CN102962035A - 在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法 - Google Patents

在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法 Download PDF

Info

Publication number
CN102962035A
CN102962035A CN201210352295XA CN201210352295A CN102962035A CN 102962035 A CN102962035 A CN 102962035A CN 201210352295X A CN201210352295X A CN 201210352295XA CN 201210352295 A CN201210352295 A CN 201210352295A CN 102962035 A CN102962035 A CN 102962035A
Authority
CN
China
Prior art keywords
nano
pore
charcoal
amine compound
nanoporous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210352295XA
Other languages
English (en)
Inventor
唐志红
杨俊和
何星
赵斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201210352295XA priority Critical patent/CN102962035A/zh
Publication of CN102962035A publication Critical patent/CN102962035A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,步骤如下:利用纳米粒子为模板,将纳米粒子球磨分散在溶有炭前驱体的溶液中,其中纳米粒子与炭前驱体的质量比为0.1-10:1,控制溶剂的用量使混合物为糊状;脱除溶剂后惰性气氛下500-1200℃炭化0.1-3h,经NaOH洗涤、烘干后得到大孔容纳米孔炭;然后将纳米孔炭分散于酒精中,加入胺类化合物,室温-100°C下搅拌,直至溶剂挥发完全,得到负载有胺类化合物的纳米孔炭,其中,胺类化合物与纳米孔炭的质量比为0.1-2:1;本发明制备的纳米孔炭能够在大量负载胺类化合物的情况下仍保持多孔特性,有效增加纳米孔炭对二氧化碳的捕集和吸收能力。

Description

在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法
技术领域
本发明涉及一种在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,结合纳米孔炭的物理吸附和胺类的化学吸附,提高材料对二氧化碳的捕集和吸收能力。 
背景技术
由极端自然灾害频发冲击下的全球变暖问题,已经引起世界各国的广泛关注。有关二氧化碳的节能减排成为各国科学界共同研究和探讨的课题,尤其是对二氧化碳捕集技术的研究和开发。利用纳米孔炭负载胺类化合物不仅能够克服传统吸收法由液氨带来的环境污染严重、能耗高、设备腐蚀严重等缺点,而且能够结合纳米孔炭的物理吸附和胺类的化学吸附,提高材料对二氧化碳的捕集能力。因此,多孔材料负载胺类化合物一直是研究的重点。理论上,胺类负载量越大,材料的二氧化碳捕集能力越强,但是,受困于多孔材料比较窄的孔径和小的孔容,胺类化合物的负载量过多时会使胺类严重堵塞多孔炭的孔道,致使可利用的化学吸附位严重减少。所以,如何提高胺类在纳米孔材料中的负载量而不堵塞其孔道,是提高材料二氧化碳吸附容量的关键。而现有的利用模板法或活化法制备的多孔材料孔径和孔容比较小,大量负载胺类化合物将严重堵塞其孔隙,反而减小二氧化碳的捕集量([1]Z.tang,Y.Song,Y.Tian,et al.Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template.Mater.Sci.Eng.,A,2008,473:153-157.[2]J.W.Wei,L.Liao,Y.Xiao,Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41.J.Environ.Sci.,2010,22:1558–1563)。为此,本发明提出一种在大孔容纳米炭中大量负载胺类化合物仍能保持纳米孔的方法,为其进一步应用提供技术支持。 
发明内容
本发明公开了一种在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,可以有效克服现有技术制备的纳米孔材料由于孔径小、孔容小,胺类化合物负载量过多时导致胺类严重堵塞多孔炭的孔道,致使可利用的化学吸附位严重减少的缺点。本发明利用纳米粒子为模板,球磨法制备纳米孔炭,然后将胺类化合物负载于纳米碳中,由于本发明制备的纳米孔炭的孔径和孔容大,在大量负载胺类化合物时仍能保持纳米孔,并不堵塞其孔洞,可以极大程度的 利用胺类化合物对酸性气体比如二氧化碳进行吸附,大大增加吸附量。 
本发明技术方案如下: 
在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,按照如下步骤进行: 
A)利用纳米粒子为模板,将纳米粒子球磨分散在溶有炭前驱体的溶液中,其中纳米粒子与炭前驱体的质量比为0.1-10:1,控制溶剂的用量使混合物为糊状; 
B)脱除溶剂后惰性气氛下500-1200℃炭化0.1-3h,经NaOH洗涤、烘干后得到大孔容纳米孔炭; 
C)然后将纳米孔炭分散于酒精中,加入胺类化合物,室温-100℃下搅拌,直至溶剂挥发完全,得到负载有胺类化合物的纳米孔炭,其中,胺类化合物与纳米孔炭的质量比为0.1-2:1。 
所述的球磨,其中球磨机转速为200-500转/分,球磨时间为和0.5-5小时。 
所述的胺类化合物为二乙烯三胺,三乙烯四胺,四乙烯五胺,聚乙烯亚胺中的一种。 
本发明制备的纳米孔炭的孔径和孔容大,而在大量负载胺类化合物时仍能保持纳米孔,有效增加纳米孔炭对二氧化碳的捕集和吸收能力。 
具体实施方式
以下结合实施例对本发明进行详细说明。 
实施例1 
将粒径为10nm的纳米氧化硅加入溶有热固性酚醛树脂的乙醇溶液中,纳米氧化硅与酚醛树脂质量比为1:1,200转/分球磨2h混合,脱除溶剂,500℃炭化2h、NaOH洗涤以及烘干后得到大孔容纳米孔炭,将纳米孔炭分散于酒精中,加入二乙烯三胺,室温搅拌直至溶剂蒸发完全,其中,二乙烯三胺与炭的质量比为1:1,即可制备纳米孔结构的二乙烯三胺负载的纳米孔炭。产品性能指标见表1。 
实施例2 
将粒径为10nm的纳米氧化硅加入溶有热固性酚醛树脂的乙醇溶液中,纳米氧化硅与酚醛树脂质量比为3:1,300转/分球磨5h混合,脱除溶剂,800℃炭化0.5h、NaOH洗涤以及烘干后得到大孔容纳米孔炭,将纳米孔炭分散与酒精中,加入四乙烯五胺,60℃搅拌直至溶剂蒸发完全,其中,四乙烯五胺与炭的质量比为0.1:1,即可制备纳米孔结构的四乙烯五胺负载的纳米孔炭。产品性能指标见表1。 
实施例3 
将粒径为15nm的纳米氧化硅加入溶有热固性酚醛树脂的乙醇溶液中,纳米氧化硅与酚醛树脂质量比为5:1,400转/分球磨0.5h混合,脱除溶剂,1000℃炭化1h、NaOH洗涤以及烘干后得到大孔容纳米孔炭,将纳米孔炭分散与酒精中,加入聚乙烯亚胺,100℃搅拌直至溶剂蒸发完全,其中,聚乙烯亚胺与炭的质量比为1.5:1,即可制备纳米孔结构的聚乙烯亚胺负载的纳米孔炭。产品性能指标见表1。 
实施例4 
将粒径为10nm的纳米氧化硅加入溶有热固性酚醛树脂的乙醇溶液中,纳米氧化硅与酚醛树脂质量比为8:1,500转/分球磨0.5h混合,脱除溶剂,700℃炭化5h、NaOH洗涤以及烘干后得到大孔容纳米孔炭,将纳米孔炭分散与酒精中,加入二乙烯三胺,室温搅拌直至溶剂蒸发完全,其中,三乙烯四胺与炭的质量比为2:1,即可制备纳米孔结构的三乙烯四胺负载的纳米孔炭。产品性能指标见表1。 
表1负载胺类化合物的纳米孔炭的性能指标 
  实施例  BET比表面积(m2/g)   孔容(cm3/g)   平均孔径(nm)
  1  568   1.58   12
  2  692   2.98   13
  3  389   1.25   16
  4  106   1.02   13

Claims (3)

1.在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,其特征在于按照如下步骤进行:
A)利用纳米粒子为模板,将纳米粒子球磨分散在溶有炭前驱体的溶液中,其中纳米粒子与炭前驱体的质量比为0.1-10:1,控制溶剂的用量使混合物为糊状;
B)脱除溶剂后惰性气氛下500-1200℃炭化0.1-3h,经NaOH洗涤、烘干后得到大孔容纳米孔炭;
C)将得到的纳米孔炭分散于酒精中,加入胺类化合物,室温-100°C下搅拌直至溶剂挥发完全,得到负载有胺类化合物的纳米孔炭,其中,胺类化合物与纳米孔炭的质量比为0.1-2:1。
2.根据权利要求1所述的在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,其特征在于:所述的球磨,其中球磨机转速为200-500转/分,球磨时间为和0.5-5小时。
3.根据权利要求1所述的在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法,其特征在于:所述的胺类化合物为二乙烯三胺,三乙烯四胺,四乙烯五胺,聚乙烯亚胺中的一种。
CN201210352295XA 2012-09-19 2012-09-19 在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法 Pending CN102962035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210352295XA CN102962035A (zh) 2012-09-19 2012-09-19 在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210352295XA CN102962035A (zh) 2012-09-19 2012-09-19 在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法

Publications (1)

Publication Number Publication Date
CN102962035A true CN102962035A (zh) 2013-03-13

Family

ID=47792638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210352295XA Pending CN102962035A (zh) 2012-09-19 2012-09-19 在纳米孔炭中提高负载胺类化合物并保持纳米孔的方法

Country Status (1)

Country Link
CN (1) CN102962035A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076711A1 (en) * 2009-02-11 2012-03-29 Eth Zurich Amine containing fibrous structure for adsorption of co2 from atmospheric air
CN102502588A (zh) * 2011-11-09 2012-06-20 上海理工大学 一种孔径分布可控的中孔炭的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076711A1 (en) * 2009-02-11 2012-03-29 Eth Zurich Amine containing fibrous structure for adsorption of co2 from atmospheric air
CN102502588A (zh) * 2011-11-09 2012-06-20 上海理工大学 一种孔径分布可控的中孔炭的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANWEN WEI ET AL: "Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41", 《JOURNAL OF ENVIRONMENTAL SCIENCES》 *

Similar Documents

Publication Publication Date Title
Deng et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors
Zhao et al. Carbon‐based adsorbents for post‐combustion capture: a review
Talapaneni et al. Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage
Rajbhandari et al. Nanoporous activated carbon derived from Lapsi (Choerospondias Axillaris) seed stone for the removal of arsenic from water
CN102553523B (zh) 一种负载纳米零价铁的活性碳纤维及其制备方法和用途
CN104583119B (zh) 赋予有碱性官能团的活性炭及其制备方法
Gai et al. N-Doped biochar derived from co-hydrothermal carbonization of rice husk and Chlorella pyrenoidosa for enhancing copper ion adsorption
CN102515145A (zh) 一种高比表面多孔炭材料的制备工艺
CN107413296A (zh) 一种用于吸附重金属锑镉的生物炭铁锰尖晶石复合材料
CN102838105B (zh) 一种分级多孔炭材料的制备方法
Zeng et al. High-performance CO 2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method
Li et al. CTAB-controlled synthesis of phenolic resin-based nanofiber aerogels for highly efficient and reversible SO2 capture
CN104692378A (zh) 竹基大孔生物活性炭及其制备方法
Anbia et al. Synthesis of L-Cysteine grafted nanoporous carbon (CMK-3) and its use as a new cadmium sorbent
Yamanaka et al. Production of scallop shell nanoparticles by mechanical grinding as a formaldehyde adsorbent
CN108435143A (zh) 一种高亲水性吸附剂、制备及吸附铷离子或锂离子的应用
Shan et al. Sustainable synthesis of alkaline metal oxide-mesoporous carbons via mechanochemical coordination self-assembly
CN108640102B (zh) 一种空心碳球微纳团聚体/硫复合材料的制备方法及其应用
Cai et al. Mechanochemical synthesis of tannic acid-Fe coordination compound and its derived porous carbon for CO2 adsorption
Hao et al. WITHDRAWN: High-performance magnetic activated carbon from solid waste from lignin conversion processes. Part I: Their use as adsorbents for CO2
CN106744793A (zh) 一种碱木质素基超级电容器用多孔炭材料及其制备方法和应用
Tajer et al. Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for SO2, CO2, and CH4 adsorption
Zhong et al. A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal
CN102502588A (zh) 一种孔径分布可控的中孔炭的制备方法
Su et al. The role of pore structure and nitrogen surface groups in the adsorption behavior of formaldehyde on resin‐based carbons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130313