CN102954757A - 基于同步载频移相的干涉显微检测装置与检测方法 - Google Patents

基于同步载频移相的干涉显微检测装置与检测方法 Download PDF

Info

Publication number
CN102954757A
CN102954757A CN2012104245615A CN201210424561A CN102954757A CN 102954757 A CN102954757 A CN 102954757A CN 2012104245615 A CN2012104245615 A CN 2012104245615A CN 201210424561 A CN201210424561 A CN 201210424561A CN 102954757 A CN102954757 A CN 102954757A
Authority
CN
China
Prior art keywords
fourier lense
light
splitting prism
phase shift
polarization splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104245615A
Other languages
English (en)
Inventor
钟志
单明广
郝本功
刁鸣
窦峥
张雅彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2012104245615A priority Critical patent/CN102954757A/zh
Publication of CN102954757A publication Critical patent/CN102954757A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

基于同步载频移相的干涉显微检测装置与检测方法,属于光学干涉检测技术领域。它解决了现有同步载频移相干涉显微方法中光利用率低,数据处理复杂的问题。检测装置包括光源、线偏振片、第一偏振分光棱镜、第一准直扩束系统、待测物体、显微物镜、校正物镜、第一反射镜、第二反射镜、第二准直扩束系统、第二偏振分光棱镜、λ/4波片、矩形窗口、第一傅里叶透镜、一维周期光栅、第二傅里叶透镜、偏振片组、图像传感器和计算机;检测方法为将离焦光栅分光技术和偏振调制技术相结合,通过一次曝光采集获得两幅相移干涉图,并通过差动相减方法消除零频分量实现物体相位恢复。本发明适用于微小物体形貌检测。

Description

基于同步载频移相的干涉显微检测装置与检测方法
技术领域
本发明涉及一种基于同步载频移相的干涉显微检测装置与检测方法,属于光学干涉检测技术领域。
背景技术
干涉显微将干涉技术和显微放大技术相结合,可精确地分析物体的三维形貌和相位型物体的位相信息,具有分辨力高、测量速度快等传统干涉技术和显微技术不可替代的优势,是一种比较理想的微小物体三维形貌和位相分布测量的方法。
2006年,瑞士Lyncee Tec公司首次推出DHM-1000数字全息显微镜,可用于测量微小物体的三维形貌和位相分布。但需要倾斜参考光以获得足够大载频使干涉图样的零频分量、实像和共轭像在频谱面上分离,因此,不能充分利用图像传感器的横向分辨率或空间带宽积,限制了其测量精度的提高。
西安光机所的姚保利等提出利用平行双光栅的同步载频移相干涉显微方法(P.Gao,B.L.Yao,I.Harder,J.Min,R.Guo,J.Zheng,T.Ye.Parallel two-step phase-shifting digitalholograph microscopy based on a grating pair.J.Opt.Soc.Am.A2011,28(3):434-440)。该方法通过调整平行双光栅间距调制载频,并结合偏振调制通过一次曝光获得两幅相移载频干涉图。该方法通过将两幅相移干涉图样相减来消除零频分量,从而降低了对干涉图样中载频量的要求,同时提高了对CCD的空间分辨率和空间带宽积的利用率,但是该方法光利用率低,数据处理复杂,并需通过测量条纹确定载频量。
发明内容
本发明是为了解决现有同步载频移相干涉显微方法中光利用率低,数据处理复杂的问题,提供一种基于同步载频移相的干涉显微检测装置与检测方法。
本发明所述基于同步载频移相的干涉显微检测装置,它包括光源,它还包括线偏振片、第一偏振分光棱镜、第一准直扩束系统、待测物体、显微物镜、校正物镜、第一反射镜、第二反射镜、第二准直扩束系统、第二偏振分光棱镜、λ/4波片、矩形窗口、第一傅里叶透镜、一维周期光栅、第二傅里叶透镜、偏振片组、图像传感器和计算机,其中λ为光源发射光束的光波长,
光源发射的光束经线偏振片后入射至第一偏振分光棱镜,第一偏振分光棱镜的反射光束入射至第一准直扩束系统的光接收面,经第一准直扩束系统准直扩束后的出射光束依次经待测物体、显微物镜和校正物镜后,入射至第一反射镜,第一反射镜的反射光束作为物光束入射至第二偏振分光棱镜;
第一偏振分光棱镜的透射光束经第二反射镜反射后入射至第二准直扩束系统的光接收面,经第二准直扩束系统准直扩束后的出射光束作为参考光束入射至第二偏振分光棱镜;
汇合于第二偏振分光棱镜的物光束和参考光束经过λ/4波片和矩形窗口后入射至第一傅里叶透镜,经第一傅里叶透镜汇聚后的出射光束通过一维周期光栅后入射至第二傅里叶透镜,经第二傅里叶透镜透射后的出射光束入射至偏振片组,该偏振片组的出射光束由图像传感器的光接收面接收,图像传感器的信号输出端连接计算机的图像信号输入端;
以第一傅里叶透镜光轴的方向为z轴方向建立xyz三维直角坐标系,所述矩形窗口沿垂直于光轴的方向设置,并且沿x轴方向均分为两个小窗口;
第一傅里叶透镜和第二傅里叶透镜的焦距均为f;
矩形窗口位于第一傅里叶透镜的前焦面上;一维周期光栅位于第一傅里叶透镜的后焦f-Δf处并且位于第二傅里叶透镜的前焦f+Δf处,其中Δf为一维周期光栅的离焦量,Δf大于0并且小于f;
图像传感器位于第二傅里叶透镜的后焦面上;
一维周期光栅的周期d与矩形窗口沿x轴方向的宽度D之间满足关系:
d=2λf/D。
一维周期光栅为二值一维周期光栅、正弦一维周期光栅或余弦一维周期光栅。
偏振片组由两片偏振片组成,该两片偏振片形成1×2阵列,该两片偏振片的透光轴与x轴分别呈0°和45°。
λ/4波片快轴与x轴呈45°。
线偏振片的透光轴与x轴呈45°。
本发明所述基于上所述基于同步载频移相的干涉显微检测装置的检测方法,它的实现过程如下:
打开光源,使光源发射的光束经线偏振片和第一偏振分光棱镜后分成偏振方向相互垂直的物光束和参考光束;物光束和参考光束经第二偏振分光棱镜汇合后,依次通过λ/4波片、矩形窗口、第一傅里叶透镜、一维周期光栅、第二傅里叶透镜和偏振片组,
偏振片组出射的偏振光束在图像传感器平面上产生干涉图样,将计算机采集获得的干涉图样根据矩形窗口的小窗口的尺寸分割获得两幅干涉图样,通过计算得到待测物体的相位分布
Figure BDA00002330842200031
Figure BDA00002330842200032
其中,O′为待测物体的复振幅分布,Im()表示取虚部,Re()表示取实部,
O′=FT-1{FT{(I1-I2)·RE}·HW},
其中,FT表示傅里叶变换,FT-1表示逆傅里叶变换,HW为低通滤波的传递函数,RE为根据一维周期光栅的离焦量Δf,得到的数字参考波RE(x,y):
RE(x,y)=exp(-i2πxΔf/f/d),
I1为由偏振片组中一片偏振片滤波得到的干涉图强度分布,该偏振片的透光轴与x轴呈0°,I2为由偏振片组中另一片偏振片滤波得到的干涉图强度分布,该另一片偏振片的透光轴与x轴呈45°,
I1(x,y)=|R|2+|O|2+R*O+RO*
I2(x,y)=|R|2+|O|2+exp(-iα)R*O+exp(iα)RO*
其中,R表示参考光,R*表示R的复共轭,O表示物光,O*表示O的复共轭,α=π/2为载波相移量。
本发明的优点是:本发明检测方法将离焦光栅分光技术和偏振调制技术相结合,克服了本领域的技术偏见,通过一次曝光采集获得两幅相移干涉图,并通过差动相减方法消除零频分量达到物体相位恢复的目的,不仅方法简单易行,光利用率高,而且可充分利用CCD的横向分辨率和空间带宽积。
计算机采集获得的两幅载频干涉图对比度相同,载频可以从离焦量中直接得到,可极大提高相位恢复算法效率,同时可消除因多级次衍射引入的相移误差和随机噪声,提高测量精度,进而更适合实时动态测量。
本发明装置结构简单,成本低;
本发明装置在操作中不需要改变光路,也不需要倾斜或移动任何实验器件,操作方便灵活,稳定性高。
附图说明
图1为本发明干涉显微检测装置的结构示意图;
图2为偏振片组中两片偏振片的偏振方向示意图;
图3为图像传感器平面上产生的干涉图样;
图4为计算机采集获得的干涉图样根据矩形窗口的小窗口的尺寸分割获得的两幅干涉图样;
图5为待测物体的相位分布图;
图6为沿图5中虚线方向上的待测物体的相位一维分布曲线图。
具体实施方式
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述基于同步载频移相的干涉显微检测装置,它包括光源1,它还包括线偏振片2、第一偏振分光棱镜3、第一准直扩束系统4、待测物体5、显微物镜6、校正物镜7、第一反射镜8、第二反射镜9、第二准直扩束系统10、第二偏振分光棱镜11、λ/4波片12、矩形窗口13、第一傅里叶透镜14、一维周期光栅15、第二傅里叶透镜16、偏振片组17、图像传感器18和计算机19,其中λ为光源1发射光束的光波长,
光源1发射的光束经线偏振片2后入射至第一偏振分光棱镜3,第一偏振分光棱镜3的反射光束入射至第一准直扩束系统4的光接收面,经第一准直扩束系统4准直扩束后的出射光束依次经待测物体5、显微物镜6和校正物镜7后,入射至第一反射镜8,第一反射镜8的反射光束作为物光束入射至第二偏振分光棱镜11;
第一偏振分光棱镜3的透射光束经第二反射镜9反射后入射至第二准直扩束系统10的光接收面,经第二准直扩束系统10准直扩束后的出射光束作为参考光束入射至第二偏振分光棱镜11;
汇合于第二偏振分光棱镜11的物光束和参考光束经过λ/4波片12和矩形窗口13后入射至第一傅里叶透镜14,经第一傅里叶透镜14汇聚后的出射光束通过一维周期光栅15后入射至第二傅里叶透镜16,经第二傅里叶透镜16透射后的出射光束入射至偏振片组17,该偏振片组17的出射光束由图像传感器18的光接收面接收,图像传感器18的信号输出端连接计算机19的图像信号输入端;
以第一傅里叶透镜14光轴的方向为z轴方向建立xyz三维直角坐标系,所述矩形窗口13沿垂直于光轴的方向设置,并且沿x轴方向均分为两个小窗口;
第一傅里叶透镜14和第二傅里叶透镜16的焦距均为f;
矩形窗口13位于第一傅里叶透镜14的前焦面上;一维周期光栅15位于第一傅里叶透镜14的后焦f-Δf处并且位于第二傅里叶透镜16的前焦f+Δf处,其中Δf为一维周期光栅15的离焦量,Δf大于0并且小于f;
图像传感器18位于第二傅里叶透镜16的后焦面上;
一维周期光栅15的周期d与矩形窗口13沿x轴方向的宽度D之间满足关系:
d=2λf/D。
本实施方式中,通过光源1发射的激光束经过线偏振片2后生成线偏振平行光,该线偏振平行光通过第一偏振分光棱镜3后分成偏振方向相互垂直的物光束和参考光束。
光源1可采用波长632.8nm的He-Ne激光器;一维周期光栅15可为周期d=50μm的Ronchi光栅。
具体实施方式二:本实施方式为对实施方式一的进一步说明,一维周期光栅15为二值一维周期光栅、正弦一维周期光栅或余弦一维周期光栅。
具体实施方式三:下面结合图2说明本实施方式,本实施方式为对实施方式一或二的进一步说明,偏振片组17由两片偏振片组成,该两片偏振片形成1×2阵列,该两片偏振片的透光轴与x轴分别呈0°和45°。
具体实施方式四:本实施方式为对实施方式一、二或三的进一步说明,λ/4波片12快轴与x轴呈45°。
具体实施方式五:本实施方式为对实施方式一、二、三或四的进一步说明,线偏振片2的透光轴与x轴呈45°。
具体实施方式六:下面结合图1至图6说明本实施方式,本实施方式所述基于同步载频移相的干涉显微检测装置的检测方法,它的实现过程如下:
打开光源1,使光源1发射的光束经线偏振片2和第一偏振分光棱镜3后分成偏振方向相互垂直的物光束和参考光束;物光束和参考光束经第二偏振分光棱镜11汇合后,依次通过λ/4波片12、矩形窗口13、第一傅里叶透镜14、一维周期光栅15、第二傅里叶透镜16和偏振片组17,
偏振片组17出射的偏振光束在图像传感器18平面上产生干涉图样,如图3所示,将计算机19采集获得的干涉图样根据矩形窗口13的小窗口的尺寸分割获得两幅干涉图样,如图4所示,通过计算得到待测物体5的相位分布
Figure BDA00002330842200051
如图5和图6所示:
Figure BDA00002330842200052
其中,O′为待测物体的复振幅分布,Im()表示取虚部,Re()表示取实部,
O′=FT-1{FT{(I1-I2)·RE}·HW},
其中,FT表示傅里叶变换,FT-1表示逆傅里叶变换,HW为低通滤波的传递函数,RE为根据一维周期光栅12的离焦量Δf,得到的数字参考波RE(x,y):
RE(x,y)=exp(-i2πxΔf/f/d),
I1为由偏振片组14中一片偏振片滤波得到的干涉图强度分布,该偏振片的透光轴与x轴呈0°,I2为由偏振片组14中另一片偏振片滤波得到的干涉图强度分布,该另一片偏振片的透光轴与x轴呈45°,
I1(x,y)=|R|2+|O|2+R*O+RO*
I2(x,y)=|R|2+|O|2+exp(-iα)R*O+exp(iα)RO*
其中,R表示参考光,R*表示R的复共轭,O表示物光,O*表示O的复共轭,α=π/2为载波相移量。
本实施方式中,I1(x,y)-I2(x,y)=[1-exp(-iα)]R*O+[1-exp(iα)]RO*,是为了去除直流量的处理过程。
I1(x,y)-I2(x,y)消除了直流成分的影响,其频谱由[1-exp(-iα)]R*O和[1-exp(iα)]RO*两部分组成,且这两部分沿频谱中心对称分布。
将公式I1(x,y)-I2(x,y)=[1-exp(-iα)]R*O+[1-exp(iα)]RO*与公式:
RE(x,y)=exp(-i2πxΔf/f/d)式相乘得到:
(I1-I2)·RE=[1-exp(-iα)]R*O·RE+[1-exp(iα)]RO*·RE
这样[1-exp(-iα)]R*O·RE移动到了频谱的中心,[1-exp(iα)]RO*·RE则移到了离频谱中心更远的地方,因此,通过低通滤波HW,得到O′=[1-exp(-iα)]R*O·RE
本实施方式中,因为同时采用同步载波偏振相移技术,避免了器件移动引入的干扰,系统稳定性好,而且载波频率能够直接从离焦量中获得,降低了计算量,提高了处理速度。

Claims (6)

1.一种基于同步载频移相的干涉显微检测装置,它包括光源(1),其特征在于:它还包括线偏振片(2)、第一偏振分光棱镜(3)、第一准直扩束系统(4)、待测物体(5)、显微物镜(6)、校正物镜(7)、第一反射镜(8)、第二反射镜(9)、第二准直扩束系统(10)、第二偏振分光棱镜(11)、λ/4波片(12)、矩形窗口(13)、第一傅里叶透镜(14)、一维周期光栅(15)、第二傅里叶透镜(16)、偏振片组(17)、图像传感器(18)和计算机(19),其中λ为光源(1)发射光束的光波长,
光源(1)发射的光束经线偏振片(2)后入射至第一偏振分光棱镜(3),第一偏振分光棱镜(3)的反射光束入射至第一准直扩束系统(4)的光接收面,经第一准直扩束系统(4)准直扩束后的出射光束依次经待测物体(5)、显微物镜(6)和校正物镜(7)后,入射至第一反射镜(8),第一反射镜(8)的反射光束作为物光束入射至第二偏振分光棱镜(11);
第一偏振分光棱镜(3)的透射光束经第二反射镜(9)反射后入射至第二准直扩束系统(10)的光接收面,经第二准直扩束系统(10)准直扩束后的出射光束作为参考光束入射至第二偏振分光棱镜(11);
汇合于第二偏振分光棱镜(11)的物光束和参考光束经过λ/4波片(12)和矩形窗口(13)后入射至第一傅里叶透镜(14),经第一傅里叶透镜(14)汇聚后的出射光束通过一维周期光栅(15)后入射至第二傅里叶透镜(16),经第二傅里叶透镜(16)透射后的出射光束入射至偏振片组(17),该偏振片组(17)的出射光束由图像传感器(18)的光接收面接收,图像传感器(18)的信号输出端连接计算机(19)的图像信号输入端;
以第一傅里叶透镜(14)光轴的方向为z轴方向建立xyz三维直角坐标系,所述矩形窗口(13)沿垂直于光轴的方向设置,并且沿x轴方向均分为两个小窗口;
第一傅里叶透镜(14)和第二傅里叶透镜(16)的焦距均为f;
矩形窗口(13)位于第一傅里叶透镜(14)的前焦面上;一维周期光栅(15)位于第一傅里叶透镜(14)的后焦f-Δf处并且位于第二傅里叶透镜(16)的前焦f+Δf处,其中Δf为一维周期光栅(15)的离焦量,Δf大于0并且小于f;
图像传感器(18)位于第二傅里叶透镜(16)的后焦面上;
一维周期光栅(15)的周期d与矩形窗口(13)沿x轴方向的宽度D之间满足关系:
d=2λf/D。
2.根据权利要求1所述的基于同步载频移相的干涉显微检测装置,其特征在于:一维周期光栅(15)为二值一维周期光栅、正弦一维周期光栅或余弦一维周期光栅。
3.根据权利要求1或2所述的基于同步载频移相的干涉显微检测装置,其特征在于:偏振片组(17)由两片偏振片组成,该两片偏振片形成1×2阵列,该两片偏振片的透光轴与x轴分别呈0°和45°。
4.根据权利要求3所述的基于同步载频移相的干涉显微检测装置,其特征在于:λ/4波片(12)快轴与x轴呈45°。
5.根据权利要求1或4所述的基于同步载频移相的干涉显微检测装置,其特征在于:线偏振片(2)的透光轴与x轴呈45°。
6.一种基于权利要求1所述基于同步载频移相的干涉显微检测装置的检测方法,其特征在于:它的实现过程如下:
打开光源(1),使光源(1)发射的光束经线偏振片(2)和第一偏振分光棱镜(3)后分成偏振方向相互垂直的物光束和参考光束;物光束和参考光束经第二偏振分光棱镜(11)汇合后,依次通过λ/4波片(12)、矩形窗口(13)、第一傅里叶透镜(14)、一维周期光栅(15)、第二傅里叶透镜(16)和偏振片组(17),
偏振片组(17)出射的偏振光束在图像传感器(18)平面上产生干涉图样,将计算机(19)采集获得的干涉图样根据矩形窗口(13)的小窗口的尺寸分割获得两幅干涉图样,通过计算得到待测物体(5)的相位分布
Figure FDA00002330842100021
Figure FDA00002330842100022
其中,O′为待测物体的复振幅分布,Im()表示取虚部,Re()表示取实部,
O′=FT-1{FT{(I1-I2)·RE}·HW},
其中,FT表示傅里叶变换,FT-1表示逆傅里叶变换,HW为低通滤波的传递函数,RE为根据一维周期光栅(12)的离焦量Δf,得到的数字参考波RE(x,y):
RE(x,y)=exp(-i2πxΔf/f/d),
I1为由偏振片组(14)中一片偏振片滤波得到的干涉图强度分布,该偏振片的透光轴与x轴呈0°,I2为由偏振片组(14)中另一片偏振片滤波得到的干涉图强度分布,该另一片偏振片的透光轴与x轴呈45°,
I1(x,y)=|R|2+|O|2+R*O+RO*
I2(x,y)=|R|2+|O|2+exp(-iα)R*O+exp(iα)RO*
其中,R表示参考光,R*表示R的复共轭,O表示物光,O*表示O的复共轭,α=π/2为载波相移量。
CN2012104245615A 2012-10-30 2012-10-30 基于同步载频移相的干涉显微检测装置与检测方法 Pending CN102954757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104245615A CN102954757A (zh) 2012-10-30 2012-10-30 基于同步载频移相的干涉显微检测装置与检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104245615A CN102954757A (zh) 2012-10-30 2012-10-30 基于同步载频移相的干涉显微检测装置与检测方法

Publications (1)

Publication Number Publication Date
CN102954757A true CN102954757A (zh) 2013-03-06

Family

ID=47763885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104245615A Pending CN102954757A (zh) 2012-10-30 2012-10-30 基于同步载频移相的干涉显微检测装置与检测方法

Country Status (1)

Country Link
CN (1) CN102954757A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542803A (zh) * 2013-09-30 2014-01-29 中国科学院上海光学精密机械研究所 基于达曼光栅的同步相移干涉装置
CN106441085A (zh) * 2016-09-08 2017-02-22 哈尔滨工程大学 一种双载频共路数字全息显微装置及显微方法
CN107743582A (zh) * 2015-04-10 2018-02-27 Ll技术管理公司 用于全场干涉显微成像的方法和系统
CN109974577A (zh) * 2019-04-25 2019-07-05 业成科技(成都)有限公司 波面干涉仪及其校正方法
CN110006364A (zh) * 2019-03-18 2019-07-12 南京师范大学 基于圆条纹径向空间载波相移的三维实时显微测量方法
CN110109240A (zh) * 2019-04-08 2019-08-09 江苏大学 非正交基下的双通道双波长相位显微成像系统及方法
CN111561864A (zh) * 2020-04-29 2020-08-21 西安电子科技大学 一种基于偏振光栅的点衍射数字全息显微装置及方法
CN114526670A (zh) * 2022-02-23 2022-05-24 中国科学院空天信息创新研究院 一种基于参考反射镜差动探测的白光干涉测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629813A (zh) * 2009-07-29 2010-01-20 天津大学 基于计算全息的自由曲面三维形貌的测量方法
CN102538986A (zh) * 2012-01-05 2012-07-04 哈尔滨工程大学 基于三窗口的共光路干涉检测方法与装置
CN102589414A (zh) * 2012-02-21 2012-07-18 中国科学院西安光学精密机械研究所 可实时测量的同步相移斐索干涉装置
CN102620649A (zh) * 2012-03-31 2012-08-01 上海大学 具有双重功能数字显微全息测量装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629813A (zh) * 2009-07-29 2010-01-20 天津大学 基于计算全息的自由曲面三维形貌的测量方法
CN102538986A (zh) * 2012-01-05 2012-07-04 哈尔滨工程大学 基于三窗口的共光路干涉检测方法与装置
CN102589414A (zh) * 2012-02-21 2012-07-18 中国科学院西安光学精密机械研究所 可实时测量的同步相移斐索干涉装置
CN102620649A (zh) * 2012-03-31 2012-08-01 上海大学 具有双重功能数字显微全息测量装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOEL-IVAN TOTO-ARELLANO, GUSTAVO RODRIGUEZ-ZURITA, ET AL: "Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry", 《OPTICS EXPRESS》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542803A (zh) * 2013-09-30 2014-01-29 中国科学院上海光学精密机械研究所 基于达曼光栅的同步相移干涉装置
CN103542803B (zh) * 2013-09-30 2016-05-11 中国科学院上海光学精密机械研究所 基于达曼光栅的同步相移干涉装置
CN107743582A (zh) * 2015-04-10 2018-02-27 Ll技术管理公司 用于全场干涉显微成像的方法和系统
CN106441085A (zh) * 2016-09-08 2017-02-22 哈尔滨工程大学 一种双载频共路数字全息显微装置及显微方法
CN106441085B (zh) * 2016-09-08 2019-11-01 哈尔滨工程大学 一种双载频共路数字全息显微装置及显微方法
CN110006364A (zh) * 2019-03-18 2019-07-12 南京师范大学 基于圆条纹径向空间载波相移的三维实时显微测量方法
CN110109240A (zh) * 2019-04-08 2019-08-09 江苏大学 非正交基下的双通道双波长相位显微成像系统及方法
CN110109240B (zh) * 2019-04-08 2021-07-20 江苏大学 非正交基下的双通道双波长相位显微成像系统及方法
CN109974577A (zh) * 2019-04-25 2019-07-05 业成科技(成都)有限公司 波面干涉仪及其校正方法
CN109974577B (zh) * 2019-04-25 2020-12-08 业成科技(成都)有限公司 波面干涉仪及其校正方法
CN111561864A (zh) * 2020-04-29 2020-08-21 西安电子科技大学 一种基于偏振光栅的点衍射数字全息显微装置及方法
CN111561864B (zh) * 2020-04-29 2022-02-18 西安电子科技大学 一种基于偏振光栅的点衍射数字全息显微装置及方法
CN114526670A (zh) * 2022-02-23 2022-05-24 中国科学院空天信息创新研究院 一种基于参考反射镜差动探测的白光干涉测量装置
CN114526670B (zh) * 2022-02-23 2024-04-02 中国科学院空天信息创新研究院 一种基于参考反射镜差动探测的白光干涉测量装置

Similar Documents

Publication Publication Date Title
CN102954842B (zh) 基于同步载频移相的共光路干涉检测装置与方法
CN102954757A (zh) 基于同步载频移相的干涉显微检测装置与检测方法
CN102865811B (zh) 基于正交双光栅的同步移相共光路干涉显微检测装置及检测方法
CN102889853B (zh) 分光同步移相共光路干涉显微检测装置及检测方法
CN102914257A (zh) 分光同步移相干涉显微检测装置及检测方法
CN102870034B (zh) 观察装置
CN103245285B (zh) 一种反射式点衍射载波同步移相干涉检测装置及检测方法
JP6202499B2 (ja) 光位相測定方法、光位相測定装置および光通信装置
CN102289152B (zh) 光学系统波像差检测装置
CN102435136A (zh) 空间相移装置及应用该装置的干涉测量装置、相位校正装置
CN102954758B (zh) 基于同步载频移相的干涉检测装置与检测方法
CN102914256A (zh) 基于正交双光栅的同步移相干涉检测装置及检测方法
CN104345438A (zh) 基于电控变焦透镜的光强传输相位显微系统及其方法
CN101270975A (zh) 一种用于非球面面形测量的组合式干涉装置
CN103034109A (zh) 双ccd镜像重叠调节及单曝光同轴数字全息记录装置
CN202350735U (zh) 干涉测量装置
CN103048268A (zh) 基于微偏振片阵列的数字电子剪切散斑干涉仪
CN104457611A (zh) 双波长剪切干涉数字全息显微测量装置及其方法
CN102914259A (zh) 基于分光同步移相的干涉检测装置及检测方法
CN102914258A (zh) 基于正交双光栅的同步移相干涉显微检测装置及检测方法
CN102865810B (zh) 基于正交双光栅的同步相移共光路干涉检测装置及检测方法
CN102967258A (zh) 基于同步载频移相的共光路干涉显微检测装置与方法
CN107356195A (zh) 基于二维周期光栅和点衍射的三视场数字全息检测装置与方法
CN107388986A (zh) 基于二维相位光栅和点衍射的双视场数字全息检测装置与方法
CN104819780B (zh) 非共光路环路径向剪切偏振相移干涉仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130306