CN102911105A - 一种3-芳酰基吲哚化合物的合成方法 - Google Patents

一种3-芳酰基吲哚化合物的合成方法 Download PDF

Info

Publication number
CN102911105A
CN102911105A CN2012104497442A CN201210449744A CN102911105A CN 102911105 A CN102911105 A CN 102911105A CN 2012104497442 A CN2012104497442 A CN 2012104497442A CN 201210449744 A CN201210449744 A CN 201210449744A CN 102911105 A CN102911105 A CN 102911105A
Authority
CN
China
Prior art keywords
aroyl
mmol
synthetic method
dmso
benzazolyl compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104497442A
Other languages
English (en)
Other versions
CN102911105B (zh
Inventor
张志强
王翠苹
余江龙
阎京波
卢公昊
贾宏敏
王月
迟海军
董岩
李华
吕大超
张鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Original Assignee
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL filed Critical University of Science and Technology Liaoning USTL
Priority to CN2012104497442A priority Critical patent/CN102911105B/zh
Publication of CN102911105A publication Critical patent/CN102911105A/zh
Application granted granted Critical
Publication of CN102911105B publication Critical patent/CN102911105B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indole Compounds (AREA)

Abstract

本发明公开了如下述式(I)的一种3-芳酰基吲哚化合物的合成方法,其特征在于,以R1-取代吲哚()与R2-取代苯甲酰甲酸()为原料,铜盐为催化剂,银盐为氧化剂,在有机溶剂中进行脱羧的酰基化反应。本发明采用了更为廉价和稳定的铜盐和银盐,反应环境不需要进行绝对无水处理,也不需要惰性气体保护,即可直接酰基化反应,反应条件较为温和,收率较高。

Description

一种3-芳酰基吲哚化合物的合成方法
技术领域
    本发明提供了一种铜盐为催化剂,直接制备3-芳酰基吲哚化合物的合成方法。 
背景技术
吲哚类化合物是一类重要的生物碱,具有显著的生理活性,广泛存在于各种天然产物和药物中(Sundberg, R. J. The Chemistry of Indoles. Academic Press: New York, 1970;Joule, J. A. Indole and its Derivatives. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations (Eds.: Thomas, E. J.). George Thieme Verlag: Stuttgart, 2000, Category 2, Vol. 10, Chapter 10.13)。近年来, 随着长春花碱(vinblastine),长春新碱(vincristine)和长春瑞滨(vinorelbine) 等含吲哚结构单元的化合物在癌症治疗上的应用, 这类化合物的抗肿瘤作用已得到人们的广泛关注, 并对其进行了大量研究和报道(Kidwai, M.et al. Curr. Med. Chem. 2002, 9, 1209)。尤其是含有3-芳酰基吲哚结构的化合物,美国雅培实验室于1994年和1995年分别报道了含有噻唑啉和吡咯并噻唑结构的3-酰基吲哚衍生物,经研究这类化合物可用作血小板活化因子拮抗剂(PAF)(Sheppard, G. S. et al. J. Med. Chem. 1994, 37: 2011-2032;Holms, J. H. et al. Bioorg. Med. Chem. Lett., 1995, 23: 2903-2908)。另外,台湾国家卫生研究院癌症研究组的张俊彦医师所带领的团队,也合成了一系列3-芳酰基吲哚衍生物,其可作为微小管抑制剂。值得一提的是,BPR0L075是该药物团队目前研发出的最具潜力的抗癌候选药物(Kuo, C. C. et al. Cancer Res, 2004, 64: 4621-4628;Liou, J. P. et al. J. Med. Chem.2004, 47:4247-4257;Cheung, C. H. et al. Mol Cancer. 2009, 8: 43;Wu, Y. S. et al. J. Med. Chem. 2009, 52: 4941-4945;Liou, J. P. et al. ChemMedChem 2006, 1: 1106-1118)。代表的市售药物有抗炎及止痛作用的Pravodoline和止吐作用的拉莫司琼及其盐(Ramosetron Hydrochloride)。因此,开发3-芳酰基吲哚类化合物的合成方法具有极其重要的意义。 
随着人们对吲哚类化合物研究的不断深入,3-芳酰基吲哚类化合物的合成方法也逐渐被开发出来,总结前人的研究成果,目前合成3-芳酰基吲哚类化合物的主要原料有六种,包括:酰氯,酸酐,N-酰基苯并三唑,酸,腈,胺等,具体合成方法如下。 
采用酰氯作酰基化试剂,是酰基化反应中最常用的制备含羰基化合物的一种方法,通常要使用AlCl3(Ketcha, D. M. et al. J. Org. Chem., 1985, 50(26): 5451-5457;Majchrzak, M. W. Et al. Synthesis, 1986, 956-958)、Et2AlCl(Okauchi, T. et al. Org. Lett., 2000, 2(10): 1485-1487;Wynne, J. H. et al. Synthesis, 2004, 14: 2277-2282)、1,5-二氮杂双环[4.3.0]-5-壬烯(DBN)(Taylor, J. E. et al. Org. Lett., 2010, 12(24): 5740-5743)、ZrCl4(Guchhait, S. K. et al. J. Org. Chem., 2011, 76: 4753-4758)等作催化剂,但是反应体系一般需要采用无水的CH2Cl2、甲苯等作溶剂或者需要使用无水试剂,反应通式如下所示。 
Figure 2012104497442100002DEST_PATH_IMAGE002
  
1985年,Ketcha和Gribble(Ketcha, D. M. et al. J. Org. Chem., 1985, 50(26): 5451-5457)报道1-苯磺酸基吲哚与苯甲酸酐,在氯化铝的催化下可生成N取代3-苯甲酰基吲哚,之后在碳酸钾作用下脱保护基可生成3-苯甲酰基吲哚类化合物。
  
Figure 2012104497442100002DEST_PATH_IMAGE004
2004年,美国Wynne等(Wynne, J. H. et al. Synthesis, 2004, 14: 2277-2282)报道吲哚与芳基酸酐,在二乙基氯化铝的催化下反应,可制得3-酰基吲哚类化合物,产率35-61%。
Figure 2012104497442100002DEST_PATH_IMAGE006
  
另外,吲哚-2,3-二甲酸酐也可做酰基化试剂,在TiCl4的催化下,可与苯甲醚进行付克酰基化反应,生成3-芳酰基吲哚。研究发现,当吲哚的N位被苄基取代时,经脱羧后主要产物为3-芳酰基吲哚,而当吲哚的N位被苯磺酰基取代时,经脱羧后主要产物为2-芳酰基吲哚,方程式如下所示(Miki, Y. et al. Heterocycles, 2002, 57(9): 1635-1643)。此反应只适用于苯甲醚类衍生物,且反应要求所用原料和反应体系绝对无水,因为TiCl4遇空气中的水分,即可分解产生白烟,一般要采用无水THF或者无水CH2Cl2将其配制成一定浓度的溶液待用。
Figure 2012104497442100002DEST_PATH_IMAGE008
  
2003年,佛罗里达大学化学系杂环化学研究中心的Katritzky教授,带领的研究组(Katritzky, A. R. et al. J. Org. Chem., 2003, 68: 5720-5723)报道了,采用TiCl4作催化剂的吲哚与N-酰基苯并三唑的酰基化反应,来制备3-芳酰基吲哚类化合物,反应仍要求绝对无水条件才可顺利进行,且要自制酰基化试剂N-酰基苯并三唑(Katritzky, A. R. et al. Arkivoc, 2003, xiv, 131-139)。
  
Figure 2012104497442100002DEST_PATH_IMAGE010
伊朗Shahrekord大学Kaveh教授(Boroujeni, K P. et al. Turk J. Chem., 2010, 34: 621-630;Boroujeni, K. P. et al. J. Serb. Chem. Soc., 2011, 76(2): 155-163)于2010和2011年分别报道了,将AlCl3负载在SiO2上,或将Al(OTf)3负载在聚苯乙烯上,催化芳基羧酸脱水,合成了3-芳酰基吲哚类化合物。该方法反应条件温和,催化剂可回收利用,且反应时间较短,反应收率较高,但要用到高毒溶剂1,2-二氯乙烷,它是一种比苯的毒性更强的溶剂,其蒸汽有剧毒,吸入少量即可引发肺、胃肠道、肾、肝以及中枢神经的病变,并有很强的致癌性。
  
Figure 2012104497442100002DEST_PATH_IMAGE012
吲哚的格氏试剂也可与杂芳腈反应生成3-杂芳酰基吲哚(Powers, J. C. et al. J. Org. Chem., 1965, 30: 2534-2539)。
Figure 2012104497442100002DEST_PATH_IMAGE014
  
2011年,中国福州福建物质研究所伟平研究员报道了,氯化铑或氯化亚铁催化的吲哚与苯胺衍生物的酰基化反应,来合成3-酰基吲哚衍生物,但反应仍需在无氧、无水的条件下才可顺利进行,投料需要在手套箱中进行(Wu, W. et al. J. Am. Chem. Soc., 2011, 133: 11924-11927)。
Figure 2012104497442100002DEST_PATH_IMAGE016
  
综上所述,目前3-酰基吲哚类化合物的合成,主要采用的是吲哚类化合物的Friedel-Crafts酰基化反应。该类化合物反应优点是可得到较高收率的目标产物,不足之处是,多数反应需要在绝对无水的条件下才可顺利进行,这对反应环境以及反应试剂都提出了严格的要求。因此,开发反应条件更为温和的合成方法,将是化学工作者研究的难点。
最近报道,一种活泼的酰基化试剂—芳基甲酰甲酸或盐,它在酰基化反应后的主要副产物为CO2,取代了其它有毒物质的排放。其可实现对芳卤、芳基酰胺、芳杂环以及芳基硼酸的酰基化反应(Goossen, L. J. et al. Adv. Synth. Catal. 2009, 351, 2667-2674;Goossen, L. J. et al. Angew. Chem. Int. Ed. 2008, 47, 3043-3045;Goossen, L. J. et al. Angew. Chem. Int. Ed. 2008, 47, 7103-7106;Li, M. Z. et al. Org. Lett. 2010, 12, 3464-3467;Fang, P. et al. J. Am. Chem. Soc. 2010, 132, 11898-11899),且反应体系中可存在水。Ge研究组实现了芳基三氟化硼酸盐与芳基甲酰甲酸的室温脱羧酰基化反应,该反应可在DMSO/H2O的混合体系下进行,反应体系对水不敏感(Li, M. Z. et al. Org. Lett. 2011, 13, 2062-2064)。但以上苯甲酰甲酸的脱羧反应大多要在贵金属钯催化下才可顺利进行,反应成本较高。 
发明内容
本发明的目的是提供一种铜盐为催化剂,直接制备3-芳酰基吲哚化合物的合成方法。
按照本发明的如下述式(I)的一种3-芳酰基吲哚化合物的合成方法,其特征在于,以R1-取代吲哚()与R2-取代苯甲酰甲酸()为原料,铜盐为催化剂,银盐为氧化剂,在有机溶剂中进行脱羧的酰基化反应, 
Figure 2012104497442100002DEST_PATH_IMAGE018
其中R1表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、氰基或羟基,R2表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、甲酰胺基、羟基、甲巯基、氰基、乙酰基,
其中的卤素是指氟、氯、溴或碘。
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1或R2各自独立地表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、氰基或羟基,其中的卤素是指氟、氯、溴或碘。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1或R2各自独立地表示氢、甲基、甲氧基、氯、溴或硝基。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的铜盐为一水合醋酸铜、无水醋酸铜、溴化铜、二水合氯化铜、氧化铜或氧化亚铜中的一种。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的银盐为氧化银、碳酸银或乙酸银中的一种。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的有机溶剂为极性有机溶剂或极性质子溶剂,其用量相当于吲哚质量的10~50倍。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的极性有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮或二甲基亚砜/水,所述的极性质子溶剂为聚乙二醇-400、异丙醇、乙醇或甲醇。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1-取代吲哚、R2-取代苯甲酰甲酸、铜盐、银盐的摩尔比为1.0:2.0:0.1~0.2:1.0~2.0。 
按照本发明所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的反应环境是在含水并且有氧的体系中进行,反应温度为60~120℃。 
所述的反应环境是在含水并且有氧的体系中进行,也就是反应环境不需要进行绝对无水处理,并且不需要惰性气体保护的体系中进行。 
本发明的制备3-芳酰基吲哚化合物的合成方法,采用了更为廉价和稳定的铜盐为催化剂,银盐为氧化剂,R 2 -取代苯甲酰甲酸作为酰基化试剂,反应环境不需要进行绝对无水处理,也不需要惰性气体保护,直接进行R1-取代吲哚的3-位酰基化反应,制备3-芳酰基吲哚化合物,反应条件更为温和,收率较高。 
具体实施方式
下面通过实施例来进一步说明本发明,但不以任何方式限制本发明。 
实施例1:5-甲氧基-3-苯甲酰基吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,加热到80℃反应,通过高效液相色谱或薄层色谱跟踪反应,待原料消耗完毕,将反应液冷却至室温,并向其中加入乙酸乙酯(5 mL)和水(5 mL)将其转移到离心管中进行离心分离,之后将澄清液转移到分液漏斗中分液,水相用二氯甲烷萃取(2×10 mL),有机相用饱和碳酸氢钠水溶液洗涤(3×10 mL),收集有机层,用无水硫酸钠干燥,过滤,收集滤液,加入硅胶,旋转蒸发,粗产品经硅胶柱色谱法分离提纯(洗脱剂为石油醚:乙酸乙酯=5:1),得淡黄色固体142.8 mg,真空干燥,分离收率为71.0%,熔点为234.0-234.6℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.98 (s, 1H), 7.89 (1H, s), 7.80 (t, J=7.3 Hz, 3H), 7.61 (t, J=7.0 Hz, 1H), 7.56 (d, J=7.5 Hz, 2H), 7.44 (d, J=8.5 Hz, 1H), 6.92 (d, J=8.5 Hz, 1H), 3.83 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 190.36, 156.06, 141.16, 136.31, 132.05, 131.37, 128.83, 128.73, 127.55, 115.36, 113.48, 113.43, 103.79, 55.80. HRMS (ESI) calcd for C16H13NO2Na [M+Na]+ 274.0844, found m/z 274.0848. 
实施例2:5-甲基-3-苯甲酰基吲哚的合成
将5-甲基吲哚(0.8 mmol,104.9 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体144.0 mg,真空干燥,分离收率为76.5%,熔点为227.0-228.0℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.97 (s, 1H), 8.08 (1H, s), 7.87 (s,1H), 7.77 (d, J=8.0 Hz, 2H), 7.60 (t, J=7.0 Hz, 1H), 7.53 (t, J=7.3 Hz, 2H), 7.40 (d, J=8.5 Hz, 1H), 7.09 (d, J=7.5 Hz, 1H), 2.44 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 190.38, 141.17, 136.16, 135.52, 131.38, 131.19, 128.81, 128.77, 127.01, 125.06, 121.69, 115.16, 112.33, 21.82. HRMS (ESI) calcd for C16H13NONa [M+Na]+ 258.0895, found m/z 258.0896. 
实施例3:6-甲氧基-3-苯甲酰基吲哚的合成
将6-甲氧基吲哚(0.8 mmol,117.8 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体74.4 mg,真空干燥,分离收率为37.0%,熔点为226.0-227.5℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.87 (s, 1H), 8.11 (d, J=9.0 Hz, 1H), 7.80 (s, 1H), 7.87 (s, 1H), 7.77 (d, J=7.0 Hz, 2H), 7.60 (t, J=7.0 Hz, 1H), 7.53 (t, J=7.0 Hz, 2H), 7.00 (d, J=8.0 Hz, 1H), 3.80 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 190.28, 157.07, 141.03, 138.11, 135.26, 131.42, 128.81, 128.77, 122.59, 120.71, 115.60, 112.13, 95.77, 55.75. HRMS (ESI) calcd for C16H13NO2Na [M+Na]+ 274.0844, found m/z 274.0848. 
实施例4:2-甲基-3-苯甲酰基吲哚的合成
将2-甲基吲哚(0.8 mmol,104.9 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体65.9 mg,真空干燥,分离收率为35.0%,熔点为178.5-179.5℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.96 (s, 1H), 7.60 (t, J=9.3 Hz, 3H), 7.50 (t, J=7.3 Hz, 2H), 7.39 (d, J=8.0 Hz, 1H), 7.33 (d, J=7.5 Hz, 1H), 7.12 (t, J=7.5 Hz, 1H), 7.00 (t, J=7.5 Hz, 1H), 2.38 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ192.18, 144.87, 142.20, 135.46, 131.46, 128.81, 128.46, 127.78, 122.27, 121.39, 120.49, 112.98, 111.71, 14.64. HRMS (ESI) calcd for C16H13NONa [M+Na]+ 258.0895, found m/z 258.0896. 
实施例5:3-苯甲酰基吲哚的合成
将吲哚(0.8 mmol,93.7 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体97.0 mg,真空干燥,分离收率为54.8%,熔点为269.8-270.7℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.08 (s, 1H), 8.26 (d, J=7.0 Hz, 1H), 7.94 (s, 1H), 7.79 (d, J=7.0 Hz, 2H), 7.61 (t, J=7.3 Hz, 1H), 7.54 (m, 3H), 7.29-7.23 (m, 2H); 13C NMR (125 MHz, DMSO-d 6) δ 190.43, 141.05, 137.20, 136.16, 131.48, 128.85, 128.82, 126.74, 123.58, 122.35, 121.94, 115.52, 112.70. HRMS (ESI) calcd for C15H11NONa [M+Na]+ 244.0738, found m/z 244.0742. 
实施例6:5-溴-3-苯甲酰基吲哚的合成
将5-溴吲哚(0.8 mmol,156.9 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体129.9 mg,真空干燥,分离收率为54.1%,熔点为272.6-273.4℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.27 (s, 1H), 8.40 (s, 1H), 8.03 (s, 1H), 7.79 (d, J=8.5 Hz, 2H), 7.62 (t, J=7.3 Hz, 1H), 7.56 (m, 2H), 7.52 (m, 1H), 7.41 (d, J=8.5 Hz, 1H); 13C NMR (125 MHz, DMSO-d 6) δ 190.28, 140.55, 137.28, 135.95, 131.76, 128.94, 128.86, 128.54, 126.22, 124.10, 115.18, 114.93, 114.83. HRMS (ESI) calcd for C15H10NOBrNa [M+Na]+ 321.9843, found m/z 321.9846. 
实施例7:5-硝基-3-苯甲酰基吲哚的合成
将5-硝基吲哚(0.8 mmol,129.7 mg)、苯甲酰甲酸(1.6 mmol,240.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体103.7 mg,真空干燥,分离收率为48.7%,熔点为292.6-293.4℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.70 (s, 1H), 9.14 (s, 1H), 8.28 (s, 1H), 8.18 (d, J=9.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 2H), 7.73 (d, J=9.0 Hz, 1H), 7.66 (t, J=7.3 Hz, 1H), 7.58 (m, 2H); 13C NMR (125 MHz, DMSO-d 6) δ 190.30, 143.36, 140.40, 140.07, 139.40, 132.15, 129.06, 128.98, 126.23, 119.02, 118.41, 116.74, 113.55. HRMS (ESI) calcd for C15H10N2O3Na [M+Na]+ 289.0589, found m/z 289.0588. 
实施例8:5-甲氧基-3-(4-溴苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、4-溴苯甲酰甲酸(1.6 mmol,366.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体231.1 mg,真空干燥,分离收率为87.5%,熔点为205.7-206.4℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.01 (s, 1H), 7.89 (1H, s), 7.77-7.71 (m,5H), 7.41 (s, 1H), 6.89 (s, 1H), 3.79 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 189.12, 156.15, 140.11, 136.52, 132.07, 131.86, 130.82, 127.49, 125.04, 115.14, 113.57, 113.48, 103.79, 55.81. HRMS (ESI) calcd for C16H12NO2BrNa [M+Na]+ 351.9949, found m/z 351.9952. 
实施例9:5-甲氧基-3-(4-氯苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、4-氯苯甲酰甲酸(1.6 mmol,295.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体210.9 mg,真空干燥,分离收率为92.3%,熔点为199.5-200.3℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.01 (s, 1H), 7.89 (1H, s), 7.78 (d, J=9.0 Hz, 3H), 7.58 (d, J=8.5 Hz, 2H), 7.40 (d, J=8.5 Hz, 1H), 6.90-6.88 (m, 1H), 3.79 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 189.01, 156.15, 139.77, 136.49, 136.17, 132.07, 130.63, 128.93, 127.50, 115.16, 113.57, 113.48, 103.78, 55.81. HRMS (ESI) calcd for C16H12NO2ClNa [M+Na]+ 308.0454, found m/z 308.0448. 
实施例10:5-甲氧基-3-(2-氯苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、2-氯苯甲酰甲酸(1.6 mmol,295.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体100.6 mg,真空干燥,分离收率为44.0%,熔点为208.2-209.5℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.01 (s, 1H), 7.66 (s, 1H), 7.57-7.46 (m, 5H), 7.41 (d, J=7.5 Hz, 1H), 6.90 (d, J=5.5 Hz, 1H), 3.81 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 188.54, 156.29, 140.83, 137.29, 132.29, 131.09, 130.20, 130.09, 129.13, 127.51, 126.73, 116.36, 113.73, 113.67, 103.43, 55.79. HRMS (ESI) calcd for C16H12NO2ClNa [M+Na]+ 308.0454, found m/z 308.0448. 
实施例11:5-甲氧基-3-(4-硝基苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、4-硝基苯甲酰甲酸(1.6 mmol,312.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体225.6 mg,真空干燥,分离收率为95.2%,熔点为192.4-193.3℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.16 (s, 1H), 8.38 (d, J=8.5 Hz, 2H), 8.33 (d, J=9.0 Hz, 1H), 8.18 (d, J=8.5 Hz, 1H), 8.00 (d, J=8.5 Hz, 2H), 7.93 (s, 1H), 7.81 (s, 1H), 7.45 (d, J=8.5 Hz, 1H), 6.94 (d, J=8.8 Hz, 1H), 3.83 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 188.52, 156.37, 149.11, 146.59, 137.29, 132.14, 131.14, 129.92, 127.32, 124.15, 124.08, 115.18, 113.78, 113.63, 103.79, 55.85. HRMS (ESI) calcd for C16H12N2O4Na [M+Na]+ 319.0695, found m/z 319.0706. 
实施例12:5-甲氧基-3-(4-甲基苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、4-甲基苯甲酰甲酸(1.6 mmol,262.6 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体134.9 mg,真空干燥,分离收率为63.6%,熔点为234.2-235.9℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.92 (s, 1H), 7.87 (s, 1H), 7.78 (s, 1H), 7.69 (d, J=8.0 Hz, 2H), 7.41 (d, J=8.5 Hz, 1H), 7.34 (d, J=7.5 Hz, 2H), 6.89 (d, J=8.7 Hz, 1H), 3.80 (s, 3H), 2.40 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 190.08, 155.98, 141.34, 138.44, 135.94, 132.01, 129.79, 129.56, 129.36, 128.91, 127.61, 115.40, 113.41, 113.36, 103.80, 55.79, 21.49. HRMS (ESI) calcd for C17H15NO2Na [M+Na]+ 288.1000, found m/z 288.1006. 
实施例13:5-甲氧基-3-(4-甲氧基苯甲酰基)吲哚的合成
将5-甲氧基吲哚(0.8 mmol,117.8 mg)、4-甲氧基苯甲酰甲酸(1.6 mmol,288.3 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体85.1 mg,真空干燥,分离收率为37.8%,熔点为199.5-201.1℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 11.90 (s, 1H), 7.89 (s, 1H), 7.79 (d, J=8.5 Hz, 2H), 7.76 (s, 1H), 7.40 (d, J=8.5 Hz, 1H), 7.07 (d, J=8.0 Hz, 2H), 6.88 (d, J=7.0 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H); 13C NMR (125 MHz, DMSO-d 6) δ 189.17, 162.11, 155.88, 135.46, 133.57, 131.98, 130.93, 127.71, 115.37, 114.12, 113.35, 113.31, 103.77, 55.85, 55.78. HRMS (ESI) calcd for C17H15NO3Na [M+Na]+ 304.0950, found m/z 304.0954. 
实施例14:3-(4-溴苯甲酰基)吲哚的合成
将吲哚(0.8 mmol,93.7 mg)、4-溴苯甲酰甲酸(1.6 mmol,366.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体170.0 mg,真空干燥,分离收率为70.8%,熔点为198.5-199.7℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.13 (s, 1H), 8.23 (d, J=7.5 Hz, 1H), 7.96 (s, 1H), 7.72 (s, 4H), 7.51 (d, J=7.0 Hz, 1H), 7.27-7.22 (m, 2H); 13C NMR (125 MHz, DMSO-d 6) δ 189.21, 140.00, 137.23, 136.42, 131.88, 130.91, 126.65, 125.17, 123.70, 122.49, 121.91, 115.30, 112.75. HRMS (ESI) calcd for C15H10NOBrNa [M+Na]+ 321.9843, found m/z 321.9846. 
实施例15:3-(4-氯苯甲酰基)吲哚的合成
将吲哚(0.8 mmol,93.7 mg)、4-氯苯甲酰甲酸(1.6 mmol,295.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体168.9 mg,真空干燥,分离收率为82.6%,熔点为195.6-196.5℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.13 (s, 1H), 8.25 (d, J=7.0 Hz, 1H), 7.97 (s, 1H), 7.81 (d, J=8.5 Hz, 2H), 7.60 (d, J=8.0 Hz, 2H), 7.53 (d, J=7.0 Hz, 1H), 7.29-7.23 (m, 2H); 13C NMR (125 MHz, DMSO-d 6) δ 189.09, 139.65, 137.23, 136.39, 136.29, 130.73, 128.95, 126.66, 123.70, 122.48, 121.91, 115.32, 112.75. HRMS (ESI) calcd for C15H10NOClNa [M+Na]+ 278.0349, found m/z 278.0343. 
实施例16:3-(4-硝基苯甲酰基)吲哚的合成
将吲哚(0.8 mmol,93.7 mg)、4-硝基苯甲酰甲酸(1.6 mmol,312.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体200.8 mg,真空干燥,分离收率为94.3%,熔点为194.4-195.2℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.28 (s, 1H), 8.38 (d, J=8.5 Hz, 2H), 8.29 (d, J=8.0 Hz, 1H), 8.02 (d, J=9.0 Hz, 2H), 7.56 (d, J=8.0 Hz, 1H), 7.33-7.28 (m, 2H); 13C NMR (125 MHz, DMSO-d 6) δ 188.63, 149.15, 146.46, 137.33, 137.26, 130.01, 126.45, 124.08, 123.96, 122.79, 121.91, 115.35, 112.88. HRMS (ESI) calcd for C15H10N2O3Na [M+Na]+ 289.0589, found m/z 289.0588. 
实施例17:5-溴-3-(4-溴苯甲酰基)吲哚的合成
将5-溴吲哚(0.8 mmol,156.9 mg)、4-溴苯甲酰甲酸(1.6 mmol,366.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体182.8 mg,真空干燥,分离收率为60.3%,熔点为259.9-260.3℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.34 (s, 1H), 8.40 (s, 1H), 8.07 (s, 1H), 7.75 (m, 4H), 7.51 (d, J=8.0 Hz, 1H), 7.42 (d, J=7.5 Hz, 1H); 13C NMR (125 MHz, DMSO-d 6) δ 189.09, 139.51, 137.49, 135.99, 132.16, 131.96, 131.74, 130.94, 128.46, 126.34, 125.47, 124.08, 115.31, 114.86, 114.73. HRMS (ESI) calcd for C15H9NOBr2Na [M+Na]+ 399.8949, found m/z 399.8936. 
实施例18:5-溴-3-(4-氯苯甲酰基)吲哚的合成
将5-溴吲哚(0.8 mmol,156.9 mg)、4-氯苯甲酰甲酸(1.6 mmol,295.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得黄色固体198.1 mg,真空干燥,分离收率为74.0%,熔点为250.7-251.3℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.30 (s, 1H), 8.38 (s, 1H), 8.04 (s, 1H), 7.80 (d, J=8.5 Hz, 2H), 7.58 (d, J=8.0 Hz, 2H), 7.49 (d, J=8.5 Hz, 1H), 7.39 (d, J=8.5 Hz, 1H); 13C NMR (125 MHz, DMSO-d 6) δ 188.95, 139.17, 137.44, 136.57, 135.99, 130.75, 129.02, 128.47, 126.33, 124.09, 115.30, 114.85, 114.76. HRMS (ESI) calcd for C15H9NOBrClNa [M+Na]+ 355.9454, found m/z 355.9455. 
实施例19:5-溴-3-(4-硝基苯甲酰基)吲哚的合成
将5-溴吲哚(0.8 mmol,156.9 mg)、4-硝基苯甲酰甲酸(1.6 mmol,312.2 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体235.8 mg,真空干燥,分离收率为85.4%,熔点为248.5-249.4℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.45 (s, 1H), 8.43 (s, 1H), 8.37 (d, J=8.0 Hz,2H), 8.08 (s, 1H), 8.03 (d, J=8.0 Hz, 2H), 7.53 (d, J=8.5 Hz, 1H), 7.44 (d, J=8.5 Hz, 1H); 13C NMR (125 MHz, DMSO-d 6) δ 188.53, 149.29, 145.90, 138.25, 136.09, 131.13, 130.06, 128.25, 126.59, 124.11, 124.08, 115.59, 114.397, 114.76. HRMS (ESI) calcd for C15H9N2O3BrNa [M+Na]+ 366.9694, found m/z 366.9705. 
实施例20:5-甲基-3-(4-氯苯甲酰基)吲哚的合成
将5-甲基吲哚(0.8 mmol,104.9 mg)、4-氯苯甲酰甲酸((1.6 mmol,295.4 mg)、一水合醋酸铜(0.16 mmol,31.9 mg)、碳酸银(1.6 mmol,441.2 mg)、二甲基亚砜(4 mL)加入到装有磁力搅拌子的25 mL两口瓶中,实验步骤如实施例1,得淡黄色固体181.9 mg,真空干燥,分离收率为84.3%,熔点为245.0-247.0℃,利用NMR和HRMS对其结构进行表征。
1H NMR (500 MHz, DMSO-d 6): δ 12.03 (s, 1H), 8.08 (s, 1H), 7.91 (s, 1H), 7.80 (d, J=8.5 Hz, 2H), 7.60 (d, J=8.0 Hz, 2H), 7.41 (d, J=8.5 Hz, 1H), 7.10 (d, J=8.5 Hz, 1H); 13C NMR (125 MHz, DMSO-d 6) δ 189.02, 139.78, 136.35, 136.18, 135.55, 131.35, 130.67, 128.91, 126.94, 125.17, 121.65, 114.96, 112.36, 21.81. HRMS (ESI) calcd for C16H12NOClNa [M+Na]+ 292.0505, found m/z 292.0508。

Claims (9)

1.如下述式(I)的一种3-芳酰基吲哚化合物的合成方法,其特征在于,以R1-取代吲哚()与R2-取代苯甲酰甲酸()为原料,铜盐为催化剂,银盐为氧化剂,在有机溶剂中进行脱羧的酰基化反应,
                                                 
其中R1表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、氰基或羟基,R2表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、甲酰胺基、羟基、甲巯基、氰基、乙酰基,
其中的卤素是指氟、氯、溴或碘。
2.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1或R2各自独立地表示氢、甲基、乙基、甲氧基、乙氧基、卤素、硝基、氨基、氨甲基、氰基或羟基,其中的卤素是指氟、氯、溴或碘。
3.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1或R2各自独立地表示氢、甲基、甲氧基、氯、溴或硝基。
4.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的铜盐为一水合醋酸铜、无水醋酸铜、溴化铜、二水合氯化铜、氧化铜或氧化亚铜中的一种。
5.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的银盐为氧化银、碳酸银或乙酸银中的一种。
6.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的有机溶剂为极性有机溶剂或极性质子溶剂,其用量相当于吲哚质量的10~50倍。
7.根据权利要求6所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的极性有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮或二甲基亚砜/水,所述的极性质子溶剂为聚乙二醇-400、异丙醇、乙醇或甲醇。
8.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的R1-取代吲哚、R2-取代苯甲酰甲酸、铜盐、银盐的摩尔比为1.0:2.0:0.1~0.2:1.0~2.0。
9.根据权利要求1所述的3-芳酰基吲哚化合物的合成方法,其特征在于,所述的反应环境是在含水并且有氧的体系中进行,反应温度为60~120℃。
CN2012104497442A 2012-11-12 2012-11-12 一种3-芳酰基吲哚化合物的合成方法 Expired - Fee Related CN102911105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104497442A CN102911105B (zh) 2012-11-12 2012-11-12 一种3-芳酰基吲哚化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104497442A CN102911105B (zh) 2012-11-12 2012-11-12 一种3-芳酰基吲哚化合物的合成方法

Publications (2)

Publication Number Publication Date
CN102911105A true CN102911105A (zh) 2013-02-06
CN102911105B CN102911105B (zh) 2013-12-04

Family

ID=47609711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104497442A Expired - Fee Related CN102911105B (zh) 2012-11-12 2012-11-12 一种3-芳酰基吲哚化合物的合成方法

Country Status (1)

Country Link
CN (1) CN102911105B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945376A (zh) * 2015-07-09 2015-09-30 安徽理工大学 一种3-芳酰基吲哚化合物的合成方法
CN108218762A (zh) * 2017-11-30 2018-06-29 浙江工业大学 一种2位季碳吲哚-3-酮类化合物的合成方法
CN108503572A (zh) * 2018-03-30 2018-09-07 河南师范大学 一种3-酰基吡咯类化合物的合成方法
CN108516952A (zh) * 2018-03-30 2018-09-11 河南师范大学 一种3-酰基六元含氮杂环类化合物的合成方法
CN108586340A (zh) * 2018-03-30 2018-09-28 河南师范大学 一种3-酰基氢化吖庚因类化合物的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156603A2 (en) * 1984-03-19 1985-10-02 Pfizer Inc. 3-Substituted 2-oxindole-1-carboxamides as analgesic and anti-inflammatory agents
CN1330635A (zh) * 1998-12-17 2002-01-09 默克专利股份公司 3-链烷酰基-和3-烷基吲哚的制备方法
US20050267108A1 (en) * 2001-12-13 2005-12-01 Hsing-Pang Hsieh Indole compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156603A2 (en) * 1984-03-19 1985-10-02 Pfizer Inc. 3-Substituted 2-oxindole-1-carboxamides as analgesic and anti-inflammatory agents
CN1330635A (zh) * 1998-12-17 2002-01-09 默克专利股份公司 3-链烷酰基-和3-烷基吲哚的制备方法
US20050267108A1 (en) * 2001-12-13 2005-12-01 Hsing-Pang Hsieh Indole compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROBERT J. PHIPPS, ET AL.: "Cu(II)-Catalyzed Direct and Site-Selective Arylation of Indoles Under Mild Conditions", 《J. AM. CHEM. SOC.》 *
SANKAR K. GUCHHAIT, ET AL.: "ZrCl4-Mediated Regio- and Chemoselective Friedel-Crafts Acylation of Indole", 《J. ORG. CHEM.》 *
楚勇,等: "3-取代吲哚衍生物的合成(I)", 《中国药物化学杂志》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945376A (zh) * 2015-07-09 2015-09-30 安徽理工大学 一种3-芳酰基吲哚化合物的合成方法
CN104945376B (zh) * 2015-07-09 2017-03-15 安徽理工大学 一种3‑芳酰基吲哚化合物的合成方法
CN108218762A (zh) * 2017-11-30 2018-06-29 浙江工业大学 一种2位季碳吲哚-3-酮类化合物的合成方法
CN108503572A (zh) * 2018-03-30 2018-09-07 河南师范大学 一种3-酰基吡咯类化合物的合成方法
CN108516952A (zh) * 2018-03-30 2018-09-11 河南师范大学 一种3-酰基六元含氮杂环类化合物的合成方法
CN108586340A (zh) * 2018-03-30 2018-09-28 河南师范大学 一种3-酰基氢化吖庚因类化合物的合成方法
CN108516952B (zh) * 2018-03-30 2021-02-02 河南师范大学 一种3-酰基六元含氮杂环类化合物的合成方法
CN108503572B (zh) * 2018-03-30 2021-02-02 河南师范大学 一种3-酰基吡咯类化合物的合成方法
CN108586340B (zh) * 2018-03-30 2021-04-13 河南师范大学 一种3-酰基氢化吖庚因类化合物的合成方法

Also Published As

Publication number Publication date
CN102911105B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
CN102911105B (zh) 一种3-芳酰基吲哚化合物的合成方法
Xia et al. Copper-catalyzed domino intramolecular cyclization: a facile and efficient approach to polycyclic indole derivatives
Jetti et al. 3, 4-Hydropyrimidin-2-(1 H) one derivatives: solid silica-based sulfonic acid catalyzed microwave-assisted synthesis and their biological evaluation as antihypertensive and calcium channel blocking agents
Nagesh et al. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents
Sitnikov et al. Synthesis of Indole‐Derived Allocolchicine Congeners through Pd‐Catalyzed Intramolecular C‐H Arylation Reaction
Karadeniz et al. Synthesis of 1-Azaspiro [4.5] deca-1, 3-dienes from N-Propargylic β-Enaminones in Basic Medium
Amara et al. Conversion of isatins to tryptanthrins, heterocycles endowed with a myriad of bioactivities
Zhou et al. Base-promoted [3+ 2] cycloaddition/aromatization cascade reaction under air: An approach to access perfluoroalkylated pyrrolo [2, 1-a] isoquinolines
Deng et al. A Formal [3+ 2] Annulation of β‐Oxoamides and 3‐Alkyl‐or 3‐Aryl‐Substituted Prop‐2‐Ynyl Sulfonium Salts: Substrate‐Controlled Chemoselective Synthesis of Substituted γ‐Lactams and Furans
Ryabukhin et al. Chlorotrimethylsilane-mediated Friedländer Synthesis of polysubstituted quinolines
Kavala et al. Synthesis of 1, 2, 3‐Fused Indole Polyheterocycles by Copper‐Catalyzed Cascade Reaction
Roy et al. Synthesis of novel oxazolyl-indoles
Yuan et al. Copper‐Catalyzed Regioselective Oxidative Cycloamidation of α‐[(β‐Dimethylamino) propenoyl]‐Alkylamides: Synthetic Route to Substituted Pyrrolidine‐2, 4‐diones
Lee et al. Microwave-assisted synthesis of 3-substituted indoles via intramolecular arene–alkene coupling of o-iodoanilino enamines
Rao et al. Base‐Catalysed (4+ 2)‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3, 2‐b] Benzofuropyridinones
Hizartzidis et al. Synthesis and Cytotoxicity of Octahydroepoxyisoindole‐7‐carboxylic Acids and Norcantharidin–Amide Hybrids as Norcantharidin Analogues
Desroches et al. A radical access to CF3-and SF5-containing dihydrobenzofurans and indolines
Voznesenskaia et al. Pictet–Spengler Synthesis of Perfluoroalkylated Tetrahydro-γ-carbolines and Tetrahydropyrrolopyrazines
Singh et al. Click reaction of epoxides with anthranilic acids using neat grinding to access benzoxazepines
Sahu et al. ‘Cephalandole A’analogues as a new class of antioxidant agents: Design, microwave-assisted synthesis, bioevaluation, SAR and in silico studies
Mandrekar et al. Domino Bischler–Napieralski–Michael Reaction and Oxidation–New Route to Coumarin‐Pyrrole‐Isoquinoline Fused Pentacycles
Seath et al. Synthesis of Oxindoles and Benzofuranones via Oxidation of 2-Heterocyclic BMIDAs
Xiao et al. Iron-Catalyzed One-Pot Synthesis of Indole-Tethered Tetrasubstituted Pyrroles and Their Transformations to Indolizino [8, 7-b] indole Derivatives
Pearson et al. Synthesis of Indole-Dihydroisoquinoline Sulfonyl Ureas via Three-Component Reactions
Nevuluri et al. A morpholine-free process amenable convergent synthesis of apixaban: a potent factor Xa inhibitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131204

Termination date: 20211112

CF01 Termination of patent right due to non-payment of annual fee