CN102944229B - 多轴陀螺仪传感器系统及其备份方法 - Google Patents

多轴陀螺仪传感器系统及其备份方法 Download PDF

Info

Publication number
CN102944229B
CN102944229B CN201210474499.0A CN201210474499A CN102944229B CN 102944229 B CN102944229 B CN 102944229B CN 201210474499 A CN201210474499 A CN 201210474499A CN 102944229 B CN102944229 B CN 102944229B
Authority
CN
China
Prior art keywords
gyroscope
gyrostatic
axis
sensor system
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210474499.0A
Other languages
English (en)
Other versions
CN102944229A (zh
Inventor
吴细龙
李玉成
Original Assignee
DONGGUAN ROBSTEP ROBOT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONGGUAN ROBSTEP ROBOT Co Ltd filed Critical DONGGUAN ROBSTEP ROBOT Co Ltd
Priority to CN201210474499.0A priority Critical patent/CN102944229B/zh
Publication of CN102944229A publication Critical patent/CN102944229A/zh
Application granted granted Critical
Publication of CN102944229B publication Critical patent/CN102944229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明公开了多轴陀螺仪传感器系统及其备份方法,其包括第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪、第一微处理器及第二微处理器,所述第一陀螺仪、第二陀螺仪、第四陀螺仪、第五陀螺仪与第一微处理器组成第一陀螺仪传感器系统,所述第三陀螺仪与第二微处理器组成第二陀螺仪传感器系统。本发明通过第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪特殊的放置方式实现对X、Y、Z轴方向的角速度的感知,且节省了制造成本;同时进行系统备份和自我判定故障点;无论哪一个系统出现故障,另一个系统都能够保证整个多轴陀螺仪传感器系统得到最关键的正确的角速度信息,从而保证系统的安全、稳定运行。

Description

多轴陀螺仪传感器系统及其备份方法
技术领域
本发明涉及自动控制技术领域,尤其是涉及多轴陀螺仪传感器系统及其备份方法。
背景技术
目前的传感器系统设置方案采用单个单轴陀螺仪,只能感知一个方向如X轴方向的角速度,并且没有备份,如果出现故障则会导致整个系统无法工作。
按照常规方案,如果需要采集三个轴的角速度信息,实现对X、Y、Z轴方向的角速度的感知,则需要3个陀螺仪;如果再对这个系统进行备份,则总共需要6个陀螺仪;并且这种系统备份采用的a = b的模式,如果某个系统出现问题(即a ≠ b),无法判定是谁出了问题,如果需要判定故障点,则至少需要采用a = b = c的模式,这样,除非两个点同时出现故障,否则单个环节出现故障时必然出现形如a = b≠c的表达式,很容易就判断出是c出现故障,所以如果需要能够自我判断故障点,则最少需要9个陀螺仪。即便只单独对主方向如X轴方向做备份,也最少需要5个陀螺仪,并且此时如果Y轴和Z轴方向的陀螺仪出现故障也无法得知,还是会影响检测结果,所以这么做是没有意义的。
发明内容
本发明是针对上述背景技术存在的缺陷提供一种低成本、能自我检测的多轴陀螺仪传感器系统及其备份方法,将传感器系统分解为两个系统互相备份来保证安全。
为实现上述目的,本发明公开了多轴陀螺仪传感器系统,其包括第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪、第一微处理器及第二微处理器,所述第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪固定设置在基板上,所述第一陀螺仪、第二陀螺仪、第四陀螺仪、第五陀螺仪与第一微处理器组成第一陀螺仪传感器系统,所述第三陀螺仪与第二微处理器组成第二陀螺仪传感器系统;其中,第三陀螺仪的敏感轴与多轴陀螺仪传感器系统的前后运动方向重合,第三陀螺仪感应前后运动方向的角速度;多轴陀螺仪传感器系统的前后运动方向为X轴方向,在第一陀螺仪传感器系统中,基板所在平面为X-Y平面,第一陀螺仪的敏感轴及第二陀螺仪的敏感轴分布在X-Y平面上,第一陀螺仪与第二陀螺仪正交放置且均与X、Y轴成45°角;第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪及第五陀螺仪正交放置且均与X、Z轴成45°角。
为实现上述目的,本发明公开了多轴陀螺仪传感器系统的备份方法,包括以下步骤:
(1)、分别计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的输出值在X、Y、Z轴上的分量;
其中,第一陀螺仪的输出值在X、Y、Z轴上的分量分别为x1、y1、z1,同样的,第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪的输出值在X、Y、Z轴上的分量分别为x2、y2、z2,x3、y3、z3,x4、y4、z4,x5、y5、z5,X、Y、Z轴的实际角速度为x、y、z,通过第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的放置角度可以得到:
x1 = cos(45°) * x; x2 = cos(-45°) * x = cos(45°) * x; x3 = x; x4 = cos(45°) * x; x5 = cos(135°) * x = -cos(45°) * x;
y1 = cos(45°) * y; y2 = cos(135°) * y = -cos(45°) * y; y3 = 0; y4 = 0; y5 = 0;
z1 = 0; z2 = 0; z3 = 0; z4 = cos(45°) * z; z5 = cos(-45°) * z = cos(45°) * z;
定义k = cos(45°) ,则:
x1 = x2 = x4 = k*x, x3 = x; x5 = -k * x;
y1 = k * y; y2 = -k*y; y3 = y4 = y5 = 0;
z1 = z2 = z3 = 0; z4 = z5 = k * z;
(2)、计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出与X、Y、Z轴的实际角速度的关系;定义g1、g2、g3、g4、g5分别为第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出,则:
g1 = x1 + y1 + z1 = k * (x + y);
g2 = x2 + y2 + z2 = k * (x – y);
g3 = x3 + y3 + z3 = x;
g4 = x4 + y4 + z4 = k * (x + z);
g5 = x5 + y5 + z5 = k * (-x + z);
从上述表达式可以计算得到:
X轴的实际角速度x = (g1 + g2) / 2k = (g4 – g5) / 2k = g3;
Y轴的实际角速度y = (g2 – g1) / 2k;
Z轴的实际角速度z = (g4 + g5) / 2k;
(3)、通过第一陀螺仪、第二陀螺仪、第四陀螺仪及第五陀螺仪的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪与第二陀螺仪的实际输出、第三陀螺仪的实际输出、第四陀螺仪与第五陀螺仪的实际输出分别同时得到X轴的实际角速度输出。
为实现上述目的,本发明公开了多轴陀螺仪传感器系统,其包括第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪、第一微处理器及第二微处理器,所述第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪固定设置在基板上,所述第一陀螺仪、第二陀螺仪、第四陀螺仪、第五陀螺仪与第一微处理器组成第一陀螺仪传感器系统,所述第三陀螺仪与第二微处理器组成第二陀螺仪传感器系统;其中,第三陀螺仪的敏感轴与多轴陀螺仪传感器系统的前后运动方向重合,第三陀螺仪感应前后运动方向的角速度;多轴陀螺仪传感器系统的前后运动方向为X轴方向,在第一陀螺仪传感器系统中,基板所在平面为X-Y平面,第一陀螺仪的敏感轴及第二陀螺仪的敏感轴分布在X-Y平面上,第一陀螺仪与X轴正方向的夹角为α,第二陀螺仪与X轴正方向的夹角为β,第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪与X轴正方向的夹角为θ,第五陀螺仪与X轴正方向的夹角为ω,其中,|α-β| ≠0°且|α-β| ≠180°,|θ-ω| ≠0°且|θ-ω| ≠180°。
为实现上述目的,本发明公开了多轴陀螺仪传感器系统的备份方法,包括以下步骤:
(1)、计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出与X、Y、Z轴的实际角速度的关系;X、Y、Z轴的实际角速度为x、y、z, g1、g2、g3、g4、g5分别为第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出,则:
g1 = x*cos(α) + y*sin(α);g2 = x*cos(β) +(-y)*sin(β)
其中,|α-β| ≠0°且|α-β| ≠180°,且α和β为已知,通过上式,利用g1和g2计算得到x、y;
第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪与X轴正方向的夹角为θ,第五陀螺仪与X轴正方向的夹角为ω,可以得出:
g4= x*cos(θ) + z*sin(θ);g5 = x*cos(ω) +(-z)*sin(ω)
其中,|θ-ω| ≠0°且|θ-ω| ≠180°,且θ和ω为已知,通过上式,利用g4和g5计算得到x、z;
第三陀螺仪的敏感轴与X轴重合,故g3 = x;
(2)、通过第一陀螺仪、第二陀螺仪、第四陀螺仪及第五陀螺仪的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪与第二陀螺仪的实际输出、第三陀螺仪的实际输出、第四陀螺仪与第五陀螺仪的实际输出分别同时得到X轴的实际角速度输出。
综上所述,本发明多轴陀螺仪传感器系统的备份方法通过第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪特殊的放置方式实现对X、Y、Z轴方向的角速度的感知,且节省了制造成本;同时将多轴陀螺仪传感器系统分为第一陀螺仪传感器系统及第二陀螺仪传感器系统,进行系统备份和自我判定故障点;无论哪一个系统出现故障,另一个系统都能够保证整个多轴陀螺仪传感器系统得到最关键的正确的角速度信息,从而保证系统的安全、稳定运行。
附图说明
图1为本发明多轴陀螺仪传感器系统的结构示意图。
图2为图1所示本发明多轴陀螺仪传感器系统的X-Y平面示意图。
图3为图1所示本发明多轴陀螺仪传感器系统的X-Z平面示意图。
图4为图1所示本发明多轴陀螺仪传感器系统的Y-Z平面示意图。
图5为本发明第二实施例提供的第一陀螺仪及第二陀螺仪的原理图。
图6为本发明第二实施例提供的第四陀螺仪及第五陀螺仪的原理图。
具体实施方式
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。
如图1至图4所示,本发明具体方式采用以下技术方案:多轴陀螺仪传感器系统包括第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40、第五陀螺仪50、第一微处理器60及第二微处理器70,所述第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40及第五陀螺仪50固定设置在基板80上,所述第一陀螺仪10、第二陀螺仪20、第四陀螺仪40、第五陀螺仪50与第一微处理器60组成第一陀螺仪传感器系统,所述第三陀螺仪30与第二微处理器70组成第二陀螺仪传感器系统。其中,第三陀螺仪30的敏感轴与多轴陀螺仪传感器系统的前后运动方向重合,定义多轴陀螺仪传感器系统的前后方向为X轴方向,X轴方向为主要运动方向;第三陀螺仪30能且只能感应X轴方向的角速度。
实施例一
在第一陀螺仪传感器系统中,基板80所在平面为X-Y平面,第一陀螺仪10的敏感轴及第二陀螺仪20的敏感轴分布在X-Y平面上,第一陀螺仪10与第二陀螺仪20正交放置且均与X、Y轴成45°角;第四陀螺仪40的敏感轴及第五陀螺仪50的敏感轴分布在X-Z平面上,第四陀螺仪40及第五陀螺仪50正交放置且均与X、Z轴成45°角。
多轴陀螺仪传感器系统的输出值可以分别分解为X轴和Y轴上的值及X轴和Z轴上的值,第一陀螺仪10及第二陀螺仪20均能够感知X轴和Y轴方向的角速度,第四陀螺仪40和第五陀螺仪50均能感知X轴和Z轴方向的角速度,通过第一陀螺仪10、第二陀螺仪20、第四陀螺仪40及第五陀螺仪50放置的角度和输出值信息,可计算得到X、Y、Z轴方向的角速度,通过第一陀螺仪10和第二陀螺仪20可以计算得到X轴和Y轴方向的角速度,通过第四陀螺仪40和第五陀螺仪50可以计算得到X轴和Z轴方向的角速度。
本发明多轴陀螺仪传感器系统的备份方法,包括以下步骤:
(1)、分别计算第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40及第五陀螺仪50的输出值在X、Y、Z轴上的分量;
其中,第一陀螺仪10的输出值在X、Y、Z轴上的分量分别为x1、y1、z1,同样的,第二陀螺仪20、第三陀螺仪30、第四陀螺仪40、第五陀螺仪50的输出值在X、Y、Z轴上的分量分别为x2、y2、z2,x3、y3、z3,x4、y4、z4,x5、y5、z5,X、Y、Z轴的实际角速度为x、y、z,那么通过第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40及第五陀螺仪50的放置角度可以得到:
x1 = cos(45°) * x; x2 = cos(-45°) * x = cos(45°) * x; x3 = x; x4 = cos(45°) * x; x5 = cos(135°) * x = -cos(45°) * x;
y1 = cos(45°) * y; y2 = cos(135°) * y = -cos(45°) * y; y3 = 0; y4 = 0; y5 = 0;
z1 = 0; z2 = 0; z3 = 0; z4 = cos(45°) * z; z5 = cos(-45°) * z = cos(45°) * z;
设k = cos(45°) ,则:
x1 = x2 = x4 = k*x, x3 = x; x5 = -k * x;
y1 = k * y; y2 = -k*y; y3 = y4 = y5 = 0;
z1 = z2 = z3 = 0; z4 = z5 = k * z;
(2)、计算第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40及第五陀螺仪50的实际输出与X、Y、Z轴的实际角速度的关系;定义g1、g2、g3、g4、g5分别为第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40及第五陀螺仪50的实际输出,则:
g1 = x1 + y1 + z1 = k * (x + y);
g2 = x2 + y2 + z2 = k * (x – y);
g3 = x3 + y3 + z3 = x;
g4 = x4 + y4 + z4 = k * (x + z);
g5 = x5 + y5 + z5 = k * (-x + z);
从上述表达式可以计算得到:
X轴的实际角速度x = (g1 + g2) / 2k = (g4 – g5) / 2k = g3;
Y轴的实际角速度y = (g2 – g1) / 2k;
Z轴的实际角速度z = (g4 + g5) / 2k;
(3)、通过第一陀螺仪10、第二陀螺仪20、第四陀螺仪40及第五陀螺仪50的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪30的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪10与第二陀螺仪20的实际输出、第三陀螺仪30的实际输出、第四陀螺仪40与第五陀螺仪50的实际输出分别同时得到X轴的实际角速度输出,达成a=b=c模式,在a=b=c表达式中,a、b、c三个值如果其中一个出现问题,则可以判断是那个值异常,比如,出现a =b ≠ c的情况,可以判定是c出现异常;如果陀螺仪出现故障,多轴陀螺仪传感器系统通过a=b=c模式自我检测辨别故障环节,从而避免使用错误的采样结果。
多轴陀螺仪传感器系统正常工作时,第一陀螺仪传感器系统将得到的X、Y、Z轴的实际角速度传递给第二陀螺仪传感器系统,多轴陀螺仪传感器系统通过a=b=c模式对各陀螺仪是否正常进行判断;如果不正常,多轴陀螺仪传感器系统抛弃与故障环节相关的数据,只使用正常陀螺仪的数据,从而实现双系统互为备份的功能,保障多轴陀螺仪传感器系统的安全和稳定。
实施例二
如图1至图6所示,为本发明的第二实施例提供的多轴陀螺仪传感器系统的原理图,其包括第一实施例中的多轴陀螺仪传感器系统,第一陀螺仪10的敏感轴及第二陀螺仪20的敏感轴分布在X-Y平面上,第一陀螺仪10与X轴正方向的夹角为α,第二陀螺仪20与X轴正方向的夹角为β,可以得出:
g1 = x*cos(α) + y*sin(α);g2 = x*cos(β) +(-y)*sin(β)
其中,|α-β| ≠0°且|α-β| ≠180°,且α和β为已知,那么通过上式,利用g1和g2计算得到x、y。
第四陀螺仪40的敏感轴及第五陀螺仪50的敏感轴分布在X-Z平面上,第四陀螺仪40与X轴正方向的夹角为θ,第五陀螺仪50与X轴正方向的夹角为ω,可以得出:
g4= x*cos(θ) + z*sin(θ);g5 = x*cos(ω) +(-z)*sin(ω)
其中,|θ-ω| ≠0°且|θ-ω| ≠180°,且θ和ω为已知,那么通过上式,利用g4和g5计算得到x、z。
第三陀螺仪30的敏感轴与X轴重合,故g3 = x。
通过第一陀螺仪10、第二陀螺仪20、第四陀螺仪40及第五陀螺仪50的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪30的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪10与第二陀螺仪20的实际输出、第三陀螺仪30的实际输出、第四陀螺仪40与第五陀螺仪50的实际输出分别同时得到X轴的实际角速度输出,达成a=b=c模式。
综上所述,本发明多轴陀螺仪传感器系统及其备份方法通过第一陀螺仪10、第二陀螺仪20、第三陀螺仪30、第四陀螺仪40、第五陀螺仪50特殊的放置方式实现对X、Y、Z轴方向的角速度的感知,且节省了制造成本;同时将多轴陀螺仪传感器系统分为第一陀螺仪传感器系统及第二陀螺仪传感器系统,进行系统备份和自我判定故障点;无论哪一个系统出现故障,另一个系统都能够保证整个多轴陀螺仪传感器系统得到最关键的正确的角速度信息,从而保证系统的安全、稳定运行。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (4)

1.一种多轴陀螺仪传感器系统,其特征在于:包括第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪、第一微处理器及第二微处理器,所述第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪固定设置在基板上,所述第一陀螺仪、第二陀螺仪、第四陀螺仪、第五陀螺仪与第一微处理器组成第一陀螺仪传感器系统,所述第三陀螺仪与第二微处理器组成第二陀螺仪传感器系统;其中,第三陀螺仪的敏感轴与多轴陀螺仪传感器系统的前后运动方向重合,第三陀螺仪感应前后运动方向的角速度;多轴陀螺仪传感器系统的前后运动方向为X轴方向,在第一陀螺仪传感器系统中,基板所在平面为X-Y平面,第一陀螺仪的敏感轴及第二陀螺仪的敏感轴分布在X-Y平面上,第一陀螺仪与第二陀螺仪正交放置且均与X、Y轴成45°角;第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪及第五陀螺仪正交放置且均与X、Z轴成45°角。
2.根据权利要求1所述的一种多轴陀螺仪传感器系统的备份方法,其特征在于,包括以下步骤:
(1)、分别计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的输出值在X、Y、Z轴上的分量;
其中,第一陀螺仪的输出值在X、Y、Z轴上的分量分别为x1、y1、z1,同样的,第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪的输出值在X、Y、Z轴上的分量分别为x2、y2、z2,x3、y3、z3,x4、y4、z4,x5、y5、z5,X、Y、Z轴的实际角速度为x、y、z,通过第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的放置角度可以得到:
x1 = cos(45°) * x; x2 = cos(-45°) * x = cos(45°) * x; x3 = x; x4 = cos(45°) * x; x5 = cos(135°) * x = -cos(45°) * x;
y1 = cos(45°) * y; y2 = cos(135°) * y = -cos(45°) * y; y3 = 0; y4 = 0; y5 = 0;
z1 = 0; z2 = 0; z3 = 0; z4 = cos(45°) * z; z5 = cos(-45°) * z = cos(45°) * z;
定义k = cos(45°) ,则:
x1 = x2 = x4 = k*x, x3 = x; x5 = -k * x;
y1 = k * y; y2 = -k*y; y3 = y4 = y5 = 0;
z1 = z2 = z3 = 0; z4 = z5 = k * z;
(2)、计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出与X、Y、Z轴的实际角速度的关系;定义g1、g2、g3、g4、g5分别为第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出,则:
g1 = x1 + y1 + z1 = k * (x + y);
g2 = x2 + y2 + z2 = k * (x – y);
g3 = x3 + y3 + z3 = x;
g4 = x4 + y4 + z4 = k * (x + z);
g5 = x5 + y5 + z5 = k * (-x + z);
从上述表达式可以计算得到:
X轴的实际角速度x = (g1 + g2) / 2k = (g4 – g5) / 2k = g3;
Y轴的实际角速度y = (g2 – g1) / 2k;
Z轴的实际角速度z = (g4 + g5) / 2k;
(3)、通过第一陀螺仪、第二陀螺仪、第四陀螺仪及第五陀螺仪的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪与第二陀螺仪的实际输出、第三陀螺仪的实际输出、第四陀螺仪与第五陀螺仪的实际输出分别同时得到X轴的实际角速度输出。
3.一种多轴陀螺仪传感器系统,其特征在于:包括第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪、第五陀螺仪、第一微处理器及第二微处理器,所述第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪固定设置在基板上,所述第一陀螺仪、第二陀螺仪、第四陀螺仪、第五陀螺仪与第一微处理器组成第一陀螺仪传感器系统,所述第三陀螺仪与第二微处理器组成第二陀螺仪传感器系统;其中,第三陀螺仪的敏感轴与多轴陀螺仪传感器系统的前后运动方向重合,第三陀螺仪感应前后运动方向的角速度;多轴陀螺仪传感器系统的前后运动方向为X轴方向,在第一陀螺仪传感器系统中,基板所在平面为X-Y平面,第一陀螺仪的敏感轴及第二陀螺仪的敏感轴分布在X-Y平面上,第一陀螺仪与X轴正方向的夹角为α,第二陀螺仪与X轴正方向的夹角为β,第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪与X轴正方向的夹角为θ,第五陀螺仪与X轴正方向的夹角为ω,其中,|α-β| ≠0°且|α-β| ≠180°,|θ-ω| ≠0°且|θ-ω| ≠180°。
4.根据权利要求3所述的一种多轴陀螺仪传感器系统的备份方法,其特征在于,包括以下步骤:
(1)、计算第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出与X、Y、Z轴的实际角速度的关系;X、Y、Z轴的实际角速度为x、y、z, g1、g2、g3、g4、g5分别为第一陀螺仪、第二陀螺仪、第三陀螺仪、第四陀螺仪及第五陀螺仪的实际输出,则:
g1 = x*cos(α) + y*sin(α);g2 = x*cos(β) +(-y)*sin(β)
其中,|α-β| ≠0°且|α-β| ≠180°,且α和β为已知,通过上式,利用g1和g2计算得到x、y;
第四陀螺仪的敏感轴及第五陀螺仪的敏感轴分布在X-Z平面上,第四陀螺仪与X轴正方向的夹角为θ,第五陀螺仪与X轴正方向的夹角为ω,可以得出:
g4= x*cos(θ) + z*sin(θ);g5 = x*cos(ω) +(-z)*sin(ω)
其中,|θ-ω| ≠0°且|θ-ω| ≠180°,且θ和ω为已知,通过上式,利用g4和g5计算得到x、z;
第三陀螺仪的敏感轴与X轴重合,故g3 = x;
(2)、通过第一陀螺仪、第二陀螺仪、第四陀螺仪及第五陀螺仪的实际输出分别得到X、Y、Z轴的实际角速度输出,通过第三陀螺仪的实际输出得到X轴的实际角速度输出,通过计算第一陀螺仪与第二陀螺仪的实际输出、第三陀螺仪的实际输出、第四陀螺仪与第五陀螺仪的实际输出分别同时得到X轴的实际角速度输出。
CN201210474499.0A 2012-11-21 2012-11-21 多轴陀螺仪传感器系统及其备份方法 Active CN102944229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210474499.0A CN102944229B (zh) 2012-11-21 2012-11-21 多轴陀螺仪传感器系统及其备份方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210474499.0A CN102944229B (zh) 2012-11-21 2012-11-21 多轴陀螺仪传感器系统及其备份方法

Publications (2)

Publication Number Publication Date
CN102944229A CN102944229A (zh) 2013-02-27
CN102944229B true CN102944229B (zh) 2015-08-26

Family

ID=47727194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210474499.0A Active CN102944229B (zh) 2012-11-21 2012-11-21 多轴陀螺仪传感器系统及其备份方法

Country Status (1)

Country Link
CN (1) CN102944229B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135432A (zh) * 2010-01-26 2011-07-27 上海新世纪机器人有限公司 一种提高陀螺仪输出精度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059384A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 一种捷联mems惯性测量单元及安装误差标定方法
CN202041214U (zh) * 2011-03-17 2011-11-16 中国兵器工业第二〇二研究所 一种混合型小型化低成本三轴惯导装置
US8066226B2 (en) * 2008-01-22 2011-11-29 Fiala Harvey E Inertial propulsion device to move an object up and down
CN102735232A (zh) * 2012-06-26 2012-10-17 北京航天时代光电科技有限公司 光纤陀螺组合体惯性测量装置及其标定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805245B2 (en) * 2007-04-18 2010-09-28 Honeywell International Inc. Inertial measurement unit fault detection isolation reconfiguration using parity logic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059384A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 一种捷联mems惯性测量单元及安装误差标定方法
US8066226B2 (en) * 2008-01-22 2011-11-29 Fiala Harvey E Inertial propulsion device to move an object up and down
CN202041214U (zh) * 2011-03-17 2011-11-16 中国兵器工业第二〇二研究所 一种混合型小型化低成本三轴惯导装置
CN102735232A (zh) * 2012-06-26 2012-10-17 北京航天时代光电科技有限公司 光纤陀螺组合体惯性测量装置及其标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何英姿等.斜装陀螺系统及其故障检测.《航天控制》.1999,(第1期), *

Also Published As

Publication number Publication date
CN102944229A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN105137960B (zh) 一种小型多旋翼式无人飞行设备及其自检方法
CN107908186B (zh) 用于控制无人驾驶车辆运行的方法及系统
CN109976141B (zh) Uav传感器信号余度表决系统
CN105515739B (zh) 具有第一计算单元和第二计算单元的系统和运行系统的方法
CN100476361C (zh) 一种航空用组合导航系统体系结构实现方法
CN107407919A (zh) 安全控制系统和安全控制系统的运行方法
CN207008411U (zh) 多传感器冗余备份的双余度飞行控制系统及含其的无人机
CN109358591B (zh) 车辆故障处理方法、装置、设备及存储介质
CN102289206B (zh) 飞行控制系统及具有这种系统的航空器
WO2017073415A1 (ja) 車両制御装置、車両制御システム
CN109367501A (zh) 自动驾驶系统、车辆控制方法及装置
JP6777761B2 (ja) 車両制御装置
CN106740992B (zh) 一种基于二乘二取二架构的五线制道岔驱动系统
CN109478858A (zh) 马达控制装置和电动助力转向装置
CN206460276U (zh) 一种无人机
US20180019933A1 (en) Information processing apparatus, information processing program, and information processing method
CN102073284A (zh) 一种适用于核工业机器人的双机冗余嵌入式控制系统
JP2013033389A (ja) 広域分散型電力系統監視制御システム、その装置運転状態検出方法およびシステム監視装置
WO2023077967A1 (zh) 一种自动驾驶控制系统及车辆
CN102944229B (zh) 多轴陀螺仪传感器系统及其备份方法
CN110466526A (zh) 基于车联网的驾驶模式切换方法、系统、设备及存储介质
CN100507580C (zh) 电子式互感器高压侧冗余备份电路及故障检测方法
US11745748B2 (en) Method and device for operating an automatically driving vehicle
CN107065817A (zh) 一种基于参数监控的自动驾驶仪故障检测方法
CN108088495A (zh) 多传感器监测数据驱动的复合系统故障定位方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191223

Address after: 333124 Lin Hu Xiang Mu Li Xin Cun 110, Poyang County, Shangrao City, Jiangxi Province

Patentee after: Zhang Mingming

Address before: 523808 Guangdong province Dongguan City Songshan Lake National hi tech Industrial Park Industrial Road No. 6 Songhu Branch Industrial Park 2 3 floor

Patentee before: Dongguan Robstep Robot Co., Ltd.