CN102881702A - 一种阵列式x射线传感器及其制作方法 - Google Patents

一种阵列式x射线传感器及其制作方法 Download PDF

Info

Publication number
CN102881702A
CN102881702A CN2012103635943A CN201210363594A CN102881702A CN 102881702 A CN102881702 A CN 102881702A CN 2012103635943 A CN2012103635943 A CN 2012103635943A CN 201210363594 A CN201210363594 A CN 201210363594A CN 102881702 A CN102881702 A CN 102881702A
Authority
CN
China
Prior art keywords
array
scintillation crystal
layer
latticed
ray sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103635943A
Other languages
English (en)
Other versions
CN102881702B (zh
Inventor
许超群
孙颖
朱大中
韩雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210363594.3A priority Critical patent/CN102881702B/zh
Publication of CN102881702A publication Critical patent/CN102881702A/zh
Application granted granted Critical
Publication of CN102881702B publication Critical patent/CN102881702B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种阵列式X射线传感器,包括光电管阵列和闪烁晶体;光电管阵列包括P+衬底和P-外延层,P-外延层上嵌设有若干阵列排布的有源区块;P-外延层上铺设有氧化层,氧化层中开有若干接触通孔,氧化层上设有若干与有源区块对应的金属电极对;闪烁晶体上开有网格状的光隔离槽,闪烁晶体底部设有与网格状光隔离槽对应的网格状消光层。本发明的双结深光电管阵列具有低漏电流和高的动态范围,提高了传感器对微弱荧光信号的探测能力;闪烁晶体通过空气隙光隔离槽和网格状消光层分割形成的像素单元减少了相邻光电管之间的荧光串扰现象,增加了相邻传感单元之间的光隔离度。同时本发明还公开了上述X射线传感器的制作方法。

Description

一种阵列式X射线传感器及其制作方法
技术领域
本发明属于传感器设计技术领域,具体涉及一种阵列式X射线传感器及其制作方法。
背景技术
X射线传感器是一种以闪烁晶体材料为基础,结合半导体光电特性的传感器件。由于其在太空探索、工业检测、医疗检查方面得到广泛的应用,因而引起了广泛的研究和应用。
X射线传感器利用传感媒质将入射的X射线转换成能够被电子系统处理的电信号或光信号。目前,传感媒质主要有采用直接型传感媒质和采用间接型传感媒质两种。采用直接型传感媒质的X射线传感器技术中X射线能量被直接型材料转换成电子空穴对从而被后端的电路接收,典型的直接型传感媒质如非晶硒(a-Se)、碘化汞(HgI)。采用间接型传感媒质的X射线传感器技术中X射线先通过激发间接型传感媒质产生处于可见光波段的荧光,然后利用半导体光电器件探测荧光信号,典型的间接型传感媒质如碘化铯(CsI)、硫氧化钆(Gd2O2S)。采用直接型传感媒质的X射线传感器技术中需要给直接型传感媒质施加10KV左右高压,目前尚处在实验室研究阶段,因此大部分的X射线传感器仍然为采用间接型传感媒质。间接型传感媒质中掺铊碘化铯由于光产额高,弱吸湿性和易大规模生产而得到广泛应用。
现有的光电探测单元器件其光谱响应特性并非完全与掺铊碘化铯的受激荧光光谱相匹配从而降低了传感器量子探测效率。现有的阵列X射线传感器将整块闪烁晶体与光电器件阵列硅芯片通过粘合剂耦合或者采用物理气相淀积(PVD)或化学气相淀积(CVD)方法在光电管阵列硅芯片表面淀积掺铊碘化铯膜。由于闪烁层的连续性即非像素化且受激荧光在掺铊碘化铯中是各向同性,因此相邻的光电管单元之间会发生光信号串扰从而使其空间分辨率较低。
发明内容
针对现有技术所存在的上述技术缺陷,本发明提供了一种阵列式X射线传感器及其制作方法,能够改善了相邻传感单元之间的光隔离且提高了传感器的灵敏度。
一种阵列式X射线传感器,包括光电管阵列和设于光电管阵列上的闪烁晶体;所述的光电管阵列包括P+衬底,所述的P+衬底上铺设有P-外延层,所述的P-外延层上嵌设有若干阵列排布的有源区块;所述的有源区块包括嵌设于P-外延层上的N阱和第一P+有源区,所述的N阱上嵌设有第二P+有源区;
所述的P-外延层上铺设有氧化层,所述的氧化层中开有若干接触通孔,氧化层上设有若干与有源区块对应的金属电极对;所述的金属电极对包括第一金属电极和第二金属电极,其中,第一金属电极通过接触通孔与第一P+有源区和第二P+有源区连接,第二金属电极通过接触通孔与N阱连接;
所述的闪烁晶体设于氧化层上,闪烁晶体上开有网格状的光隔离槽,闪烁晶体底部设有与网格状光隔离槽对应的网格状消光层;所述的闪烁晶体被网格状光隔离槽分割成若干阵列排布的像素单元,所述的像素单元与有源区块一一对应。
优选地,所述的N阱的深度为0.8μm,所述的第二P+有源区的深度为0.2μm;能够使光电管阵列的光谱响应范围在为400~800nm间,与掺铊碘化铯闪烁晶体的受激荧光发光光谱匹配,进而提高了传感器的量子探测效率及灵敏度。
优选地,所述的闪烁晶体通过折射率为1.6的粘合剂粘合于氧化层上,所述的粘合剂可采用本领域常规的无溶剂液体粘合剂(如环氧树脂);其具有最大的荧光透射传输效率,可提高传感器的量子探测效率及灵敏度。
优选地,所述的网格状消光层采用200~400nm的铬材料;能够有效减少了入射到光隔离槽下部的X射线激发的荧光反射,仅有极少量荧光会串扰到光电管阵列,从而进一步增加相邻光电管单元之间的光隔离度。
优选地,所述的闪烁晶体采用掺铊碘化铯;其光产额高,吸湿性弱。
所述的氧化层采用二氧化硅。
所述的第一金属电极和第二金属电极均采用铝电极。
所述的P+衬底和P-外延层的组合层采用P型硅片。
上述阵列式X射线传感器的制作方法,包括如下步骤:
(1)制作光电管阵列:
首先,采用热氧化法在P型硅片上生长二氧化硅层;
然后,通过对二氧化硅层进行光刻腐蚀,在P型硅片内扩散或注入形成若干阵列排布的有源区块;所述的有源区块包括N阱和第一P+有源区以及嵌于N阱上的第二P+有源区;
最后,通过对二氧化硅层进行光刻腐蚀,在该层中形成若干接触通孔,并在二氧化硅层表面镀上铝金属层,并对铝金属层进行反刻形成若干阵列排布的铝电极对,所述的铝电极对与有源区块一一对应;
(2)制作像素化闪烁晶体:
首先,在掺铊碘化铯闪烁晶体圆片的非抛光面上光刻出与所述的光电管阵列匹配的阵列式光刻胶图形;
然后,在带有阵列式光刻胶图形的非抛光面上镀上铬层,采用剥离方法去除阵列式光刻胶图形,从而形成网格状铬消光层;
最后,在掺铊碘化铯闪烁晶体圆片的抛光面上切割出与网格状铬消光层对应的网格状光隔离槽;
(3)将光电管阵列与像素化闪烁晶体对准组装。
优选地,所述的步骤(3)中,光电管阵列与像素化闪烁晶体对准组装的过程为:首先,在光电管阵列的上表面涂上一层折射率为1.6的粘合剂;然后,在光学立体显微镜下根据光电管阵列和像素化闪烁晶体在光刻过程中留下的对准标记,将光电管阵列的上表面与像素化闪烁晶体的非抛光面粘合在一起。能够准确的使光电管阵列与像素化闪烁晶体的各像素单元一一对准。
优选地,所述的步骤(2)中,在掺铊碘化铯晶体圆片的抛光面上采用金刚砂轮切割法切割出与网格状铬消光层对应的网格状光隔离槽;可以方便控制光隔离槽的槽深和槽宽。
本发明的有益技术效果为:
(1)本发明通过硅平面工艺或与CMOS集成电路兼容工艺在P型硅片衬底上制作P+扩散区/N阱/P衬底型双结深光电管阵列具有低漏电流和高的动态范围,提高了传感器对微弱荧光信号的探测能力;通过优化光电管阵列硅芯片的结深,使其与掺铊碘化铯闪烁晶体的受激荧光发光光谱一致,提高了传感器的量子探测效率从而提高传感器的灵敏度。
(2)本发明通过微加工上部的空气隙光隔离槽和下部的网格状的消光层形成的像素单元减少了相邻光电管之间的荧光串扰现象,增加了相邻传感单元之间的光隔离度;使闪烁晶体的受激荧光在闪烁晶体与空气交界处产生全反射,从而减少相邻光电单元之间的荧光串扰。消光层有效减少了入射到光隔离槽下部的X射线激发的荧光反射,仅有极少量荧光会串扰到光电管阵列,从而进一步增加相邻光电管单元之间的光隔离度。
(3)本发明通过采用优化折射率为1.6的粘合剂来耦合闪烁晶体与光电管阵列硅芯片,减少了闪烁晶体的受激荧光在传输到光电管阵列过程中多界面之间光能传输的损耗。
附图说明
图1为本发明阵列式X射线传感器的结构示意图。
图2为图1沿AA’方向的截面图。
图3为受激荧光在相邻传感单元之间的传播示意图。
图4为本发明阵列式X射线传感器的制作工艺流程图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案及其制备方法进行详细说明。
如图1所示,一种阵列式X射线传感器,包括光电管阵列9和设于光电管阵列9上的闪烁晶体8;
光电管阵列9包括P+衬底1,P+衬底1上铺设有P-外延层2,P-外延层2上嵌设有若干阵列排布的有源区块3;如图2所示,有源区块3包括嵌设于P-外延层2上的N阱31和第一P+有源区32,N阱31上嵌设有第二P+有源区33;
P-外延层2上铺设有氧化层4,氧化层4中开有若干接触通孔5,氧化层4上设有若干与有源区块3对应的金属电极对;金属电极对包括第一金属电极61和第二金属电极62,其中,第一金属电极61通过接触通孔5与第一P+有源区32和第二P+有源区33连接,第二金属电极62通过接触通孔5与N阱31连接;N阱31和P+有源区32~33分别作为光电管阵列的阴阳极并通过金属电极引出。
本实施方式中,N阱31的深度为0.8μm,第二P+有源区33的深度为0.2μm,能够使光电管阵列的光谱响应范围在为400~800nm间,最大量子探测效范围在550纳米的波长附近;氧化层4采用二氧化硅,第一金属电极61和第二金属电极62均采用铝电极;P+衬底1和P-外延层2的组合层采用P型硅片。
闪烁晶体8通过折射率为1.6的粘合剂7粘合于氧化层4上;闪烁晶体8上开有网格状的光隔离槽81,闪烁晶体8底部设有与网格状光隔离槽81对应的网格状消光层82;闪烁晶体8被网格状光隔离槽81分割成若干阵列排布的像素单元83,像素单元83与有源区块3一一对应,尺寸一致。
网格状消光层82采用300nm的铬材料,其透射率约为90%,反射率小于10%;闪烁晶体8采用掺铊碘化铯,其折射率为1.79。
如图3所示,X射线入射到本实施方式的传感器时,掺铊碘化铯闪烁晶体发出受激荧光,入射到像素单元的X射线激发产生荧光a以及打在空气隙光隔离槽壁上的荧光b,荧光b在空气隙边界上将会全反射到光电管阵列单元;入射到空气隙光隔离槽的X射线激发的荧光c在铬消光层处只有少量反射串扰到光电管阵列。
本实施方式阵列式X射线传感器的制作方法,包括如下步骤:
(1)制作光电管阵列:
首先,采用热氧化法在P型硅片上生长二氧化硅层:
选用电阻率为2~3Ω·cm,外延层厚度为15μm的P型<100>硅片,清洗并烘干处理,烘干后的硅片在1180℃的高温扩散炉内依次经过20分钟干氧、60分钟湿氧以及20分钟干氧生长一层约500纳米的二氧化硅层,如图4(a)所示,其中在干氧过程中通入700ml/min的氧气,湿氧过程中通入400ml/min的氧气;
然后,通过对二氧化硅层进行光刻腐蚀,在P型硅片内扩散或注入形成若干阵列排布的有源区块(包括N阱和第一P+有源区以及嵌于N阱上的第二P+有源区):
在生长好二氧化硅层的硅片上旋涂光刻胶,经过前烘后将硅片在紫外光下曝光,曝光后用显影液显影,烘箱中坚膜处理,用二氧化硅腐蚀液刻蚀出N阱区窗口,如图4(b)所示;
将刻蚀出N阱窗口的硅片放置高温扩散炉内,采用液态源三氯氧磷作为N阱的扩散源,经过820℃高温10分钟后完成N阱的预扩散,预扩散过程中通入氮气400ml/min作为保护气体,氮气60ml/min作为携源气体,同时通入30ml/min的氧气;预扩散后的片子置于1000℃的扩散炉内依次经过5分钟干氧、30分钟湿氧以及10分钟干氧,完成N阱的再分布,如图4(c)所示,其中在干氧过程中通入700ml/min的氧气,湿氧过程中通入400ml/min的氧气;完成该步骤后采用四探针法测量方块电阻,确保方块电阻在70~80Ω;
在扩散好N阱的硅片上旋涂光刻胶,经过前烘后将硅片在紫外光下曝光,曝光后用显影液显影,烘箱中坚膜处理,用二氧化硅腐蚀液刻蚀出两个P+有源区窗口(一个在N阱左边,另一个在N阱上),如图4(d)所示;
将刻蚀出P+区窗口的硅片放置高温扩散炉内,采用固态源BN作为扩散源,经过980℃高温30分钟后完成P+有源区的预扩散,预扩散过程中通入700ml/min氮气;预扩散后的片子置于去硼硅玻璃液中30秒然后去离子水冲10分钟后烘干。烘干后的片子置于1000℃的扩散炉内依次经过5分钟干氧、10分钟湿氧以及5分钟干氧,完成P+有源区的再分布,如图4(e)所示,其中在干氧过程中通入700ml/min的氧气,湿氧过程中通入400ml/min的氧气;完成该步骤后采用四探针法测量方块电阻,确保方块电阻在30~35Ω;
在扩散好P+有源区的硅片上旋涂光刻胶,经过前烘后将硅片在紫外光下曝光,曝光后经显影、坚膜后用二氧化硅腐蚀液在二氧化硅层中刻蚀出接触通孔,如图4(f)所示;
最后,在制作好接触通孔的硅片上采用真空蒸发方法镀上一层铝层;蒸好铝层的硅片上旋涂光刻胶,经过前烘后将硅片在紫外光下曝光,曝光后经显影、坚膜后的硅片放置于80℃的磷酸中3分钟完成铝的反刻,形成若干阵列排布的铝电极对(其与有源区块一一对应),如图4(g)所示;采用半导体参数测试仪测量光电管漏电流,确保漏电流<1nA。
(2)制作像素化闪烁晶体:
首先,在1~2毫米厚的掺铊碘化铯闪烁晶体圆片非抛光面上涂胶,经过前烘后将圆片在紫外光下曝光,曝光后用显影液显影,烘箱中坚膜处理,光刻出与光电管阵列匹配的阵列式光刻胶图形;
然后,在图形化的闪烁晶体表面采用真空热蒸发法镀上一层厚度为200~400纳米的铬层,将镀好铬层的闪烁晶体浸没在剥离液中除去光刻胶图形及覆盖在光刻胶表面的铬层从而形成网格状的铬消光层,如图4(h)所示;
最后,在完成铬消光层制作的掺铊碘化铯晶体圆片的抛光面上采用金刚砂轮沿着X方向和Y方向切割出与网格状铬消光层对应的网格状光隔离槽;切割刀具采用日本Disco公司的ZH-05-SD2000-N1-BA型号的刀具,光隔离槽的深度为闪烁晶体厚度的60%左右,宽度为20微米;
制作完光隔离槽后,闪烁晶体被分割成若干阵列排布的像素单元,像素单元与有源区块一一对应,像素单元的面积为100微米×100微米,如图4(i)所示。
(3)将光电管阵列与像素化闪烁晶体对准组装:
首先,在光电管阵列硅芯片表面涂布一层折射率为1.6粘合剂;粘合剂可采用托马斯科技有限公司的THO5020粘合剂,该粘合剂为托马斯科技有限公司的THO0505A与THO0502B按照2∶1的体积比调配而成;
然后,在光学立体显微镜下根据光电管阵列和像素化闪烁晶体在光刻过程中留下的对准标记,将光电管阵列的上表面与像素化闪烁晶体的非抛光面粘合在一起,常温下静置24小时使得粘合剂固化,如图4(j)所示。
通过实验,我们对现有X射线传感器和本实施方式就空间分辨率和量子探测效率两项指标进行测试,具体测试结果数据如表1所示,可见本实施方式的X射线传感器相对现有技术,量子探测效率和空间分辨率均有一定程度的提高。
表1
本实施方式 现有X射线传感器
空间分辨率 5lp/mm 4lp/mm
量子探测效率 0.37 0.32

Claims (8)

1.一种阵列式X射线传感器,其特征在于:包括光电管阵列和设于光电管阵列上的闪烁晶体;所述的光电管阵列包括P+衬底,所述的P+衬底上铺设有P-外延层,所述的P-外延层上嵌设有若干阵列排布的有源区块;所述的有源区块包括嵌设于P-外延层上的N阱和第一P+有源区,所述的N阱上嵌设有第二P+有源区;
所述的P-外延层上铺设有氧化层,所述的氧化层中开有若干接触通孔,氧化层上设有若干与有源区块对应的金属电极对;所述的金属电极对包括第一金属电极和第二金属电极,其中,第一金属电极通过接触通孔与第一P+有源区和第二P+有源区连接,第二金属电极通过接触通孔与N阱连接;
所述的闪烁晶体设于氧化层上,闪烁晶体上开有网格状的光隔离槽,闪烁晶体底部设有与网格状光隔离槽对应的网格状消光层;所述的闪烁晶体被网格状光隔离槽分割成若干阵列排布的像素单元,所述的像素单元与有源区块一一对应。
2.根据权利要求1所述的阵列式X射线传感器,其特征在于:所述的N阱的深度为0.8μm,所述的第二P+有源区的深度为0.2μm。
3.根据权利要求1所述的阵列式X射线传感器,其特征在于:所述的闪烁晶体通过折射率为1.6的粘合剂粘合于氧化层上。
4.根据权利要求1所述的阵列式X射线传感器,其特征在于:所述的网格状消光层采用200~400nm的铬材料。
5.根据权利要求1所述的阵列式X射线传感器,其特征在于:所述的闪烁晶体采用掺铊碘化铯。
6.一种阵列式X射线传感器的制作方法,包括如下步骤:
(1)制作光电管阵列:
首先,采用热氧化法在P型硅片上生长二氧化硅层;
然后,通过对二氧化硅层进行光刻腐蚀,在P型硅片内扩散或注入形成若干阵列排布的有源区块;所述的有源区块包括N阱和第一P+有源区以及嵌于N阱上的第二P+有源区;
最后,通过对二氧化硅层进行光刻腐蚀在该层中形成若干接触通孔,并在二氧化硅层表面镀上铝金属层,并对铝金属层进行反刻形成若干阵列排布的铝电极对,所述的铝电极对与有源区块一一对应;
(2)制作像素化闪烁晶体:
首先,在掺铊碘化铯闪烁晶体圆片的非抛光面上光刻出与所述的光电管阵列匹配的阵列式光刻胶图形;
然后,在带有阵列式光刻胶图形的非抛光面上镀上铬层,采用剥离方法去除阵列式光刻胶图形,从而形成网格状铬消光层;
最后,在掺铊碘化铯闪烁晶体圆片的抛光面上切割出与网格状铬消光层对应的网格状光隔离槽;
(3)将光电管阵列与像素化闪烁晶体对准组装。
7.根据权利要求6所述的阵列式X射线传感器的制作方法,其特征在于:所述的步骤(2)中,在掺铊碘化铯晶体圆片的抛光面上采用金刚砂轮切割法切割出与网格状铬消光层对应的网格状光隔离槽。
8.根据权利要求6所述的阵列式X射线传感器的制作方法,其特征在于:所述的步骤(3)中,光电管阵列与像素化闪烁晶体对准组装的过程为:首先,在光电管阵列的上表面涂上一层折射率为1.6的粘合剂;然后,在光学立体显微镜下根据光电管阵列和像素化闪烁晶体在光刻过程中留下的对准标记,将光电管阵列的上表面与像素化闪烁晶体的非抛光面粘合在一起。
CN201210363594.3A 2012-09-26 2012-09-26 一种阵列式x射线传感器及其制作方法 Expired - Fee Related CN102881702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210363594.3A CN102881702B (zh) 2012-09-26 2012-09-26 一种阵列式x射线传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210363594.3A CN102881702B (zh) 2012-09-26 2012-09-26 一种阵列式x射线传感器及其制作方法

Publications (2)

Publication Number Publication Date
CN102881702A true CN102881702A (zh) 2013-01-16
CN102881702B CN102881702B (zh) 2014-12-31

Family

ID=47482973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210363594.3A Expired - Fee Related CN102881702B (zh) 2012-09-26 2012-09-26 一种阵列式x射线传感器及其制作方法

Country Status (1)

Country Link
CN (1) CN102881702B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124254A (zh) * 2013-04-24 2014-10-29 佳能株式会社 放射线摄像装置及其制造方法以及放射线检查装置
CN106409955A (zh) * 2016-11-03 2017-02-15 上海卫星工程研究所 星载射线能纳米电池
CN107390256A (zh) * 2017-06-09 2017-11-24 上海翌波光电科技股份有限公司 一种新型掺铊碘化铯晶体阵列制作封装技术

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153492A1 (en) * 2001-04-11 2002-10-24 Nihon Kessho Kogaku Co., Ltd. Component of a radiation detector, radiation detector and radiation detection apparatus
CN1749737A (zh) * 2004-09-14 2006-03-22 清华大学 一种辐射成像阵列固体探测器
WO2007025485A1 (fr) * 2005-09-01 2007-03-08 Dezheng Tang Detecteur de rayons x et procede de fabrication du detecteur
KR20090098327A (ko) * 2008-03-14 2009-09-17 부산대학교 산학협력단 디지털 엑스선 이미지 센서용 섬광체패널 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153492A1 (en) * 2001-04-11 2002-10-24 Nihon Kessho Kogaku Co., Ltd. Component of a radiation detector, radiation detector and radiation detection apparatus
CN1749737A (zh) * 2004-09-14 2006-03-22 清华大学 一种辐射成像阵列固体探测器
WO2007025485A1 (fr) * 2005-09-01 2007-03-08 Dezheng Tang Detecteur de rayons x et procede de fabrication du detecteur
KR20090098327A (ko) * 2008-03-14 2009-09-17 부산대학교 산학협력단 디지털 엑스선 이미지 센서용 섬광체패널 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124254A (zh) * 2013-04-24 2014-10-29 佳能株式会社 放射线摄像装置及其制造方法以及放射线检查装置
CN106409955A (zh) * 2016-11-03 2017-02-15 上海卫星工程研究所 星载射线能纳米电池
CN107390256A (zh) * 2017-06-09 2017-11-24 上海翌波光电科技股份有限公司 一种新型掺铊碘化铯晶体阵列制作封装技术

Also Published As

Publication number Publication date
CN102881702B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
US11101315B2 (en) Detector, PET system and X-ray CT system
RU2416840C2 (ru) Лавинный фотодиод в режиме счетчика гейгера
CN102217082B (zh) 具有浅n+层的薄有源层鱼骨形光敏二极管及其制造方法
US8384179B2 (en) Black silicon based metal-semiconductor-metal photodetector
US20100108893A1 (en) Devices and Methods for Ultra Thin Photodiode Arrays on Bonded Supports
CN101752391B (zh) 具有mos全耗尽漂移通道的雪崩漂移探测器及其探测方法
CN102468441A (zh) 混合式有机光电二极管
US9040927B2 (en) Radiation detection apparatus
KR20110101054A (ko) 분광 센서 장치 및 전자 기기
US20130264485A1 (en) Method of manufacturing radiation detection apparatus, radiation detection apparatus, and radiation imaging system
JP2008244251A (ja) アモルファスシリコンフォトダイオード及びその製造方法ならびにx線撮像装置
CN102881702B (zh) 一种阵列式x射线传感器及其制作方法
JPWO2003096427A1 (ja) 裏面照射型ホトダイオードアレイ及びその製造方法
US11810994B2 (en) Infrared-transmitting high-sensitivity visible light detector and preparation method thereof
JPWO2006095659A1 (ja) 中性子検出装置及び中性子イメージングセンサ
TWI499769B (zh) Chemical detector, chemical detector module, chemical substance detection device and chemical substance detection method
CN104332701B (zh) 一种太赫兹、激光叠层探测器
US9557426B2 (en) X-ray radiation detector and method for measuring X-ray radiation
Evensen et al. Thin detectors for the CHICSi/spl Delta/EE telescope
CN105190260B (zh) 紫外半导体传感器装置和测量紫外辐射的方法
US20160170042A1 (en) Radiation detection apparatus and radiation detection sheet
CN217588958U (zh) 光电二极管及其阵列、放射性探测器及其阵列及检测装置
CN105841725B (zh) 基于光栅耦合的可见光单片集成传感器及其制作方法
Berner et al. Silicon thin film photodetectors for multi‐channel fluorescence detection in a microfluidic point‐of‐care testing device
CN104457993A (zh) 一种光谱传感器及其集成制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20180926

CF01 Termination of patent right due to non-payment of annual fee