar还未切除,风机作普通异步发电机运行,发出有功吸收无功,直到0.5s,Crowbar切除后风机重新恢复有功无功控制能力,故障期间Crowbar投切一次。Crowbar切除时间整定值较长时,故障穿越期间风机会从电网吸收更多的无功,这不利于故障后电网电压的恢复。
无低电压穿越功能:
(1)机端电压降幅较大,风机切除。仿真工况:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,三相短路故障接地阻抗0.01+j0.1Ω,0.15s故障清除。根据仿真分析结果,无低电压穿越能力的风机在电网发生较严重故障后直接切除,故障清除后无法重新恢复有功无功控制能力,对故障后电网频率以及电压的恢复均不利。
(2)机端电压降幅较小,风机不切除。仿真工况:风机初始运行点同前,三相短路故障接地阻抗0.1+j1.0Ω,0.15s故障清除。根据仿真分析结果,故障期间机端电压降为0.7pu,转子电流未超过变频器保护整定值,风机仍挂网运行,故障期间有功指令比正常工作时小,无功则比正常工作时多发,从而为电网电压提供支撑作用。
2)非对称故障仿真
三相不对称故障时,风机同样会因为机端电压的突然降低而导致变频器过流或直流电容过压,同时,还可能由于三相不平衡过于严重而导致变频器三相不对称保护动作,因此,有必要分析比较有、无低电压穿越的风机在电网不对称故障下的动态响应。
有低电压穿越功能
(1)单相故障机端电压降幅较小,Crowbar不动作。仿真工况:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,Crowbar切除时间60ms,0s时风机升压变出口母线PCC发生a相接地故障,短路阻抗0.2+j2.0Ω,0.15s故障清除。根据仿真分析结果,故障过程中Crowbar未动作,变频器始终未退出,但与三相对称故障机端电压降幅较小时不同,故障期间,风机有功、无功均振幅较大,无法控制在4.5MW和0Mvar的参考值上,这主要是因为不对称故障时机端电压有负序分量,该负序分量经过转子侧变频器矢量控制作用后,会在有功和无功中叠加2倍频(100Hz)的附加量,导致有功、无功均以100Hz振荡。
(2)相间故障机端电压降幅较小,Crowbar不动作。仿真工况:风机初始运行点以及Crowbar参数同前,0s时,风机升压变出口母线PCC发生bc相间短路故障,短路阻抗0.35+j3.5Ω,0.15s故障清除。根据仿真分析结果,与单相故障类似,相间故障期间风机的有功和无功同样会发生振荡,振荡的频率中含有100Hz的分量。
(3)单相故障机端电压降幅较大,Crowbar动作。仿真工况:风机初始运行点以及Crowbar参数同前,单相接地阻抗0.01+j0.1Ω,0.15s故障清除。根据仿真分析结果,单相故障同样会导致转子过流,故障穿越过程中,Crowbar一共投切两次,这主要是由于非对称故障Crowbar投入后,转子电流中100Hz的分量衰减较慢。因此第一次Crowbar退出变频器重新投入后,由于外界故障还未消除,转子又再次迅速过流,Crowbar再次投入,直到0.19s左右时Crowbar退出,风机重新恢复控制功能并回到初始运行点。
(4)相间故障机端电压降幅较大,Crowbar动作。仿真工况:风机初始工况以及Crowbar参数同前,0s时,bc相间短路阻抗0.01+j0.1Ω,0.15s故障清除。与单相故障类似,相间故障时转子过流同样衰减较慢,Crowbar多次动作后风机才重新恢复有功、无功控制功能。
无低电压穿越功能
(1)单相故障机端电压降幅较小,风机不切除。仿真工况:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,0s时,风机升压变出口母线PCC发生发生a相单相接地故障,短路阻抗0.2+j2.0Ω,0.15s时故障清除。根据仿真分析结果,故障过程中双馈机转子未过流,变频器保护不动作,但风机的有功和无功同样在4.5MW和0Mvar附近作100Hz的等幅振荡。
(2)相间故障机端电压降幅较大,风机切除。仿真工况:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,0s时,风机升压变出口母线PCC发生发生bc相间短路故障,短路阻抗0.01+j0.1Ω,0.15s故障清除。根据仿真分析结果,无低电压穿越能力的风机在电网故障清除后无法恢复有功、无功控制能力,对电网频率以及电压的恢复均不利。
根据本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例,步骤S100根据公式
P wind = 1 2 ρπ R 2 C p ( β , λ ) V w 3 - - - ( 1 )
建立风力机模型,模拟风力机吸收的风功率,其中,Pwind为风功率,ρ为空气密度,R为风机叶轮半径,λ=Rωtur/Vw为叶尖速比,β为桨距角,ωtur为风力机叶轮的转速,Cp为风力机的风能转换效率,是λ与β的函数,Vw为风速。在该实施例中,Cp与λ和β的关系用一张二维表来表示,其中β从-20~300变化,间隔0.50,λ从0~19.6变化,间隔0.4,因此可形成一张66*49的二维表,根据此表,采用样条拟合的方法可以得到任意β和λ下的Cp。
根据本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例,双馈变速恒频风电机组中含发电机质块和风力机质块的两质量块轴系模型如图3所示,根据图3可以得到两质量块轴系模型的数学方程
2 H tur dω tur dt = T tur - K s θ s - D s ( ω tur - ω gen ) - D tur ω tur 2 H gen dω gen dt = K s θ s + D s ( ω tur - ω gen ) - T E - D gen ω gen dθ s dt = ω 0 ( ω tur - ω gen ) - - - ( 2 )
步骤S200根据公式2建立由发电机质块和风力机质块组成的两质量块轴系模型,其中,Htur与Hgen分别为风力机、发电机的惯性时间常数;Ks为轴的弹性系数,Dtur、Dgen分别为风力机转子与发电机转子的自阻尼系数;Ds为风力机质块和发电机质块的互阻尼系数;θs为相对角位移;Ttur与TE分别为风力机机械转矩与发电机电磁转矩;ωtur、ωgen分别为风力机与发电机转子转速,ω0为同步转速。风电机组轴系模型的传递函数框图如图4所示,发电机质块模型已包含在DFIG中,在图4中未表示。
根据本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例,双馈异步风机在低于额定风速时为了使叶片能够尽可能吸收多的风能,桨距角一般设定在0度左右,因此低于额定风速时桨距控制不投入。而在高于额定风速时,由于能量的获取受到机组物理性能的限制,风力机的风轮转速和能量转换必须低于某个极限值,否则各部件的机械和疲劳强度就受到挑战。因此在高风速下,需要投入桨距控制,调节风力机的风能利用效率,从而限制风电机组机械功率不超出其额定功率,同时限制发电机的转速在允许的范围内。桨距控制系统的模型如图5所示,桨距控制系统读取转速测量值speed,与预设的最大转速参考值speed_ref进行比较,得出误差信号传送给输入PI控制器;所述的PI控制器产生桨距角参考值Beta_ref,再与实际的桨距角Beta比较,得出桨距角误差信号,输入到桨距角控制系统伺服机构;在桨距控制系统模型中,所述的桨距控制系统伺服机构用伺服时间常数T、桨距调节的限值Vrmax、Vrmin和桨距变化的梯度限值Rate_max、Rate_min表示。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例,根据同步旋转坐标系下双馈感应电机的电磁方程
u sd = - dψ sd dt + ω 1 ψ sq - R s i sd u sq = - dψ sq dt - ω 1 ψ sd - R s i sq u rd = dψ rd dt - ω s ψ rq + R r i rd u rq = dψ rq dt + ω s ψ rd + R r i rq - - - ( 3 )
和磁链方程
ψ sd = L s i sd - L m i rd ψ sq = L s i sq - L m i rq ψ rd = - L m i sd + L r i rd ψ rd = - L m i sq + L r i rq - - - ( 4 )
建立同步旋转坐标系下双馈异步感应电机(DFIG)的T型等效电路,如图6所示。步骤S400建立DFIG电气仿真模型,其中,usd、usq、urf、urd、urq分别为定子绕组和转子绕组电压的d轴和q轴分量;RS和K分别为定子绕组和转子绕组相电阻;isd、isq、ird.irq,分别为定子绕组和转子绕组电流的d轴和q轴分量,ω1为同步角速度,ωs为转差角速度,ψsd、ψsq、ψrd和ψrq为定子和转子d轴和q轴的磁链,Ls=Lm+Lσs,Lr=Lm+Lσr,为定、转子电感,Lσs、Lσr、Lm为定、转子漏感和互感。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例,步骤S500根据DFIG电气仿真模型双馈感应发电机定子的瞬时电磁功率方程
P = 3 2 ( u sd i sd + u sq i sq ) = - 3 2 U 1 i sq Q = 3 2 ( u sq i sd - u sd i sq ) = 3 2 U 1 i sd - - - ( 5 )
转子电流与定子电流的关系公式
i rd = L s L m i sd - ψ L m i rq = L s L m i sq - - - ( 6 )
以及转子电压方程
u rd = R r i rd + σL r di rd dt - ω s ψ rq + L m L s ( u sd - R s i sd ) u rq = R r i rq + σL r di rq dt + ω s ψ rd + L m L s ( u sq - R s i sq - ω 1 ψ sd ) - - - ( 7 )
建立电网侧变频器和转子侧变频器控制器模型,其中,P为有功功率、Q为无功功率。系统采用双闭环结构,外环为功率控制环,内环为电流控制环。在功率环中,有功功率参考值Pref按最佳风能跟踪曲线计算,无功功率参考值Qref可根据电网对无功功率的要求计算,也可以从发电机的功率消耗角度来计算。Pref和Qref参考值与反馈值进行比较,差值经功率调节器(PI型)运算,输出转子电流的无功和有功分量参考值Irq_ref和Ird_ref,Irq_ref和Ird_ref和转子电流反馈量比较后的差值送入电流调节器(PI型),调节后的输出电压分量加上电压补偿项就可获得转子电压指令Vrd_ref、Vrq_ref,再经旋转变换就得到发电机转子三相电压控制量Ura_ref、Urb_ref、Urc_ref,参见图7。
电网侧变频器采用定子电压定向的矢量控制方案,用于控制交直交变频器的直流母线电压以及电网侧变频器发出的无功功率。电网侧变频器控制系统同样采取双闭环结构,外环为直流电压控制环,内环为电流控制环,如图8所示。
电网侧变频器控制系统由以下几部分组成:
直流电压测量模块:用于测量双馈机变频器直流环节的直流电压值;
变频器电流测量模块:用于测量电网侧变频器的三相交流电流;
PLL电压锁相环:测量电网侧变频器接入的电网侧电压相角,以采用电网电压定向的矢量控制方法实现电网侧变频器解耦控制;
坐标变换模块:由于电网侧电压电流量都是在电网固定参考坐标系下表示的,而电网侧变频器又是在电网电压参考坐标下采用电网电压定向的矢量控制办法,因此在电网侧变频器控制器的输入输出信号均需要进行坐标变换;
电网侧变频器:控制器输出脉宽调制(PWM)指令给变频器,变频器通过调整上下桥臂的占空比,达到相应的控制效果;
电网侧变频器控制器:由级联的两级PI控制器构成,慢速外环用于控制直流环节的直流电压与变频器发出的无功功率,快速内环用于控制电流(Id、Iq)至由外环控制确定的电流参考值(Id_ref、Iq_ref);电网侧变频器控制器输出信号定义了变频器交流侧输出电压的幅值和相角,在电网侧电压定向的矢量控制方式下,变频器电流分解为两个互相垂直的电流分量,其中d轴电流Id为有功电流,q轴电流Iq为无功电流,d轴有功电流用于控制直流环节的直流电压,q轴无功电流用于控制变频器发出的无功功率;电网侧变频器电流内环控制器输出的变频器调制系数为电网侧变频器电压定向下的表示方式,需要通过坐标变换将其转换为系统固定参考坐标系下的表示方式才是电网侧变频器能够处理的信号;
转子侧变频器控制保护系统如图9所示,由以下几部分组成:
有功无功测量环节:用于测量整个双馈感应发电机发出的有功与无功功率并将信号传输至转子侧变频器控制器;
坐标变换模块:执行不同的参考坐标系下的坐标变换功能;
dq→αβ变换模块:用于将电流器控制器输出的定子磁链定向参考坐标系下的变频器调制系数信号变换为双馈电机转子参考坐标系下的信号输入到DFIG中;
αβ→dq变换模块:用于将双馈电机转子电流由转子参考坐标系下的表示方法转换为定子磁链定向坐标系下的表示方法,以实现定子磁链定向的转子侧变频器控制;
DFIG模块:由感应发电机及转子侧变频器模型构成,其模型方程及输入输出都是在转子参考坐标系下表示,其输出信号有转子电流I、I,转子位置角
Figure BDA00002569652700141
及定、转子磁通实部和虚部ψs_r,ψs_i,ψr_r,ψr_i;
功率控制模块:根据式5和式6,调解转子励磁电流的q轴分量即可调节有功,调解d轴分量即可调节无功,因此,双馈机转子侧变频器矢量控制的功率外环利用实测P、Q与有用功、无功参考值的差值经过两个PI控制器得到转子励磁电流d、q轴分量的参考值Ird_ref、Irq_ref
电流控制模块:功率外环控制输出的转子励磁电流d、q轴分量的参考值Ird_ref、Irq_ref作为电流内环控制的输入,转子电流闭环产生用于控制转子励磁电压的变频器脉宽调制系数;在PWM变频器中,脉宽调制系数Pmd与Pmq为变频器的控制变量,若变频器直流电压为udc,则有下式成立:
u rd = 3 2 2 P md u dc u rq = 3 2 2 P mq u dc - - - ( 8 )
因此,将电流内环控制得到的变频器脉宽调制系数Pmd与Pmq输入到双馈电机中即可通过变频器改变转子励磁电压的幅值和相角,从而控制发电机转子电流达到间接控制发电机有功无功的目的;
最大风能跟踪模块:风电机组只有通过改变风轮转速才能在不同风速下均达到最佳风能利用效率,由于最佳风能追踪控制仅在低于额定风速时使用,在这期间桨距控制并不投入,桨距角为0度,因此,低于额定风速时存在最佳叶尖速比,使风能利用效率最大;式1中Cp恒定,且其中k为齿轮箱增速比,R为风轮半径,将该式代入式1得到:
P w | max ρπ R 5 C p max 2 k 3 λ op 3 ω gen 3 = Kω gen 3 - - - ( 9 )
因此,通过实测发电机转速,令最大风能跟踪模块中有功功率的参考值与转速的立方成正比,即可实现最大风能的追踪和捕获;在风速高于额定时,桨距控制投入,有功功率参考值限制在最大出力;
根据本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的另一个实施例,所述的DFIG模块使用可投切Crowbar装置实现低电压穿越功能,带有可投切Crowbar装置的双馈风电机组(DFIG)如图10所示。当外界故障使转子侧变频器检测到转子过电流,或者变频器直流母线过电压时,Crowbar装置中的开关元件IGBT导通,Crowbar投入工作旁路转子过流,同时转子侧变频器触发信号闭锁,双馈机转子绕组直接经串联电阻Rc短路。
低电压穿越(LVRT,Low Voltage Ride Through)能力是指当电网故障或扰动引起风电厂的并网点电压跌落时,在一定电压跌落的范围内,风电机组能够不间断并网运行。双馈异步风机的低电压穿越能力主要是通过可投切Crowbar装置来实现的。
带可投切Crowbar装置的双馈变速恒频风电机组结构如图10所示。Crowbar投切过程如下:当外界故障使转子侧变频器检测到转子过电流,或者变频器直流母线过电压时,Crowbar装置中的开关元件IGBT导通,Crowbar投入工作旁路转子过流,同时转子侧变频器触发信号闭锁,双馈机转子绕组直接经电阻短路,每相的短路附加电阻约为Crowbar串联电阻值的2/3左右,这时双馈机更像一台普通的异步发电机或电动机(视故障前电机转速而定)。
在Crowbar投入的最初10~15ms内,双馈机发出的无功会有一个正向的冲击,此后双馈机开始吸收无功,而发出的有功大小则要视滑差的正负和大小而定。由于Crowbar串联的电阻值较小,同时短路故障期间机端电压较低,双馈机的定、转子磁链、电流均衰减较快。Crowbar投入60~100ms之后,转子电流衰减到较小值,并且直流电压也基本恢复到正常值,Crowbar切除,转子侧变频器触发信号恢复,双馈机重新恢复控制能力。
若外界故障较为严重,例如故障时间较长或者转子过流衰减速度较慢,则Crowbar在故障期间可能不只投切一次,若Crowbar一直反复动作则最终可能使过速保护或低压保护动作导致切机,因此,Crowbar投入时间的整定值需仔细选取。
双馈机以及变频器的保护主要包括以下几种:变频器过流保护,变频器不对称保护,发电机机端过压、欠压保护,发电机过速、低速保护,如图9所示。在有低电压穿越功能的风机中,变频器过流或不对称保护动作时,bypass标志位置1,于是功率控制器和电流控制器PI环节的状态变量均清零,变频器触发信号闭锁,Crowbar投入运行,此时双馈机进入转子绕组短路的异步电机运行状态。当故障消除,Crowbar退出运行时,若变频器检测不到过流或不对称,则控制器重新投入运行,变频器触发信号解锁,风力机恢复控制能力。而在没有低电压穿越功能的风机中,变频器过流、不对称、发电机过速、低速、机端过压、欠压任何一个保护动作时,双馈机均退出运行,无法重新自动投入。
在双馈异步风机的保护中,机端过压、低压保护,发电机过速、低速保护均采用反时限整定原则。下面重点介绍变频器过流保护和三相不对称保护的建模方法和整定原则。
变频器过流保护:
由图9和式9可知,变频器过流保护中采集的信号量为过流最严重的那相转子电流幅值。因此,双馈机的转子电流能否反映实际流过IGBT的电流?通过电磁暂态仿真可以发现,流过每个IGBT组的电流为单极性PWM波,其包络线即为该IGBT所在桥臂对应相的电流。
由此可见,计算过流最严重的那相转子电流幅值,能够恰当地反映IGBT中的过流情况。
短路故障时,双馈机转子三相电流可能会不对称,图9中转子电流幅值计算模块用来计算过流最严重的那相转子电流幅值,计算公式为:
I rot = I rd 2 + I rq 2 · S N 3 × U N - - - ( 10 )
过流保护按照如下方法整定:假设风机额定出力下转子电流为IrN(无功按照功率因数0.95考虑),实际检测并按式10计算得到的转子电流为Irot,则若Irot>1.21IrN,保护延时10ms,若Irot>1.32IrN,保护瞬时动作。
三相不对称保护:
变频器三相不对称保护按如下方式整定:风电机组机端任意相邻两相电压相位差小于1140或大于1260(即三相电压不平衡度大于±5%),保护无延时动作,在有低电压穿越能力的风机中Crowbar投入运行,在无低电压穿越能力的风机中直接切机。
在保护模型实现时,可通过测量机端三相电压矢量的实部和虚部,从而分别求出三相电压的相位,继而求出任意两相电压间的最大相位差,并判断是否满足保护动作条件。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例还包括以下步骤:
S762)仿真分析Crowbar装置投切过程的转子电流的衰减过程,分析不同Crowbar切除时间整定值下低电压穿越功能的动态响应,验证Crowbar切除时间整定值的合理性。
双馈异步风机实现低电压穿越功能的核心元件Crowbar的作用是短接转子绕组,使转子过流快速衰减,并使变频器能够重新启动。由于Crowbar投入期间,双馈机做普通异步机运行,若Crowbar投入时间过长则风机会从电网中吸收大量无功,不利于故障后电网的电压恢复。若Crowbar投入时间过短,则转子过流还未衰减到一定值变频器即投入会使转子再次过流,从而Crowbar多次投切。因此,Crowbar切除时间整定值的合理选取十分重要。
对于主动投切型Crowbar(如图10所示),Crowbar投入后一般需要实时监测Crowbar串联电阻的电压,当该电压低到一定值时,表示转子电流已经充分衰减,变频器可以重新启动。一般在Crowbar投入60ms~100ms后,转子电流基本上能衰减到比较低的水平,根据仿真分析结果,60ms时,转子电流幅值已从故障瞬间的5.0kA衰减到了1.5kA左右,远低于过流保护整定值2.73kA,变频器可以再次启动。因此,固定时延的Crowbar投切方案被大多数有低电压穿越功能的风机所采用,本文仿真中Crowbar切除时间均取60ms。
本发明的双馈变速恒频风电机组系统电磁暂态仿真方法的一个实施例还包括以下步骤:
S764)仿真分析外界电网发生三相不对称故障时转子三相电流的瞬时值和幅值的变化,验证三相不对称故障时变频器保护的设置参数。
与转子过流保护类似,风机三相不对称保护的对象同样是变频器。当外界电网发生三相不对称故障时,首先,有可能会造成转子过流,其次,转子过流峰值与三相对称故障相比可能稍小,但过流衰减速度却相对较慢,这可以从比较以下三种工况下的转子电流波形看出:
工况1:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,0s时,风机升压变出口母线PCC发生三相短路故障,短路阻抗0.01+j0.1Ω;
工况2:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,0s时,风机升压变出口母线PCC发生a相单相接地故障,短路阻抗0.01+j0.1Ω;
工况3:风机初始有功4.5MW,无功0Mvar,初始滑差+8%,0s时,风机升压变出口母线PCC发生bc相间短路故障,短路阻抗0.01+j0.1Ω;
以上三种工况中故障均不清除,且假定故障后Crowbar不动作,变频器不退出,考察转子三相电流瞬时值以及幅值的变化情况,可以得出,对于三相对称故障,其转子过流峰值(0+时刻转子三相电流幅值)较大,但衰减速度相对较快。而对于非对称故障,转子过流峰值可能相对较小,但衰减速度较慢,甚至不衰减,稳态周期分量中含有100Hz的两倍频分量,振幅较大。
因此,由于IGBT的发热量为I2Rt,可见发热不仅与电流峰值有关,也与过流的持续时间有关。所以,目前的主流变速风电机组均带有三相不对称保护,不对称度允许范围一般为±5%,即保护判据为风电机组机端任意相邻两相电压相位差小于1140或大于1260,保护无延时动作。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明的技术方案,而并非用作为对本发明的限定,任何基于本发明的实质精神对以上所述实施例所作的变化、变型,都将落在本发明的权利要求的保护范围内。

Claims (4)

1.一种双馈变速恒频风电机组系统电磁暂态仿真方法,所述的风电机组包括由风力机模型、轴系模型和桨距控制系统构成的原动机模型,由感应发电机模型和转子侧变频器控制保护系统构成的双馈风电机组模型,以及电网侧变频器控制系统,所述电磁暂态仿真方法包括以下步骤:
S100)建立风力机模型,根据风速、风能转换效率与叶尖速比和叶片浆距角的关系,模拟风力机吸收的风功率;
S200)使用发电机质块和风力机质块组成的两质量块轴系结构,建立风机轴系模型,模拟风力机机械转矩与发电机电磁转矩的能量传递关系;
S300)建立桨距控制系统模型,使用桨距角控制仿真进行风电机组功率的寻优,寻求在给定风速下使风电机组输出功率的最大值;模拟风速超出额定风速时桨距控制系统的过载保护功能;
S400)根据双馈感应电机的方程和磁链方程构建双馈异步感应电机的T型等效电路,建立DFIG电气仿真模型;
S500)根据DFIG电气仿真模型双馈感应发电机定子的瞬时电磁功率方程、转子电流与定子电流的关系和转子电压方程,建立电网侧变频器和转子侧变频器控制器模型;
S600)使用以上步骤建立的风电机组仿真模型,建立双馈风机单机无穷大系统模型;
S700)设置风电机组仿真模型的初始运行工况,设置微秒级别的仿真步长,进入风电机组系统的电磁暂态仿真运行状态;
S720)对所述的风力机模型分别施加风速负阶跃和风速正阶跃信号,进行风速阶跃的电磁暂态仿真,分析风电机组的有功出力、转速、风功率、风能利用效率以及桨距角的响应,建立的双馈风机详细模型面对风速变化的动态响应特性,验证最大风能追踪的有效性;
S740)对所述的双馈风机单机无穷大系统模型施加无功阶跃信号,进行无功阶跃的电磁暂态仿真,分析风电机组的机端电压、有功出力、无功出力以及转速的变化,建立的双馈风机详细模型面对外部电网无功负荷变化的动态响应特性,验证双馈风机矢量控制中无功控制环节的动态特性;
S760)对所述的双馈风机单机无穷大系统模型分别模拟外部电网三相对称故障和非对称故障,对有、无低电压穿越功能的双馈异步风机进行故障状态的电磁暂态仿真,分析风电机组的机端电压、有功、无功、定子电流、转子电流波形,比较有、无低电压穿越功能的双馈异步风机在电网故障下的动态响应,验证双馈风机故障保护的动态特性。
2.根据权利要求1所述的双馈变速恒频风电机组系统电磁暂态仿真方法,其特征在于所述的DFIG模块使用可投切Crowbar装置实现低电压穿越功能,当外界故障使转子侧变频器检测到转子过电流,或者变频器直流母线过电压时,Crowbar装置中的开关元件IGBT导通,Crowbar投入工作旁路转子过流,同时转子侧变频器触发信号闭锁,双馈机转子绕组直接经串联电阻Rc短路。
3.根据权利要求2所述的双馈变速恒频风电机组系统电磁暂态仿真方法,其特征在于所述的电磁暂态仿真方法还包括以下步骤:
S762)仿真分析Crowbar装置投切过程的转子电流的衰减过程,分析不同Crowbar切除时间整定值下低电压穿越功能的动态响应,验证Crowbar切除时间整定值的合理性。
4.根据权利要求1、2或3所述的双馈变速恒频风电机组系统电磁暂态仿真方法,其特征在于所述的电磁暂态仿真方法还包括以下步骤:
S764)仿真分析外界电网发生三相不对称故障时转子三相电流的瞬时值和幅值的变化,验证三相不对称故障时变频器保护的设置参数。
CN201210533449.5A 2012-12-12 2012-12-12 双馈变速恒频风电机组系统电磁暂态仿真方法 Active CN102999675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210533449.5A CN102999675B (zh) 2012-12-12 2012-12-12 双馈变速恒频风电机组系统电磁暂态仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210533449.5A CN102999675B (zh) 2012-12-12 2012-12-12 双馈变速恒频风电机组系统电磁暂态仿真方法

Publications (2)

Publication Number Publication Date
CN102999675A true CN102999675A (zh) 2013-03-27
CN102999675B CN102999675B (zh) 2015-04-08

Family

ID=47928235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210533449.5A Active CN102999675B (zh) 2012-12-12 2012-12-12 双馈变速恒频风电机组系统电磁暂态仿真方法

Country Status (1)

Country Link
CN (1) CN102999675B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269088A (zh) * 2013-05-29 2013-08-28 合肥工业大学 一种基于电磁暂态算法的双馈型风力发电机组低电压穿越控制方法
CN103336866A (zh) * 2013-06-27 2013-10-02 华南理工大学 一种电磁暂态仿真中含负电阻支路的处理方法
CN104104097A (zh) * 2014-08-07 2014-10-15 国网吉林省电力有限公司 一种评估风电机组送出系统次同步振荡的方法
CN104283212A (zh) * 2014-10-11 2015-01-14 广西大学 一种基于CompactRIO的双馈风力发电机组物理仿真平台
CN104809931A (zh) * 2015-04-08 2015-07-29 中国南方电网有限责任公司电网技术研究中心 一种与电网的培训教案系统相结合地混合仿真处理展示方法
CN104852652A (zh) * 2015-05-06 2015-08-19 北京天诚同创电气有限公司 同步风力发电机闭环矢量控制方法和系统
CN104882871A (zh) * 2015-04-22 2015-09-02 葛洲坝集团电力有限责任公司 一种风电场电缆合闸过电压的防护方法
CN106055817A (zh) * 2016-06-08 2016-10-26 国网内蒙古东部电力有限公司 用于电磁暂态分析的双馈异步发电机双工况模型建模方法
CN106451555A (zh) * 2016-11-22 2017-02-22 南方电网科学研究院有限责任公司 一种双馈风机的低电压穿越控制方法及系统
CN106503324A (zh) * 2016-10-18 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统
CN107330168A (zh) * 2017-06-14 2017-11-07 国网浙江省电力公司电力科学研究院 一种基于机网耦合的汽轮机调门快关仿真建模方法
CN107394791A (zh) * 2017-06-30 2017-11-24 天津大学 防止撬棒反复投切的双馈风机撬棒自适应切除控制方法
CN107798205A (zh) * 2017-12-11 2018-03-13 河海大学 双馈感应风力发电机组轴系模型参数的单独辨识方法
CN108073150A (zh) * 2016-11-10 2018-05-25 中国电力科学研究院 基于硬件在环仿真的风电机组功率控制测试平台及其方法
CN108429431A (zh) * 2018-03-12 2018-08-21 许继集团有限公司 一种基于虚拟同步发电机的变流器及其控制方法
CN108595861A (zh) * 2018-04-28 2018-09-28 河海大学 基于psasp直驱风电机组简化建模及参数辨识方法
CN109241664A (zh) * 2018-09-29 2019-01-18 贵州电网有限责任公司 一种关于风力发电机雷电电磁暂态特性的分析计算方法
CN109802429A (zh) * 2018-12-27 2019-05-24 中国电力科学研究院有限公司 一种双馈风电机组电磁暂态仿真方法和装置
CN110781574A (zh) * 2019-09-03 2020-02-11 中国能源建设集团甘肃省电力设计院有限公司 大规模风电场中多风力发电机组建模方法
CN111181177A (zh) * 2020-04-13 2020-05-19 广东电网有限责任公司佛山供电局 一种可变频率变压器的转矩和功率波动抑制方法
CN111414573A (zh) * 2020-04-28 2020-07-14 北京拾易技术有限公司 一种工程应用领域的输入输出数据处理方法和系统
CN111931351A (zh) * 2020-07-16 2020-11-13 广东电网有限责任公司电力科学研究院 一种风电机组外部过电压计算方法、系统及设备
CN113295412A (zh) * 2021-05-26 2021-08-24 华能澜沧江水电股份有限公司 一种检测立式水轮发电机组导轴承受力不平衡原因的方法
CN113315117A (zh) * 2021-04-13 2021-08-27 国网西藏电力有限公司经济技术研究院 基于补偿电流的静态负荷的控制电流暂态建模方法和装置
CN114995190A (zh) * 2022-06-06 2022-09-02 南方电网科学研究院有限责任公司 一种风电机组全链路实时仿真系统及仿真方法
WO2022263331A1 (en) 2021-06-14 2022-12-22 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Grid forming operation with a wound rotor induction generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371021B1 (ja) * 2017-03-24 2018-08-08 株式会社東芝 可変速揚水発電システムおよび可変速揚水発電方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246505A (zh) * 2007-12-14 2008-08-20 南方电网技术研究中心 电网电磁暂态与机电暂态混合仿真系统及其仿真方法
CN102024079A (zh) * 2010-12-01 2011-04-20 中国电力科学研究院 一种大型风电场电磁暂态仿真的等效聚合模拟方法
CN202548295U (zh) * 2012-03-30 2012-11-21 上海市电力公司 双馈风电机组的仿真装置
CN102799722A (zh) * 2012-07-05 2012-11-28 中国电力科学研究院 一种风电场低电压穿越能力仿真验证方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246505A (zh) * 2007-12-14 2008-08-20 南方电网技术研究中心 电网电磁暂态与机电暂态混合仿真系统及其仿真方法
CN102024079A (zh) * 2010-12-01 2011-04-20 中国电力科学研究院 一种大型风电场电磁暂态仿真的等效聚合模拟方法
CN202548295U (zh) * 2012-03-30 2012-11-21 上海市电力公司 双馈风电机组的仿真装置
CN102799722A (zh) * 2012-07-05 2012-11-28 中国电力科学研究院 一种风电场低电压穿越能力仿真验证方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
蒋雪冬 等: "应对电网电压骤降的双馈感应风力发电机Crowbar控制策略", 《电网技术》 *
黄学良 等: "大容量变速恒频风电机组接入对电网运行的影响分析", 《电工技术学报》 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269088A (zh) * 2013-05-29 2013-08-28 合肥工业大学 一种基于电磁暂态算法的双馈型风力发电机组低电压穿越控制方法
CN103336866A (zh) * 2013-06-27 2013-10-02 华南理工大学 一种电磁暂态仿真中含负电阻支路的处理方法
CN103336866B (zh) * 2013-06-27 2016-04-13 华南理工大学 一种电磁暂态仿真中含负电阻支路的处理方法
CN104104097A (zh) * 2014-08-07 2014-10-15 国网吉林省电力有限公司 一种评估风电机组送出系统次同步振荡的方法
CN104283212A (zh) * 2014-10-11 2015-01-14 广西大学 一种基于CompactRIO的双馈风力发电机组物理仿真平台
CN104809931B (zh) * 2015-04-08 2017-05-03 中国南方电网有限责任公司电网技术研究中心 一种与电网的培训教案系统相结合地混合仿真处理展示方法
CN104809931A (zh) * 2015-04-08 2015-07-29 中国南方电网有限责任公司电网技术研究中心 一种与电网的培训教案系统相结合地混合仿真处理展示方法
CN104882871A (zh) * 2015-04-22 2015-09-02 葛洲坝集团电力有限责任公司 一种风电场电缆合闸过电压的防护方法
CN104852652B (zh) * 2015-05-06 2017-09-22 北京天诚同创电气有限公司 同步风力发电机闭环矢量控制方法和系统
CN104852652A (zh) * 2015-05-06 2015-08-19 北京天诚同创电气有限公司 同步风力发电机闭环矢量控制方法和系统
CN106055817A (zh) * 2016-06-08 2016-10-26 国网内蒙古东部电力有限公司 用于电磁暂态分析的双馈异步发电机双工况模型建模方法
CN106055817B (zh) * 2016-06-08 2019-01-08 国网内蒙古东部电力有限公司 用于电磁暂态分析的双馈异步发电机双工况模型建模方法
CN106503324A (zh) * 2016-10-18 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统
WO2018072427A1 (zh) * 2016-10-18 2018-04-26 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统
CN108073150A (zh) * 2016-11-10 2018-05-25 中国电力科学研究院 基于硬件在环仿真的风电机组功率控制测试平台及其方法
CN106451555A (zh) * 2016-11-22 2017-02-22 南方电网科学研究院有限责任公司 一种双馈风机的低电压穿越控制方法及系统
CN106451555B (zh) * 2016-11-22 2023-12-19 南方电网科学研究院有限责任公司 一种双馈风机的低电压穿越控制方法及系统
CN107330168B (zh) * 2017-06-14 2020-07-17 国网浙江省电力公司电力科学研究院 一种基于机网耦合的汽轮机调门快关仿真建模方法
CN107330168A (zh) * 2017-06-14 2017-11-07 国网浙江省电力公司电力科学研究院 一种基于机网耦合的汽轮机调门快关仿真建模方法
CN107394791B (zh) * 2017-06-30 2019-12-17 天津大学 防止撬棒反复投切的双馈风机撬棒自适应切除控制方法
CN107394791A (zh) * 2017-06-30 2017-11-24 天津大学 防止撬棒反复投切的双馈风机撬棒自适应切除控制方法
CN107798205A (zh) * 2017-12-11 2018-03-13 河海大学 双馈感应风力发电机组轴系模型参数的单独辨识方法
CN108429431A (zh) * 2018-03-12 2018-08-21 许继集团有限公司 一种基于虚拟同步发电机的变流器及其控制方法
CN108595861A (zh) * 2018-04-28 2018-09-28 河海大学 基于psasp直驱风电机组简化建模及参数辨识方法
CN109241664A (zh) * 2018-09-29 2019-01-18 贵州电网有限责任公司 一种关于风力发电机雷电电磁暂态特性的分析计算方法
CN109802429A (zh) * 2018-12-27 2019-05-24 中国电力科学研究院有限公司 一种双馈风电机组电磁暂态仿真方法和装置
CN110781574B (zh) * 2019-09-03 2023-06-27 中国能源建设集团甘肃省电力设计院有限公司 大规模风电场中多风力发电机组建模方法
CN110781574A (zh) * 2019-09-03 2020-02-11 中国能源建设集团甘肃省电力设计院有限公司 大规模风电场中多风力发电机组建模方法
CN111181177A (zh) * 2020-04-13 2020-05-19 广东电网有限责任公司佛山供电局 一种可变频率变压器的转矩和功率波动抑制方法
CN111414573A (zh) * 2020-04-28 2020-07-14 北京拾易技术有限公司 一种工程应用领域的输入输出数据处理方法和系统
CN111414573B (zh) * 2020-04-28 2020-12-01 北京拾易技术有限公司 一种工程应用领域的输入输出数据处理方法和系统
CN111931351A (zh) * 2020-07-16 2020-11-13 广东电网有限责任公司电力科学研究院 一种风电机组外部过电压计算方法、系统及设备
CN113315117A (zh) * 2021-04-13 2021-08-27 国网西藏电力有限公司经济技术研究院 基于补偿电流的静态负荷的控制电流暂态建模方法和装置
CN113295412A (zh) * 2021-05-26 2021-08-24 华能澜沧江水电股份有限公司 一种检测立式水轮发电机组导轴承受力不平衡原因的方法
WO2022263331A1 (en) 2021-06-14 2022-12-22 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Grid forming operation with a wound rotor induction generator
CN114995190A (zh) * 2022-06-06 2022-09-02 南方电网科学研究院有限责任公司 一种风电机组全链路实时仿真系统及仿真方法
CN114995190B (zh) * 2022-06-06 2023-03-07 南方电网科学研究院有限责任公司 一种风电机组全链路实时仿真系统及仿真方法

Also Published As

Publication number Publication date
CN102999675B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN102999675B (zh) 双馈变速恒频风电机组系统电磁暂态仿真方法
CN103034761A (zh) 双馈变速恒频风电机组系统机电暂态仿真方法
CN103034764A (zh) 双馈变速恒频风电机组系统建模与仿真方法
CN103034763A (zh) 大容量风电场风机聚合模型建立和仿真方法
Pokharel Modeling, control and analysis of a doubly fed induction generator based wind turbine system with voltage regulation
CN101977011B (zh) 电网电压三相对称跌落故障下双馈风力发电机的控制方法
CN106329571A (zh) 一种dfig网侧及转子侧pwm变流器的运行控制方法
Qiao et al. Effect of grid-connected DFIG wind turbines on power system transient stability
CN101989829B (zh) 定桨失速型风力发电机组的低电压穿越控制系统
CN105656061A (zh) 风火捆绑经直流输电所引发的次同步振荡的抑制方法
Bourdoulis et al. Rotor-side PI controller design of DFIG wind turbines based on direct power flow modeling
Chandrasekaran et al. Improved control strategy of wind turbine with DFIG for Low Voltage Ride Through capability
Hu et al. Model-based control for doubly fed adjustable-speed pumped storage units with fast power support
Gevorgian et al. Wgrid-49 GMLC project report: Understanding the role of short-term energy storage and large motor loads for active power controls by wind power
Nguyen et al. Real-time modeling of offshore wind turbines for transient simulation and studies
CN104734596B (zh) 一种具有低穿能力的双馈式风电机定子电流计算方法
Shariatpanah et al. An investigation of furl control in a direct-drive PMSG wind turbine
Guo et al. Reexamination of new-generation general wind turbine models in PSD-BPA transient stability simulation program
Wu et al. A new energy storage system based on flywheel
Mercado-Vargas et al. Two control strategies for aggregated wind turbine model with permanent magnet synchronous generator
Errami et al. Performance enhancement of wind energy conversion system based on DFIG in all operating regimes
Zhang et al. Coordinated low voltage ride through strategies for permanent magnet direct drive synchronous generators
Yue et al. Simulation Analysis of Wind Turbine Grid Operation Based on PSCAD
Baoliang et al. Study of improving the voltage stability of wind farm by utilizing STATCOM based on RTDS
Yong et al. Research on Virtual Synchronous Generator Control of Grid-connected Wind Farm with Hybrid Energy Storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant