CN102925947B - 具有梯度纳米孔径的阳极氧化铝模板的制备方法 - Google Patents
具有梯度纳米孔径的阳极氧化铝模板的制备方法 Download PDFInfo
- Publication number
- CN102925947B CN102925947B CN201110226980.3A CN201110226980A CN102925947B CN 102925947 B CN102925947 B CN 102925947B CN 201110226980 A CN201110226980 A CN 201110226980A CN 102925947 B CN102925947 B CN 102925947B
- Authority
- CN
- China
- Prior art keywords
- aqueous solution
- preparation
- gradient
- alumina template
- pore size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000011148 porous material Substances 0.000 title abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 27
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 37
- 238000007254 oxidation reaction Methods 0.000 claims description 33
- 230000003647 oxidation Effects 0.000 claims description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- 239000004411 aluminium Substances 0.000 claims description 31
- 238000009415 formwork Methods 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 12
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007743 anodising Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及多孔阳极氧化铝模板领域,特别涉及一种具有梯度纳米孔径的阳极氧化铝模板的制备方法。将多孔阳极氧化铝模板浸入到无机酸水溶液中,然后匀速地将该多孔阳极氧化铝模板从无机酸水溶液中提拉出来,得到具有下大上小的梯度纳米孔径的阳极氧化铝模板。本发明具有方便快捷,可以通过改变无机酸水溶液的浓度、温度或提拉时间制备出各种不同梯度的孔径变化的阳极氧化铝模板。
Description
技术领域
本发明涉及多孔阳极氧化铝模板领域,特别涉及一种具有梯度纳米孔径的阳极氧化铝模板的制备方法。
背景技术
阳极氧化铝薄膜具有良好的力学性能、很高的耐腐蚀性、耐摩擦性,及较强的吸附性。除以上性能外,阳极氧化铝薄膜还具有许多良好的功能特性:如由于其优良的介电性能和单向导电性,可以作为贮存电荷的电介质材料制作电解电容器;利用对光的选择吸收特性,可以作为光功能材料,广泛应用于光学、磁学等领域。随着阳极氧化铝薄膜在各领域中应用的不断拓展,其制备处理工艺得到了不断发展,新功能也不断被发现。
铝的阳极氧化是上世纪20年代开发的,1923年英国的GD.Bcngough和J.M.Stuart发明了铬酸阳极氧化法。1927年发明了硫酸阳极氧化法,并开始在工业上应用,最开始主要是用于铝材的防腐和着色,最近几十年关于阳极氧化铝新技术新应用的研究层出不穷,仅发表在《Nature》上的关于多孔阳极氧化铝的研究文章就有五篇,1989年,Fumeaux等人在《Nature》上发表了关于控制氧化膜有序度的文章;1993年,Whitney等人在《science》上报道,利用阳极氧化铝模板制备了磁性金属纳米线,从此开拓了纳米材料制备的新方法;1995年Masuda等人也在《science》上报道了利用二次氧化的方法,成功制备了高度有序的蜂窝状纳米阵列的阳极氧化铝模板和金属纳米阵列;随后各国科学家分别利用阳极氧化铝模板成功制备了各种纳米材料,涉及到碳纳米管、金属和金属复合物纳米线、基因传输、生物医学、锂电池材料、硅表面活性剂等各个领域,发表了许多高水平的研究论文,极大促进了纳米材料的研究和发展。铝阳极氧化技术也成为纳米结构材料组装的最重要的技术之一,受到广泛关注。
近几年关于阳极氧化铝的发明专利也层出不穷,如:具有厚阻挡层的阳极氧化铝薄膜的制备方法(CN101104945);超小孔径多孔阳极氧化铝膜的高速制备方法(CN101812712);阳极氧化铝模板孔洞形状渐变的调制方法(CN101838834);一种超高速制备高度有序多孔阳极氧化铝膜的方法(CN101654799)等等。但是关于具有梯度纳米孔径的阳极氧化铝(如图1所示)的专利未见出现,查阅文献发现关于具有梯度纳米孔径的阳极氧化铝的报导只有2010年澳大利亚的Krishna Kant等人发表在《ACS AppliedMaterials & Interfaces》上的一篇文章,该文章公开的方法是将阳极(铝片)与阴极倾斜一定角度对放,进而在铝片上形成一个梯度变化的电场,阳极氧化后形成梯度纳米孔径的阳极氧化铝,但此方法得到的阳极氧化铝上的梯度纳米孔径的均匀度较差,得到的孔与阳极氧化铝的表面不垂直,且制备工艺复杂。
梯度表面也是近年发展起来的热门课题,1992年Manoj K.Chaudhury等人用扩散的方法率先制备了一个梯度表面,实现了水滴在梯度表面的定向移动,随后又陆续出现了压印、解吸附、辐照、刻蚀等方法来制备各种梯度表面,梯度表面被广泛应用于传质传热、蛋白质、细胞吸附等领域,本发明的方法制备得到的具有梯度纳米孔径的阳极氧化铝模板因其容易制备,且所述模板具有优良的物理机械性能以及独特的孔道结构,除了在上述领域有广阔的应用前景外,还可应用于多尺寸纳米材料的合成以及大范围的病毒筛选等领域。
发明内容
本发明的目的在于提供一种制备方便、快捷、且具有普适性的具有梯度纳米孔径的阳极氧化铝模板的制备方法。
本发明的具有梯度纳米孔径的阳极氧化铝模板的制备方法:将多孔阳极氧化铝模板(可直接购买商品化的多孔阳极氧化铝模板)浸入到无机酸水溶液中,然后匀速地将该多孔阳极氧化铝模板从无机酸水溶液中提拉出来,得到具有梯度纳米孔径的阳极氧化铝模板(如图1所示,孔径的直径是由da到db连续的梯度变化)。
所述的匀速的速度是0.1~10mm/min的速度。
所述的无机酸水溶液的温度为20~80℃。
所述的无机酸水溶液的浓度是质量分数1~30%。
所述的无机酸选自H3PO4、H2C2O4、H2SO4、HCl和H2CrO4所组成的组中的至少一种。
所述的梯度纳米孔径是下大上小的梯度纳米孔径。
本发明基于的主要原理就是多孔阳极氧化铝模板上的孔径在一定温度下的酸性溶液中随时间连续的扩大。
本发明的优点:方便快捷,可以通过改变无机酸水溶液的浓度、温度或提拉时间制备出各种不同梯度的孔径变化的阳极氧化铝模板。
附图说明
图1.本发明的具有梯度纳米孔径的阳极氧化铝模板上的孔径梯度变化示意图。
图2.本发明实施例1的具有梯度纳米孔径的阳极氧化铝模板上的孔径梯度变化的扫描电镜图。
具体实施方式
实施例1
(1)将纯度为99.999%的铝片浸泡在质量分数为95%的丙酮溶液中进行除油处理,取出,然后放入质量分数为5%的NaOH水溶液中浸泡5分钟,以去除铝片表面的氧化层;取出用蒸馏水冲洗干净后,在空气中于500℃下退火10小时并随炉冷却;再在0℃下,于C2H5OH和HClO4混合溶液[V(C2H5OH)∶V(HClO4)=4∶1]中进行恒电压(12V)电化学抛光3~5分钟,以除去铝片表面的氧化层,提高表面的平整度;然后在0.3mol/L的H2C2O4水溶液中进行阳极氧化(恒定直流电压40V,0℃阳极氧化6小时)。将氧化后得到的铝片模板浸入到H3PO4和H2CrO4混合液中(H3PO4在混合液中的质量分数为6%,H2CrO4在混合液中的质量分数为1.8%),于60℃下放置6小时,溶去上述氧化时形成的氧化铝膜层;然后再在0.3mol/L的H2C2O4水溶液中进行阳极氧化(恒定直流电压40V,0℃阳极氧化6小时),得到多孔阳极氧化铝模板。
(2)将步骤(1)得到的多孔阳极氧化铝模板浸入到质量分数为5%的H3PO4水溶液中,H3PO4水溶液的温度控制在30℃,用提拉机夹住多孔阳极氧化铝模板的一端,以1mm/min的速度将多孔阳极氧化铝模板从H3PO4水溶液中提拉出来,得到下大上小的孔径梯度变化的阳极氧化铝模板,上述具有梯度纳米孔径的阳极氧化铝模板是大约每隔1mm产生1nm的孔径变化。扫描电镜图如图2a(具有梯度纳米孔径的阳极氧化铝模板的大孔径一端)、2b(具有梯度纳米孔径的阳极氧化铝模板的小孔径一端)所示。
实施例2
将市售的多孔阳极氧化铝模板浸入到质量分数为30%的H2C2O4水溶液中,H2C2O4水溶液的温度控制在20℃,用提拉机夹住多孔阳极氧化铝模板的一端,以0.1mm/min的速度将多孔阳极氧化铝模板从H2C2O4水溶液中提拉出来,得到下大上小的孔径梯度变化的纳米孔径的阳极氧化铝模板。
实施例3
将市售的多孔阳极氧化铝模板浸入到质量分数为1%的H2SO4水溶液中,H2SO4水溶液的温度控制在80℃,用提拉机夹住多孔阳极氧化铝模板的一端,以10mm/min的速度将多孔阳极氧化铝模板从H2SO4水溶液中提拉出来,得到下大上小的孔径梯度变化的纳米孔径的阳极氧化铝模板。
实施例4
将市售的多孔阳极氧化铝模板浸入到含有质量分数为1.8%的H3PO4和质量分数为6%的H2CrO4混合水溶液中,混合水溶液的温度控制在65℃,用提拉机夹住多孔阳极氧化铝模板的一端,以1mm/min的速度将多孔阳极氧化铝模板从混合水溶液中提拉出来,得到下大上小的孔径梯度变化的纳米孔径的阳极氧化铝模板。
Claims (4)
1.一种具有梯度纳米孔径的阳极氧化铝模板的制备方法,其特征是:将多孔阳极氧化铝模板浸入到无机酸水溶液中,然后匀速地将该多孔阳极氧化铝模板从无机酸水溶液中提拉出来,得到具有梯度纳米孔径的阳极氧化铝模板;
所述的无机酸水溶液的浓度是质量分数1~30%;
所述的匀速的速度是0.1~10mm/min的速度。
2.根据权利要求1所述的制备方法,其特征是:所述的无机酸水溶液的温度为20~80℃。
3.根据权利要求1或2所述的制备方法,其特征是:所述的无机酸选自H3PO4、H2C2O4、H2SO4、HCl和H2CrO4所组成的组中的至少一种。
4.根据权利要求1所述的制备方法,其特征是:所述的梯度纳米孔径是下大上小的梯度纳米孔径。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110226980.3A CN102925947B (zh) | 2011-08-09 | 2011-08-09 | 具有梯度纳米孔径的阳极氧化铝模板的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110226980.3A CN102925947B (zh) | 2011-08-09 | 2011-08-09 | 具有梯度纳米孔径的阳极氧化铝模板的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102925947A CN102925947A (zh) | 2013-02-13 |
CN102925947B true CN102925947B (zh) | 2015-07-08 |
Family
ID=47640868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110226980.3A Expired - Fee Related CN102925947B (zh) | 2011-08-09 | 2011-08-09 | 具有梯度纳米孔径的阳极氧化铝模板的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102925947B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320832B (zh) * | 2013-06-25 | 2016-04-06 | 北京航空航天大学 | 阳极氧化构筑浸润性梯度表面的方法 |
CN103405806B (zh) * | 2013-07-23 | 2014-12-10 | 东华大学 | 一种对多孔阳极氧化铝paa表面生物活化改性的方法 |
CN103451703B (zh) * | 2013-08-30 | 2017-03-15 | 河北民族师范学院 | 一种具有虹彩结构色的氧化铝薄膜及其制备方法 |
CN103422136B (zh) * | 2013-08-30 | 2016-04-06 | 河北民族师范学院 | 一种具有不同孔深和孔径的多孔结构的氧化铝薄膜及其制备方法 |
CN104975342B (zh) * | 2014-04-13 | 2018-02-23 | 山东建筑大学 | 制备纳米材料的球面形氧化铝模板及其制备方法 |
CN104975349B (zh) * | 2014-04-13 | 2018-02-23 | 山东建筑大学 | 制备纳米材料的圆锥面形氧化铝模板及其制备方法 |
CN104975322B (zh) * | 2014-04-13 | 2018-02-23 | 山东建筑大学 | 制备纳米材料的圆锥面螺旋形氧化铝模板及其制备方法 |
CN104975323B (zh) * | 2014-04-13 | 2018-02-23 | 山东建筑大学 | 制备纳米材料的正弦曲面形氧化铝模板及其制备方法 |
CN104401937A (zh) * | 2014-10-31 | 2015-03-11 | 江汉大学 | 一种具有不同高度的微米柱的衬底的制备方法 |
CN105755519B (zh) * | 2016-03-03 | 2018-05-11 | 北京航空航天大学 | 梯度阳极氧化法制备高效空气集水铜表面的方法 |
CN108468078B (zh) * | 2018-03-15 | 2021-02-09 | 北京航空航天大学 | 一种梯度浸润性表面的制备方法及应用 |
CN116612993B (zh) * | 2023-06-20 | 2024-01-30 | 重庆大学 | 一种烧结式阳极铝箔的制备方法及烧结式阳极铝箔 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068827A (ja) * | 2004-08-31 | 2006-03-16 | Kanagawa Acad Of Sci & Technol | ナノホールアレーとその製造方法および複合材料とその製造方法 |
CN101007645A (zh) * | 2006-01-23 | 2007-08-01 | 中国科学院化学研究所 | 高度亲水氧化铝膜材料的制备方法 |
CN101768770A (zh) * | 2009-01-06 | 2010-07-07 | 比亚迪股份有限公司 | 一种复合材料及其制备方法 |
CN101838834A (zh) * | 2010-05-21 | 2010-09-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | 阳极氧化铝模板孔洞形状渐变的调制方法 |
-
2011
- 2011-08-09 CN CN201110226980.3A patent/CN102925947B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068827A (ja) * | 2004-08-31 | 2006-03-16 | Kanagawa Acad Of Sci & Technol | ナノホールアレーとその製造方法および複合材料とその製造方法 |
CN101007645A (zh) * | 2006-01-23 | 2007-08-01 | 中国科学院化学研究所 | 高度亲水氧化铝膜材料的制备方法 |
CN101768770A (zh) * | 2009-01-06 | 2010-07-07 | 比亚迪股份有限公司 | 一种复合材料及其制备方法 |
CN101838834A (zh) * | 2010-05-21 | 2010-09-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | 阳极氧化铝模板孔洞形状渐变的调制方法 |
Non-Patent Citations (1)
Title |
---|
铝阳极氧化膜的扩孔处理;徐洮 等;《材料保护》;19940930;第27卷(第9期);第18-22页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102925947A (zh) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102925947B (zh) | 具有梯度纳米孔径的阳极氧化铝模板的制备方法 | |
Zhao et al. | A facile approach to formation of through-hole porous anodic aluminum oxide film | |
Xie et al. | Fabrication of iron oxide nanotube arrays by electrochemical anodization | |
Lee | The anodization of aluminum for nanotechnology applications | |
Chen et al. | Fabrication and characterization of highly-ordered valve-metal oxide nanotubes and their derivative nanostructures | |
Yuan et al. | High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization | |
Sulka | Introduction to anodization of metals | |
Ilango et al. | Anodization of Aluminium using a fast two-step process | |
US20130270118A1 (en) | Polycrystalline cuprous oxide nanowire array production method using low-temperature electrochemical growth | |
KR101896266B1 (ko) | 경사가 있는 나노기공을 포함하는 이온 다이오드막 및 그 제조 방법 | |
US20130068292A1 (en) | Aluminum nanostructure array | |
Chung et al. | Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature | |
KR20100075032A (ko) | 자기 정렬된 양극 산화 타이타늄 나노튜브 배열 제조방법 및 그에 의한 양극산화 타이타늄 나노튜브 구조 제어 | |
Shen et al. | Fabrication of micro/nanoporous templates with a novel hierarchical structure by anodization of a patterned aluminum surface | |
Chen et al. | An environment-friendly electrochemical detachment method for porous anodic alumina | |
Abdel-Karim et al. | Fabrication of nanoporous alumina | |
CN102888642A (zh) | 大面积高度有序多孔阳极氧化铝膜的制备方法 | |
Yang et al. | Advances of the research evolution on aluminum electrochemical anodic oxidation technology | |
WO2018070612A1 (ko) | 가지 형태의 나노기공을 포함하는 이온다이오드막 및 그 제조 방법 | |
Jagminas et al. | A new route of alumina template modification into dense-packed fibrilous material | |
Vorobjova et al. | Highly ordered porous alumina membranes for Ni–Fe nanowires fabrication | |
CN101812712B (zh) | 超小孔径多孔阳极氧化铝膜的高速制备方法 | |
Eyraud et al. | Electrochemical fabrication of oriented ZnO nanorods on TiO2 nanotubes | |
Barzegar et al. | Constructing geometrically-ordered alumina nanoporous filters and alumina nanowire arrays by using ultrahigh voltage two step anodization | |
Lin et al. | Anodic TiO2 nanotubes produced under atmospheric pressure and in vacuum conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150708 |