WO2018072427A1 - 海上风电场电气系统最大暂态过电压分析方法和系统 - Google Patents

海上风电场电气系统最大暂态过电压分析方法和系统 Download PDF

Info

Publication number
WO2018072427A1
WO2018072427A1 PCT/CN2017/082795 CN2017082795W WO2018072427A1 WO 2018072427 A1 WO2018072427 A1 WO 2018072427A1 CN 2017082795 W CN2017082795 W CN 2017082795W WO 2018072427 A1 WO2018072427 A1 WO 2018072427A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind farm
electrical system
voltage
transient
simplified
Prior art date
Application number
PCT/CN2017/082795
Other languages
English (en)
French (fr)
Inventor
郑明�
陆莹
郭亚勋
江晓锋
梁嘉浩
Original Assignee
中国能源建设集团广东省电力设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国能源建设集团广东省电力设计研究院有限公司 filed Critical 中国能源建设集团广东省电力设计研究院有限公司
Publication of WO2018072427A1 publication Critical patent/WO2018072427A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the technical field of electric power grids, in particular to a method and system for analyzing maximum transient overvoltage of an electric system of an offshore wind farm.
  • a method for analyzing a maximum transient overvoltage of an electrical system of an offshore wind farm includes the following steps:
  • the maximum temporary state of the electrical system of the offshore wind farm is obtained. State overvoltage and output the result.
  • a maximum transient overvoltage analysis system for an offshore wind farm electrical system comprising:
  • the system simulation model establishing module is configured to acquire structural data of the electrical system of the offshore wind farm, and simulate according to the structural data, and establish a simplified wind farm electrical system with the electric system of the offshore wind farm as a research object;
  • the system transient over-voltage simulation module is configured to respectively simulate the transient over-voltage of the simplified wind farm electrical system in the case of closing, the transient over-voltage under the condition of switching, and the transient over-voltage under the condition of short-circuit fault;
  • the maximum transient over-voltage acquisition module is configured to obtain a transient over-voltage under the condition of closing the wind farm electric system in the case of closing, a transient over-voltage under the condition of switching, and a transient over-voltage under the condition of short-circuit fault, The maximum transient overvoltage of the offshore wind farm electrical system and output results.
  • the above-mentioned maximum transient over-voltage analysis method and system for the offshore wind farm electrical system obtains the structural data of the offshore wind farm electrical system, and simulates according to the structural data to establish a simplified wind farm electrical system with the offshore wind farm electrical system as the research object.
  • the transient over-voltages in the case of the wind farm electrical system in the case of closing, the transient over-voltage in the case of switching, and the transient over-voltage in the case of short-circuit faults are simulated separately.
  • the maximum transient over-voltage of the electric system of the offshore wind farm is obtained. Output the result.
  • the maximum transient over-voltage of the offshore wind farm electrical system under three working conditions is obtained, which is the insulation coordination and equipment selection of the electrical system. The type provides reference for improving the safety and reliability of wind farm operation.
  • FIG. 1 is a flow chart of a method for analyzing a maximum transient overvoltage of an offshore wind farm electrical system in an embodiment
  • FIG. 2 is a model diagram of a simplified wind farm electrical system in an embodiment
  • FIG. 3 is a waveform diagram of a closing overvoltage voltage in an embodiment
  • FIG. 4 is a waveform diagram of a switching overvoltage voltage in an embodiment
  • FIG. 5 is a waveform diagram of a short-circuit fault overvoltage voltage in an embodiment
  • FIG. 6 is a structural diagram of a maximum transient overvoltage analysis system for an offshore wind farm electrical system in an embodiment
  • a method for analyzing a maximum transient overvoltage of an offshore wind farm electrical system includes the following steps:
  • Step S120 Acquire structural data of the electrical system of the offshore wind farm, and simulate according to the structural data, and establish a simplified wind farm electrical system with the electric system of the offshore wind farm as a research object.
  • the specific composition and layout of the wind farm are not unique.
  • the structural data may specifically include the parameters of the components in the electrical system of the offshore wind farm and the connection relationship between the components.
  • the PSCAD/EMTDC electromagnetic transient simulation software can be used to establish a simulation model for the wind farm with the wind turbines connected in a chain topology and arranged in a parallel manner to obtain a simplified wind farm electrical system. system. By determining the calculation method of each component parameter in the electrical system, the parameters of each component are set in the simulation software to simulate the operation of the actual wind farm.
  • Simplified wind farm electrical systems may include equivalent power supplies, cables, circuit breakers, transformers, bus bars, and fans. The equivalent power source connects the circuit breakers, transformers, and fans through cables and bus bars. It will be appreciated that the simplified wind farm electrical system may also include other types of components.
  • Step S140 respectively simulating the transient over-voltage of the wind farm electrical system in the case of closing, the transient over-voltage in the case of switching, and the transient over-voltage in the case of a short-circuit fault.
  • step S140 includes steps 142 to 146.
  • Step 142 When the wind farm is in different network structures, respectively, simplify the closing of each circuit breaker of the electric system of the wind farm, and simulate the transient over-voltage waveform and amplitude of the electric system of the wind farm in the closed state.
  • the simulation software can be used to set the wind farm to be in a different network structure.
  • the circuit breakers of the simplified wind farm electrical system are respectively set to close.
  • the closed circuit breaker includes at least one of a land substation circuit breaker, an offshore substation circuit breaker, a main transformer high side circuit breaker, a main transformer low side circuit breaker, and a longest feeder circuit breaker. Can It is understood that the closed circuit breaker can also include other types of circuit breakers.
  • Step 144 When the wind farm is in different network structures, respectively, simplify the circuit breakers of the wind farm electrical system, and simulate the simplified transient overvoltage waveform and amplitude of the wind farm electrical system in the case of switching.
  • the simulation software When the simulation cuts the overvoltage, the simulation software also sets the wind farm to be in a different network structure.
  • each circuit breaker of the electric system of the wind farm is simplified.
  • the circuit breaker can also include at least one of a land substation circuit breaker, an offshore substation circuit breaker, a main transformer high side circuit breaker, a main transformer low side circuit breaker, and a longest feeder circuit breaker. It will be appreciated that the circuit breaker can also include other types of circuit breakers.
  • the simulation simplifies the transient over-voltage waveform and amplitude of the wind farm electrical system in the case of switching, so that the transient over-voltage of the wind farm electrical system in the case of switching can be simplified.
  • Step 146 When the wind farm is in a different network structure, respectively, a short circuit is generated at each fault point of the simplified wind farm electrical system, and the transient overvoltage waveform and amplitude of the wind farm electrical system in the case of a short circuit fault are simulated.
  • each fault point is short-circuited.
  • the fault point may include the high voltage side of the substation, the offshore substation, the high voltage side of the main transformer, the low voltage side of the main transformer, the longest collector bus and the longest feeder end. At least one of the sides, it will be appreciated that the point of failure may also include other types of points of failure.
  • the simulation simplifies the transient over-voltage waveform and amplitude of the wind farm electrical system under short-circuit fault conditions, so that the transient over-voltage of the wind farm electrical system under short-circuit fault conditions can be simplified.
  • Step S160 obtaining a maximum transient state of the electrical system of the offshore wind farm according to the transient over-voltage under the simplified closing condition of the wind farm electrical system, the transient over-voltage under the condition of the switching, and the transient over-voltage under the condition of the short-circuit fault. Overvoltage and output the result.
  • the maximum value of the transient overvoltage under the three operating conditions is obtained as the maximum transient overvoltage of the electrical system of the offshore wind farm.
  • the specific form of outputting the maximum transient overvoltage of the offshore wind farm electrical system is not unique. It can be output to the display for display or output to the memory for storage.
  • step S160 includes steps 162 and 164.
  • Step 162 respectively obtain the maximum transient over-voltage of the simplified wind farm electrical system under the condition of closing, cutting, and short-circuit fault.
  • the transient over-voltage of the simplified wind farm electrical system under the conditions of closing, cutting and short-circuit faults can be directly extracted to obtain the maximum transient over-voltage under the corresponding conditions.
  • Step 164 Obtain the maximum value of the maximum transient over-voltage in the case of the closed wind electric system in the case of closing, the case of switching, and the short-circuit fault, and obtain the maximum transient over-voltage of the electrical system of the offshore wind farm and output the result. .
  • the maximum transient over-voltage of the three conditions of closing, switching and short-circuit faults is taken as the maximum transient over-voltage of the offshore wind farm electrical system and the output is output.
  • the maximum transient overvoltage under different operating conditions is first extracted, and then the three maximum transient overvoltages extracted are compared, and the maximum value is taken as the maximum transient overvoltage of the offshore wind farm electrical system, and the transient state is The overvoltage is graded and extracted, and the operation is simple and quick. It can be understood that in other embodiments, the maximum value can be obtained directly from the transient overvoltage of the three operating conditions as the maximum transient overvoltage of the offshore wind farm electrical system.
  • the method for analyzing the maximum transient over-voltage of the above-mentioned offshore wind farm electrical system by integrating the transient over-voltage of the offshore wind farm under the conditions of closing, cutting and short-circuit faults, obtaining the maximum temporary electric system of the offshore wind farm under three working conditions
  • Over-voltage which provides reference for insulation coordination and equipment selection of electrical systems, improves the safety and reliability of wind farm operation.
  • Simulation mode Types include, but are not limited to, equivalent power supplies, cables, circuit breakers, transformers, bus bars, and fans, and equivalent power supplies connect circuit breakers, transformers, and fans through cables and bus bars.
  • the equivalent power source 21 is a 220 kV power source
  • the bus bar includes a bus bar 22, a bus bar 23, a bus bar 24, a bus bar 25, a bus bar 26, and a bus bar 27, and the transformer includes a transformer GT1HV and a transformer GT2HV.
  • the simulation model also includes shunt reactors R1 to R5, parallel SVGS1, switch CBR1 to switch CBR5, switch CBS1 to switch CBS4, switch CBG1, switch CBA, switch CBB, switch CBC, switch CBD, switch CBE, switch CBF, switch CBG and switch CBA3.
  • the external power grid is equivalent to the ideal power supply;
  • the cable part adopts the frequency dependent (phase) line model based on J.Marti and considers the frequency characteristics proposed by PSCAD/EMTDC.
  • the transformer, circuit breaker and busbar are all equipped with PSCAD/EMTDC self-contained model, and the fan is equivalent by current source.
  • the network structure of the wind farm, the position of the circuit breaker closing point and the closing angle are continuously changed, so that the maximum value of the overvoltage in the case of the wind power gate is obtained.
  • the simulated wind farm is in a state of full load output, and reaches a steady state after about 1 s of voltage, current and power.
  • the position of the wind farm network structure and the occurrence point of the circuit breaker is continuously changed, so that the maximum value of the overvoltage in the case of wind farm switching is obtained.
  • the simulated wind farm is in a state of full load output, and reaches a steady state after about 1 s of voltage, current and power. Set the fault occurrence point to the longest collector bus. When the simulation time is 1s, the fault occurs.
  • the fault type is single-phase short circuit.
  • the fault voltage waveform and overvoltage value are obtained by simulation. The waveform is shown in Figure 5.
  • step 3 Analyze the conclusion in step 2) and compare the transient overvoltage maximum under three operating conditions to obtain the maximum transient overvoltage of the offshore wind farm electrical system.
  • a maximum transient over-voltage analysis system for an offshore wind farm electrical system includes a system simulation model establishing module 120, a system transient over-voltage simulation module 140, and maximum transient over-voltage acquisition. Module 160.
  • the system simulation model establishing module 120 is configured to acquire structural data of the offshore wind farm electrical system, and simulate according to the structural data, and establish a simplified wind farm electrical system with the offshore wind farm electrical system as a research object.
  • the specific composition and layout of the wind farm are not unique.
  • the structural data may specifically include the parameters of the components in the electrical system of the offshore wind farm and the connection relationship between the components.
  • the PSCAD/EMTDC electromagnetic transient simulation software can be used to establish a simulation model for the wind farm with the wind turbines connected in a chain topology and arranged in a parallel manner to obtain a simplified wind farm electrical system. system. By determining the calculation method of each component parameter in the electrical system, the parameters of each component are set in the simulation software to simulate the operation of the actual wind farm.
  • Simplified wind farm electrical systems may include equivalent power supplies, cables, circuit breakers, transformers, bus bars, and fans. The equivalent power source connects the circuit breakers, transformers, and fans through cables and bus bars. It will be appreciated that the simplified wind farm electrical system may also include other types of components.
  • the system transient over-voltage simulation module 140 is used to respectively simulate the transient over-voltage of the wind farm electrical system in the case of closing, the transient over-voltage in the case of switching, and the transient over-voltage in the case of a short-circuit fault.
  • the simulation software is used to simulate the transient over-voltage of the wind farm electrical system in the case of closing, cutting and short-circuit faults.
  • the system transient over-voltage simulation module 140 includes a first simulation unit, a second simulation unit, and a third simulation unit.
  • the first simulation unit is configured to simplify the closing of each circuit breaker of the wind farm electrical system when the wind farm is in different network structures, and simulate the simplified transient overvoltage waveform and amplitude of the wind farm electrical system in the closed state.
  • the simulation software can be used to set the wind farm to be in a different network structure.
  • the circuit breakers of the simplified wind farm electrical system are respectively set to close.
  • the closed circuit breaker includes at least one of a land substation circuit breaker, an offshore substation circuit breaker, a main transformer high side circuit breaker, a main transformer low side circuit breaker, and a longest feeder circuit breaker. It will be appreciated that the closed circuit breaker may also include other types of circuit breakers.
  • the second simulation unit is configured to simplify the circuit breakers of the wind farm electrical system when the wind farm is in different network structures, and simulate the simplified transient overvoltage waveform and amplitude of the wind farm electrical system in the case of switching.
  • the simulation software When the simulation cuts the overvoltage, the simulation software also sets the wind farm to be in a different network structure.
  • each circuit breaker of the electric system of the wind farm is simplified.
  • the circuit breaker can also include at least one of a land substation circuit breaker, an offshore substation circuit breaker, a main transformer high side circuit breaker, a main transformer low side circuit breaker, and a longest feeder circuit breaker. It will be appreciated that the circuit breaker can also include other types of circuit breakers.
  • the simulation simplifies the transient over-voltage waveform and amplitude of the wind farm electrical system in the case of switching, so that the transient over-voltage of the wind farm electrical system in the case of switching can be simplified.
  • the third simulation unit is configured to simplify the short circuit of each fault point of the electric system of the wind farm when the wind farm is in different network structures, and simulate the simplified transient overvoltage waveform and amplitude of the electric system of the wind farm under the short circuit fault condition.
  • each fault point is short-circuited.
  • the fault point may include the high voltage side of the substation, the offshore substation, the high voltage side of the main transformer, the low voltage side of the main transformer, the longest collector bus and the longest feeder end. At least one of the sides, it will be appreciated that the point of failure may also include other types of points of failure.
  • the simulation simplifies the transient over-voltage waveform and amplitude of the wind farm electrical system under short-circuit fault conditions, so that the transient over-voltage of the wind farm electrical system under short-circuit fault conditions can be simplified.
  • the maximum transient overvoltage acquisition module 160 is used to simplify the closing of the electric system according to the wind farm Under the transient over-voltage, the transient over-voltage under the condition of switching and the transient over-voltage under the condition of short-circuit fault, the maximum transient over-voltage of the offshore wind farm electrical system is obtained and the result is output.
  • the maximum value of the transient over-voltage under three working conditions is obtained, which is used as the electrical system of the offshore wind farm.
  • Maximum transient overvoltage The specific form of outputting the maximum transient overvoltage of the offshore wind farm electrical system is not unique. It can be output to the display for display or output to the memory for storage.
  • the maximum transient overvoltage acquisition module 160 includes a first transient overvoltage acquisition unit and a second transient overvoltage acquisition unit.
  • the first transient over-voltage acquisition unit is configured to respectively obtain the maximum transient over-voltage of the simplified wind farm electrical system in the case of closing, switching, and short-circuit faults.
  • the transient over-voltage of the simplified wind farm electrical system under the conditions of closing, cutting and short-circuit faults can be directly extracted to obtain the maximum transient over-voltage under the corresponding conditions.
  • the second transient over-voltage obtaining unit is configured to obtain a maximum value of the maximum transient over-voltage in the case of closing the wind farm electrical system in the case of closing, cutting, and short-circuit faults, and obtaining the electrical system of the offshore wind farm The maximum transient overvoltage and output results.
  • the maximum transient over-voltage of the three conditions of closing, switching and short-circuit faults is taken as the maximum transient over-voltage of the offshore wind farm electrical system and the output is output.
  • the maximum transient overvoltage under different operating conditions is first extracted, and then the three maximum transient overvoltages extracted are compared, and the maximum value is taken as the maximum transient overvoltage of the offshore wind farm electrical system.
  • the step-by-step extraction of transient overvoltage is simple and quick. It can be understood that in other embodiments, the maximum value can be obtained directly from the transient overvoltage of the three operating conditions as the maximum transient overvoltage of the offshore wind farm electrical system.
  • the maximum transient over-voltage analysis system of the above-mentioned offshore wind farm electrical system obtains the maximum temporary state of the offshore wind farm electrical system under three working conditions by integrating the transient over-voltage of the offshore wind farm under the conditions of closing, cutting and short-circuit faults.
  • Over-voltage which provides reference for insulation coordination and equipment selection of electrical systems, improves the safety and reliability of wind farm operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种海上风电场电气系统最大暂态过电压分析方法和系统,获取海上风电场电气系统的结构数据,并根据结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统(S120)。分别仿真简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压(S140),进而得到海上风电场电气系统的最大暂态过电压并输出结果。通过综合海上风电场在合闸、切闸和短路故障情况下的暂态过电压,获取三种工况下海上风电场电气系统的最大暂态过电压,从而为电气系统的绝缘配合、设备选型等提供参考,提高了风电场运行安全可靠性。

Description

海上风电场电气系统最大暂态过电压分析方法和系统 技术领域
本发明涉及电力电网技术领域,特别是涉及一种海上风电场电气系统最大暂态过电压分析方法和系统。
背景技术
随着我国经济社会的不断发展,对可再生能源的需求越来越大。作为一种清洁能源,风能的利用将是未来发展的重要方向。而海上风电场具有风能资源丰富、不占用陆地等优点,更是未来发展的重中之重。
关于海上风电场的运行维护问题也越来越受到关注。海上风电场大量使用电力电缆,工况复杂,环境恶劣,大大增加了各种故障发生的概率。例如,海上风电场断路器开合闸频繁,容易产生合闸过电压;大型海上风电场发展加快,短路故障威胁着电气设备的安全。如何为电气系统的绝缘配合、设备选型等提供参考,对风电场安全可靠运行具有重要的实际意义。
发明内容
基于此,有必要针对上述问题,提供一种可提高风电场运行安全可靠性的海上风电场电气系统最大暂态过电压分析方法和系统。
一种海上风电场电气系统最大暂态过电压分析方法,包括以下步骤:
获取海上风电场电气系统的结构数据,并根据所述结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统;
分别仿真所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压;
根据所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
一种海上风电场电气系统最大暂态过电压分析系统,包括:
系统仿真模型建立模块,用于获取海上风电场电气系统的结构数据,并根据所述结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统;
系统暂态过电压仿真模块,用于分别仿真所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压;
最大暂态过电压获取模块,用于根据所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
上述海上风电场电气系统最大暂态过电压分析方法和系统,获取海上风电场电气系统的结构数据,并根据结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统。分别仿真简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压。根据简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到海上风电场电气系统的最大暂态过电压并输出结果。通过综合海上风电场在合闸、切闸和短路故障情况下的暂态过电压,获取三种工况下海上风电场电气系统的最大暂态过电压,从而为电气系统的绝缘配合、设备选型等提供参考,提高了风电场运行安全可靠性。
附图说明
图1为一实施例中海上风电场电气系统最大暂态过电压分析方法的流程图;
图2为一实施例中简化风电场电气系统的模型图;
图3为一实施例中合闸过电压电压波形图;
图4为一实施例中切闸过电压电压波形图;
图5为一实施例中短路故障过电压电压波形图;
图6为一实施例中海上风电场电气系统最大暂态过电压分析系统的结构 图。
具体实施方式
在一个实施例中,一种海上风电场电气系统最大暂态过电压分析方法,如图1所示,包括以下步骤:
步骤S120:获取海上风电场电气系统的结构数据,并根据结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统。
风电场的具体组成以及布局方式并不唯一,结构数据具体可包括海上风电场电气系统中各元件的参数和元件之间的连接关系等数据。可通过PSCAD/EMTDC电磁暂态仿真软件,对具有以链式拓扑结构连接的风电机组且以平行方式布局的风电场,建立以整个风电场电气系统为研究对象的仿真模型,得到简化风电场电气系统。通过确定电气系统中各元件参数计算方法,在仿真软件中设置各元件的参数,模拟实际风电场的运行情况。简化风电场电气系统具体可包括等效电源、电缆、断路器、变压器、母线和风机,等效电源通过电缆和母线连接断路器、变压器和风机。可以理解,简化风电场电气系统还可包括其他类型元件。
步骤S140:分别仿真简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压。
通过仿真软件分别仿真简化风电场电气系统在合闸情况、切闸情况和短路故障情况下的暂态过电压。具体地,在一个实施例中,步骤S140包括步骤142至步骤146。
步骤142:在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器合闸,仿真简化风电场电气系统在合闸情况下的暂态过电压波形和幅值。
仿真合闸过电压时,可通过仿真软件设置风电场处于不同的网络结构。在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器合闸。合闸的断路器包括陆上变电站断路器、海上变电站断路器、主变压器高压侧断路器、主变压器低压侧断路器和最长馈线断路器中的至少一种。可以 理解,合闸的断路器还可包括其他类型的断路器。通过仿真简化风电场电气系统在合闸情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在合闸情况下的暂态过电压。
步骤144:在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器切闸,仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值。
仿真切闸过电压时,同样通过仿真软件设置风电场处于不同的网络结构。在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器切闸。切闸的断路器同样可包括陆上变电站断路器、海上变电站断路器、主变压器高压侧断路器、主变压器低压侧断路器和最长馈线断路器中的至少一种。可以理解,切闸的断路器还可包括其他类型的断路器。仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在切闸情况下的暂态过电压。
步骤146:在风电场处于不同的网络结构时,分别设置简化风电场电气系统各故障点发生短路,仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值。
仿真短路故障时,通过仿真软件设置风电场处于不同的网络结构。在不同网络结构下分别设置各故障点发生短路,故障点具体可包括陆上变电站、海上变电站、主变压器高压侧、主变压器低压侧、最长集电母线和最长馈线端点的机端变压器高压侧中的至少一种,可以理解,故障点还可包括其他类型故障点。仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在短路故障情况下的暂态过电压。
需要说明的是,仿真合闸过电压、切闸过电压和短路故障过电压的先后顺序并不唯一,可随意打乱。
步骤S160:根据简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到海上风电场电气系统的最大暂态过电压并输出结果。
在得到简化风电场电气系统在合闸、切闸和短路故障三种工况下的暂态 过电压之后,获取三种工况下暂态过电压中的最大值,作为海上风电场电气系统的最大暂态过电压。将海上风电场电气系统的最大暂态过电压作为结果进行输出的具体形式并不唯一,可以是输出至显示器进行显示,也可以是输出至存储器进行存储。
在一个实施例中,步骤S160包括步骤162和步骤164。
步骤162:分别获取简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压。
根据仿真得到的简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的暂态过电压,可直接提取得到对应情况下的最大暂态过电压。
步骤164:获取简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压中的最大值,得到海上风电场电气系统的最大暂态过电压并输出结果。
将合闸、切闸和短路故障三种工况的最大暂态过电压的最大值作为海上风电场电气系统的最大暂态过电压并输出结果。
本实施例中先提取不同工况下的最大暂态过电压,再比较提取得到的三个最大暂态过电压,将其中的最大值作为海上风电场电气系统最大暂态过电压,对暂态过电压进行分级提取,操作简便快捷。可以理解,在其他实施例中,也可以是直接从三种工况的暂态过电压中获取最大值,作为海上风电场电气系统的最大暂态过电压。
上述海上风电场电气系统最大暂态过电压分析方法,通过综合海上风电场在合闸、切闸和短路故障情况下的暂态过电压,获取三种工况下海上风电场电气系统的最大暂态过电压,从而为电气系统的绝缘配合、设备选型等提供参考,提高了风电场运行安全可靠性。
为便于更好地理解上述海上风电场电气系统最大暂态过电压分析方法,下面结合具体实施例进行详细的解释说明。
1)采用PSCAD/EMTDC电力系统电磁暂态仿真软件,针对目前大型风电场常采用平行方式布局风机的情况,建立仿真模型如附图2所示。仿真模 型包括但不限于等效电源、电缆、断路器、变压器、母线和风机等,等效电源通过电缆和母线连接断路器、变压器和风机。具体地,等效电源21为220kV电源,母线包括母线22、母线23、母线24、母线25、母线26和母线27,变压器包括变压器GT1HV和变压器GT2HV。此外,仿真模型还包括并联电抗器R1至R5、并联SVGS1、开关CBR1至开关CBR5、开关CBS1至开关CBS4、开关CBG1、开关CBA、开关CBB、开关CBC、开关CBD、开关CBE、开关CBF、开关CBG和开关CBA3。
其中,外部电网用理想电源等效,;电缆部分采用PSCAD/EMTDC自带的基于J.Marti提出的考虑频率特性的频率相关(相位)线路模型。变压器、断路器和母线均采用PSCAD/EMTDC自带模型,风机由电流源进行等效。
2)分别设置风电场处于不同网络结构,在不同网络结构下发生各种情况。
①合闸情况。设置断路器CBA、CBB、CBC、CBD初始状态闭合,断路器CBE断开,经过1s左右电压、电流和功率等都达到稳定状态。设置断路器CBS1闭合(变压器低压侧),,仿真得到合闸过电压波形和过电压值,波形如附图3所示。
不断改变风电场的网络结构、断路器合闸发生点的位置以及合闸角度,从而得到风电场合闸情况下的过电压最大值。
②切闸情况。仿真风电场处于满载出力状态,经过1s左右电压、电流和功率等都达到稳定状态。设置主变压器低压一侧断路器CBS1断开,仿真得到切闸过电压波形和过电压值,波形如附图4所示。
不断改变风电场网络结构和断路器切闸发生点的位置,从而得到风电场切闸情况下的过电压最大值。
③短路故障情况。仿真风电场处于满载出力状态,经过1s左右电压、电流和功率等都达到稳定状态。设置故障发生点为最长集电母线处,在仿真时间为1s时发生故障,故障类型为单相短路,仿真得到故障电压波形和过电压值,波形如附图5所示。
不断改变风电场网络结构、短路故障发生点的位置、短路故障类型以及短路故障角度,从而得到风电场短路故障下的过电压最大值。
3)分析步骤2)中的结论,对比三种工况下的暂态过电压最大值,从而获得海上风电场电气系统最大暂态过电压。
在一个实施例中,一种海上风电场电气系统最大暂态过电压分析系统,如图6所示,包括系统仿真模型建立模块120、系统暂态过电压仿真模块140和最大暂态过电压获取模块160。
系统仿真模型建立模块120用于获取海上风电场电气系统的结构数据,并根据结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统。
风电场的具体组成以及布局方式并不唯一,结构数据具体可包括海上风电场电气系统中各元件的参数和元件之间的连接关系等数据。可通过PSCAD/EMTDC电磁暂态仿真软件,对具有以链式拓扑结构连接的风电机组且以平行方式布局的风电场,建立以整个风电场电气系统为研究对象的仿真模型,得到简化风电场电气系统。通过确定电气系统中各元件参数计算方法,在仿真软件中设置各元件的参数,模拟实际风电场的运行情况。简化风电场电气系统具体可包括等效电源、电缆、断路器、变压器、母线和风机,等效电源通过电缆和母线连接断路器、变压器和风机。可以理解,简化风电场电气系统还可包括其他类型元件。
系统暂态过电压仿真模块140用于分别仿真简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压。
通过仿真软件分别仿真简化风电场电气系统在合闸情况、切闸情况和短路故障情况下的暂态过电压。具体地,在一个实施例中,系统暂态过电压仿真模块140包括第一仿真单元、第二仿真单元和第三仿真单元。
第一仿真单元用于在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器合闸,仿真简化风电场电气系统在合闸情况下的暂态过电压波形和幅值。
仿真合闸过电压时,可通过仿真软件设置风电场处于不同的网络结构。 在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器合闸。合闸的断路器包括陆上变电站断路器、海上变电站断路器、主变压器高压侧断路器、主变压器低压侧断路器和最长馈线断路器中的至少一种。可以理解,合闸的断路器还可包括其他类型的断路器。通过仿真简化风电场电气系统在合闸情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在合闸情况下的暂态过电压。
第二仿真单元用于在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器切闸,仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值。
仿真切闸过电压时,同样通过仿真软件设置风电场处于不同的网络结构。在风电场处于不同的网络结构时,分别设置简化风电场电气系统各断路器切闸。切闸的断路器同样可包括陆上变电站断路器、海上变电站断路器、主变压器高压侧断路器、主变压器低压侧断路器和最长馈线断路器中的至少一种。可以理解,切闸的断路器还可包括其他类型的断路器。仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在切闸情况下的暂态过电压。
第三仿真单元用于在风电场处于不同的网络结构时,分别设置简化风电场电气系统各故障点发生短路,仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值。
仿真短路故障时,通过仿真软件设置风电场处于不同的网络结构。在不同网络结构下分别设置各故障点发生短路,故障点具体可包括陆上变电站、海上变电站、主变压器高压侧、主变压器低压侧、最长集电母线和最长馈线端点的机端变压器高压侧中的至少一种,可以理解,故障点还可包括其他类型故障点。仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值,便可得到简化风电场电气系统在短路故障情况下的暂态过电压。
需要说明的是,仿真合闸过电压、切闸过电压和短路故障过电压的先后顺序并不唯一,可随意打乱。
最大暂态过电压获取模块160用于根据简化风电场电气系统在合闸情况 下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到海上风电场电气系统的最大暂态过电压并输出结果。
在得到简化风电场电气系统在合闸、切闸和短路故障三种工况下的暂态过电压之后,获取三种工况下暂态过电压中的最大值,作为海上风电场电气系统的最大暂态过电压。将海上风电场电气系统的最大暂态过电压作为结果进行输出的具体形式并不唯一,可以是输出至显示器进行显示,也可以是输出至存储器进行存储。
在一个实施例中,最大暂态过电压获取模块160包括第一暂态过电压获取单元和第二暂态过电压获取单元。
第一暂态过电压获取单元用于分别获取简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压。
根据仿真得到的简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的暂态过电压,可直接提取得到对应情况下的最大暂态过电压。
第二暂态过电压获取单元,用于获取简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压中的最大值,得到海上风电场电气系统的最大暂态过电压并输出结果。
将合闸、切闸和短路故障三种工况的最大暂态过电压的最大值作为海上风电场电气系统的最大暂态过电压并输出结果。
本实施例中先提取不同工况下的最大暂态过电压,再比较提取得到的三个最大暂态过电压,将其中的最大值作为海上风电场电气系统最大暂态过电压。对暂态过电压进行分级提取,操作简便快捷。可以理解,在其他实施例中,也可以是直接从三种工况的暂态过电压中获取最大值,作为海上风电场电气系统的最大暂态过电压。
上述海上风电场电气系统最大暂态过电压分析系统,通过综合海上风电场在合闸、切闸和短路故障情况下的暂态过电压,获取三种工况下海上风电场电气系统的最大暂态过电压,从而为电气系统的绝缘配合、设备选型等提供参考,提高了风电场运行安全可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种海上风电场电气系统最大暂态过电压分析方法,其特征在于,包括以下步骤:
    获取海上风电场电气系统的结构数据,并根据所述结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统;
    分别仿真所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压;
    根据所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
  2. 根据权利要求1所述的海上风电场电气系统最大暂态过电压分析方法,其特征在于,所述简化风电场电气系统包括等效电源、电缆、断路器、变压器、母线和风机,所述等效电源通过所述电缆和所述母线连接所述断路器、所述变压器和所述风机。
  3. 根据权利要求1所述的海上风电场电气系统最大暂态过电压分析方法,其特征在于,所述分别仿真所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压的步骤,包括以下步骤:
    在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各断路器合闸,仿真所述简化风电场电气系统在合闸情况下的暂态过电压波形和幅值;
    在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各断路器切闸,仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值;
    在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各故障点发生短路,仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值。
  4. 根据权利要求3所述的海上风电场电气系统最大暂态过电压分析方法, 其特征在于,所述断路器包括陆上变电站断路器、海上变电站断路器、主变压器高压侧断路器、主变压器低压侧断路器和最长馈线断路器中的至少一种。
  5. 根据权利要求3所述的海上风电场电气系统最大暂态过电压分析方法,其特征在于,所述故障点包括陆上变电站、海上变电站、主变压器高压侧、主变压器低压侧、最长集电母线和最长馈线端点的机端变压器高压侧中的至少一种。
  6. 根据权利要求1所述的海上风电场电气系统最大暂态过电压分析方法,其特征在于,所述根据所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到所述海上风电场电气系统的最大暂态过电压并输出结果的步骤,包括以下步骤:
    分别获取所述简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压;
    获取所述简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压中的最大值,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
  7. 一种海上风电场电气系统最大暂态过电压分析系统,其特征在于,包括:
    系统仿真模型建立模块,用于获取海上风电场电气系统的结构数据,并根据所述结构数据进行仿真,建立以海上风电场电气系统为研究对象的简化风电场电气系统;
    系统暂态过电压仿真模块,用于分别仿真所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压;
    最大暂态过电压获取模块,用于根据所述简化风电场电气系统在合闸情况下的暂态过电压、切闸情况下的暂态过电压和短路故障情况下的暂态过电压,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
  8. 根据权利要求7所述的海上风电场电气系统最大暂态过电压分析系统,其特征在于,所述简化风电场电气系统包括等效电源、电缆、断路器、变压 器、母线和风机,所述等效电源通过所述电缆和所述母线连接所述断路器、所述变压器和所述风机。
  9. 根据权利要求7所述的海上风电场电气系统最大暂态过电压分析系统,其特征在于,所述系统暂态过电压仿真模块包括:
    第一仿真单元,用于在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各断路器合闸,仿真所述简化风电场电气系统在合闸情况下的暂态过电压波形和幅值;
    第二仿真单元,用于在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各断路器切闸,仿真简化风电场电气系统在切闸情况下的暂态过电压波形和幅值;
    第三仿真单元,用于在风电场处于不同的网络结构时,分别设置所述简化风电场电气系统各故障点发生短路,仿真简化风电场电气系统在短路故障情况下的暂态过电压波形和幅值。
  10. 根据权利要求7所述的海上风电场电气系统最大暂态过电压分析系统,其特征在于,所述最大暂态过电压获取模块包括:
    第一暂态过电压获取单元,用于分别获取所述简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压;
    第二暂态过电压获取单元,用于获取所述简化风电场电气系统在合闸情况下、切闸情况下和短路故障情况下的最大暂态过电压中的最大值,得到所述海上风电场电气系统的最大暂态过电压并输出结果。
PCT/CN2017/082795 2016-10-18 2017-05-03 海上风电场电气系统最大暂态过电压分析方法和系统 WO2018072427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610906806.6 2016-10-18
CN201610906806.6A CN106503324A (zh) 2016-10-18 2016-10-18 海上风电场电气系统最大暂态过电压分析方法和系统

Publications (1)

Publication Number Publication Date
WO2018072427A1 true WO2018072427A1 (zh) 2018-04-26

Family

ID=58295312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082795 WO2018072427A1 (zh) 2016-10-18 2017-05-03 海上风电场电气系统最大暂态过电压分析方法和系统

Country Status (2)

Country Link
CN (1) CN106503324A (zh)
WO (1) WO2018072427A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376392A (zh) * 2018-09-21 2019-02-22 全球能源互联网研究院有限公司 一种串联型补偿装置的过电压计算方法及系统
CN109815593A (zh) * 2019-01-25 2019-05-28 周耘立 一种配网相继故障耦合传播机理的分析方法
CN111355253A (zh) * 2019-11-26 2020-06-30 中国电力科学研究院有限公司 一种确定多直流送出系统送端暂态过电压的系统及方法
CN118013862A (zh) * 2024-04-09 2024-05-10 湖南大学 一种风电场短期电压稳定性仿真模型构建、评估及监测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503324A (zh) * 2016-10-18 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统
CN108233371A (zh) * 2018-03-21 2018-06-29 中国能源建设集团广东省电力设计研究院有限公司 海上风电场与海岛微电网联合发供电系统
CN109558670B (zh) * 2018-11-27 2019-10-29 电子科技大学中山学院 一种基于混合变邻域蝙蝠算法的海上风电场电缆布局规划方法
CN115513989B (zh) * 2022-10-29 2023-06-30 华北电力大学 一种风火打捆送端系统暂态过电压计算方法、系统及产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227172A1 (en) * 2002-06-07 2003-12-11 Erdman William L. Wind farm electrical system
CN102999675A (zh) * 2012-12-12 2013-03-27 上海市电力公司 双馈变速恒频风电机组系统电磁暂态仿真方法
CN104882871A (zh) * 2015-04-22 2015-09-02 葛洲坝集团电力有限责任公司 一种风电场电缆合闸过电压的防护方法
CN105119316A (zh) * 2015-08-31 2015-12-02 上海交通大学 用于海上风电场并网的vsc-mtdc直流电压控制方法
CN106503324A (zh) * 2016-10-18 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227172A1 (en) * 2002-06-07 2003-12-11 Erdman William L. Wind farm electrical system
CN102999675A (zh) * 2012-12-12 2013-03-27 上海市电力公司 双馈变速恒频风电机组系统电磁暂态仿真方法
CN104882871A (zh) * 2015-04-22 2015-09-02 葛洲坝集团电力有限责任公司 一种风电场电缆合闸过电压的防护方法
CN105119316A (zh) * 2015-08-31 2015-12-02 上海交通大学 用于海上风电场并网的vsc-mtdc直流电压控制方法
CN106503324A (zh) * 2016-10-18 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 海上风电场电气系统最大暂态过电压分析方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN, LULU ET AL.: "Study on Overvoltage and Insulation Coordination of Electrical System in Offshore Wind Farm", ELECTRICAL & ENERGY MANAGEMENT TECHNOLOGY, 30 August 2016 (2016-08-30), pages 60, ISSN: 2095-8188 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376392A (zh) * 2018-09-21 2019-02-22 全球能源互联网研究院有限公司 一种串联型补偿装置的过电压计算方法及系统
CN109376392B (zh) * 2018-09-21 2022-11-18 全球能源互联网研究院有限公司 一种串联型补偿装置的过电压计算方法及系统
CN109815593A (zh) * 2019-01-25 2019-05-28 周耘立 一种配网相继故障耦合传播机理的分析方法
CN109815593B (zh) * 2019-01-25 2023-07-25 周耘立 一种配网相继故障耦合传播机理的分析方法
CN111355253A (zh) * 2019-11-26 2020-06-30 中国电力科学研究院有限公司 一种确定多直流送出系统送端暂态过电压的系统及方法
CN111355253B (zh) * 2019-11-26 2022-12-09 中国电力科学研究院有限公司 一种确定多直流送出系统送端暂态过电压的系统及方法
CN118013862A (zh) * 2024-04-09 2024-05-10 湖南大学 一种风电场短期电压稳定性仿真模型构建、评估及监测方法

Also Published As

Publication number Publication date
CN106503324A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018072427A1 (zh) 海上风电场电气系统最大暂态过电压分析方法和系统
Brochu et al. Validation of single-and multiple-machine equivalents for modeling wind power plants
Deng et al. Operation and control of a DC-grid offshore wind farm under DC transmission system faults
CN109359327B (zh) 多用途智能配电网仿真系统及仿真方法
CN202110440U (zh) 直驱型风力发电机变频控制器闭环试验系统
Feltes et al. Wind turbine generator dynamic performance with weak transmission grids
Zhang et al. Study on switching overvoltage in off-shore wind farms
Badrzadeh et al. Transients in wind power plants—Part II: Case studies
Farantatos et al. Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection
CN110880743A (zh) 一种基于肯德尔秩相关性的风电场站送出线路纵联保护方法
Zhao et al. Assessment of wind farm models from a transmission system operator perspective using field measurements
Muljadi et al. Impact of wind power plants on voltage and transient stability of power systems
CN110165644B (zh) 一种基于暂态电流时频特性的新能源场站纵联保护方法
CN105608252B (zh) 一种电网故障模拟测试的仿真方法及装置
Qi et al. Generic EMT modeling method of Type-4 wind turbine generators based on detailed FRT studies
CN106227912A (zh) 获取简化风电场电缆系统不对称短路故障下最大暂态过电压的分析方法
Liu et al. Analysis of short-circuit current calculation method in wind power plant design
CN104410159A (zh) 一种基于实时数字仿真的电网黑启动全过程校核方法
Angeles et al. Fault evaluation and performance of an IEEE Bus 30 power distribution network with distributed generation (DG)
Fang et al. Research on real-time simulation modelling of Zhangbei renewable energy base based on RTDS
Eguia et al. Characterization of network harmonic impedance for grid connection studies of renewable plants
Lu et al. Evaluation of the maximum allowable generation capacity after offshore wind farms are integrated into the existing taipower system-A case study in Taiwan
Peng et al. The impact of LVRT characteristic on the stability of northwest China grid with large scale wind power
Essl et al. Assessing the severity of voltage sags due to short circuits in transmission and distribution grids
Nayir et al. Analysis of short circuit faults in a system fed by wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863251

Country of ref document: EP

Kind code of ref document: A1