CN102878956A - 一种基于等厚干涉法的中心误差的测量装置 - Google Patents

一种基于等厚干涉法的中心误差的测量装置 Download PDF

Info

Publication number
CN102878956A
CN102878956A CN2012104049978A CN201210404997A CN102878956A CN 102878956 A CN102878956 A CN 102878956A CN 2012104049978 A CN2012104049978 A CN 2012104049978A CN 201210404997 A CN201210404997 A CN 201210404997A CN 102878956 A CN102878956 A CN 102878956A
Authority
CN
China
Prior art keywords
mirror
spectroscope
group
receiving screen
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104049978A
Other languages
English (en)
Inventor
马天梦
李恋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN2012104049978A priority Critical patent/CN102878956A/zh
Publication of CN102878956A publication Critical patent/CN102878956A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明是一种基于等厚干涉法的中心误差的测量装置,该装置包括:激光器、会聚镜、星点板、分光镜、参考镜、接收屏、CCD探测器、计算组、调焦组、转折反射镜、被测透镜、连接工装和精密转轴。在激光器的光轴上依次放置会聚镜、星点板和分光镜,星点板位于会聚镜的焦点上;在参考光束的光轴方向上依次放置参考镜、接收屏和CCD探测器;在测量光束的光轴上依次放置调焦组、折转反射镜;在测量光束经过折转反射镜转折的光轴上依次放置被测透镜、连接工装和精密转轴;其中被测透镜通过连接工装固定在精密转轴上;本发明利用等厚干涉原理能够测量被测透镜的中心误差,并可以实现对多透镜组的整组测量,以及提供比常规目视显微测量更高的精度。

Description

一种基于等厚干涉法的中心误差的测量装置
技术领域
本发明涉及一种中心误差的测量装置,尤其涉及一种基于等厚干涉法的中心误差的测量装置,属于光学测量技术领域。
背景技术
对于高精度的光学系统,中心误差会破坏光学设计的基础——旋转对称性,使光学元件的实际光轴偏离设计光轴,破坏了光学设计的像差校正状态,从而严重影响光学系统的分辨力、畸变和对比度等成像性能。
对心装置是用来测量并校正各光学元件的中心误差,目前普遍采用的是自准直的方法,该方法和装置见“ZX-3型内调焦对心器研制工作报告”,王肇勋,光电工程1984年05期11-24页。如图1所示,光源组16通过其中的会聚镜将灯泡的光会聚到带反射功能的星点板17上;然后出射光束到达调焦镜组19,被调焦镜组19内调焦镜的轴向移动改变会聚和发散程度后,与放置在精密转轴21上的被测镜组20的某个指定的被测镜面的曲率中心接近或重合,此时出射光束被被测镜面原路反射回去;再次通过调焦镜组19后,将光束会聚在带反射功能的星点板17上,而星点板17与显微镜组18的物面重合,则返回的光束将通过星点板17反射后成像在显微镜组18的像面处,通过显微镜组18可以测量出由于被测镜面存在中心误差而导致的划圆量,通过倍率关系可以求出被测镜面的中心误差。该方法可以完成精度要求在1″~2″左右的透镜组中所有镜面的中心误差测量和装配,但并不能进行更高精度的测量和装配。
Yoder,P.R.Jr,mounting Optics in Optical Instruments,SPIE PressBellingham,2002中介绍了Carnell等人1974提出过的一种方法,图2中,将一个球面测试样板23非常靠近的放置在被测透镜28的外露表面,激光束29斜向照射在球面测试样板23和被测透镜28的外露表面上,通过显微镜23可以观察到被测透镜28的外露表面和球面测试样板23之间的菲涅耳干涉条纹,通过旋转空气轴承转轴25,可以观察到由于被测透镜28的外露表面的球心与空气轴承转轴25不重合所造成的中心误差,进而导致的菲涅耳干涉条纹的同心度发生的变化,如果随着空气轴承转轴25的缓慢旋转,而菲涅耳干涉条纹保持静止不动,就可以断定被测透镜28的外露表面的球心与空气轴承转轴25重合了。其中空气轴承转轴25通过黄铜卡盘24与夹持着被测透镜28的镜座27连接,真空系统26提供黄铜卡盘24与镜座27的连接力。该方法的缺点明显:仅能测量被测面,无法测量透镜的另一面和透镜组的其它面。
发明内容
本发明要解决的技术问题:克服现有技术的不足,提供一种基于等厚干涉法的中心误差测量装置,能够测量被测透镜的中心误差,并可以实现对多透镜组的整组测量,以及提供比常规目视显微测量更高的精度。
本发明解决上述技术问题的方案是:提供一种基于等厚干涉法的中心误差的测量装置,所述测量装置包括激光器、会聚镜、星点板、分光镜、参考镜、接收屏、CCD探测器、计算组、调焦组、折转反射镜、被测透镜、连接工装和精密转轴,其中:
在激光器的光轴上依次放置会聚镜、星点板和分光镜,星点板位于会聚镜的焦点上;激光器发出的激光束经会聚镜会聚后,经过星点板的滤波,形成滤波光束,滤波光束到达分光镜被分成参考光束和测量光束。
在参考光束的光轴方向上依次放置参考镜、接收屏和CCD探测器;在测量光束的光轴上依次放置调焦组、折转反射镜;在测量光束经过折转反射镜转折的光轴上依次放置被测透镜、连接工装和精密转轴;其中被测透镜通过连接工装固定在精密转轴上。
上述测量装置的连接关系中,星点板通过分光镜的反射与参考镜的曲率中心重合,又通过分光镜的透射与调焦组的物面重合;而接收屏则通过分光镜的透射与参考镜的曲率中心重合,又通过分光镜的反射与调焦组的物面重合;即星点板与接收屏通过分光镜形成共轭关系。
当参考光束到达参考镜后,会被参考镜原路反射,通过分光镜,会聚在接收屏上。
而测量光束在经过调焦组的内部组件调焦镜的轴向移动而变换会聚和发散程度后,其会聚点与被测透镜中指定的被测镜面R的曲率中心接近或重合,则到达被测透镜的测量光束会被被测镜面R原路反射,再次通过折转反射镜、调焦组和分光镜后,与上述经过参考镜反射的参考光束发生干涉,然后发生干涉的参考光束和测量光束共同会聚在接收屏。
撤掉接收屏后,等厚干涉条纹被CCD探测器接收,然后转动精密转轴一周,CCD探测器记录条纹变化情况;
计算组通过线路与CCD探测器连接,通过计算组对CCD探测器记录条纹变化进行计算,得出被测镜面R1的中心误差。
本发明与现有技术相比有如下优点:
(1)本发明使用基于图像处理的等厚干涉方法,方法稳定可靠,将测量精度提升了近一个数量级,接近0.1″;
(2)本发明采用了自准直对心的技术,通过变换测量光束会聚和发散程度的方法,对被测透镜中所有的被测镜面都可进行中心误差的测量,避免了“光学测试样板”的干涉测量法仅能进行单面测量,无法进行整组透镜的中心误差测量和装配的问题。
本发明利用等厚干涉原理能够测量被测透镜的中心误差,并可以实现对多透镜组的整组测量,以及提供比常规目视显微测量更高的精度。
附图说明
图1为现有技术涉及的中ZX-3型内调焦对心器结构示意图;
图2为现有技术中涉及的使用平凹“光学测试样板”测量中心误差的示意图;
图3为本发明中基于等厚干涉法的中心误差的测量装置示意图;
图4为本发明等厚干涉法测量平行平板楔角示意图;
图5为本发明测量被测镜面R1中心误差χ的原理示意图;
图6为本发明测量多组透镜的原理示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细的说明。
如图3示出本发明基于等厚干涉法的中心误差的测量装置,包括激光器1、会聚镜2、星点板3、分光镜4、参考镜5、接收屏6、CCD探测器7、计算组8、调焦组10、折转反射镜11、被测透镜12、连接工装13和精密转轴14,其中:
在激光器1的光轴上依次放置会聚镜2、星点板3和分光镜4,星点板3位于会聚镜2的焦点上;激光器1发出的激光束经会聚镜2会聚后,经过星点板3的滤波,形成滤波光束,滤波光束到达分光镜4被分成参考光束和测量光束。
在参考光束的光轴方向上依次放置参考镜5、接收屏6和CCD探测器7;在测量光束的光轴上依次放置调焦组10、折转反射镜11;在测量光束经过折转反射镜11转折的光轴上依次放置被测透镜12、连接工装13和精密转轴14;其中被测透镜12通过连接工装13固定在精密转轴14上。
上述测量装置的连接关系中,星点板3通过分光镜4的反射与参考镜5的曲率中心重合,又通过分光镜4的透射与调焦组10的物面重合;而接收屏6则通过分光镜4的透射与参考镜5的曲率中心重合,又通过分光镜4的反射与调焦组10的物面重合;即星点板3与接收屏6通过分光镜4形成共轭关系。
当参考光束到达参考镜5后,会被参考镜5原路反射,通过分光镜4,会聚在接收屏6上。
而测量光束在经过调焦组10的内部组件调焦镜9的轴向移动而变换会聚和发散程度后,其会聚点与被测透镜12中指定的被测镜面R1的曲率中心接近或重合,则到达被测透镜12的测量光束会被被测镜面R1原路反射,再次通过折转反射镜11、调焦组10和分光镜4后,与上述经过参考镜5反射的参考光束发生干涉,然后发生干涉的参考光束和测量光束共同会聚在接收屏6。
撤掉接收屏6后,等厚干涉条纹被CCD探测器7接收,然后转动精密转轴14一周,CCD探测器7记录条纹变化情况;
计算组8通过线路与CCD探测器7连接,通过计算组8对CCD探测器7记录条纹变化进行计算,得出被测镜面R1的中心误差。
本发明的原理:将激光器1发出的激光束分为参考光束和测量光束,测量光通过调焦镜组10和被测镜面R1的准直后原路返回,参考光经过参考镜5的准直后原路返回,两束光再次通过分光镜4后相遇并发生等厚干涉。根据几何光学原理,做出被测镜面R1在分光镜4中的虚像R1′,此时在被测镜面虚像R1′与参考镜5之间存在楔形空气层,满足了等厚干涉条件,当被测镜面R1存在中心误差时,旋转精密转轴一周的过程中,空气层的楔角会发生变化,而干涉条纹的疏密相应的也会发生变化。通过记录干涉条纹的变化情况,通过图像处理和分析计算可以计算出被测镜面的中心误差。
本发明的中心误差计算方法:因该装置采用的是迈克尔逊干涉仪的形式,其测量中心误差χ的方式等效于迈克尔逊干涉仪测量平行平板小角度光楔楔角的计算方式。如图4所示,平行平板的楔角为α,最大厚度差用Δh表示,如在宽度为D的平行平板上观察到的条纹数目为N,则最大厚度差Δh为:
Δh = Nλ 2 n - - - ( 1 )
上式中,λ是测量光的波长,n为平板内介质的折射率。设干涉条纹的间距为e,因为N=D/e,所以
Δh = λ 2 n · D e - - - ( 2 )
因此,只要测出干涉条纹的间距e,即可由上式算出在D范围内的最大厚度差。易见有平行平板的楔角α表示为:
α = Δh D = Nλ 2 nD = λ 2 ne - - - ( 3 )
为方便公式的推导,我们做出参考镜5(设为M1)在分光镜4中的虚像M1′,它与被测镜面R1的角度关系如图5所示,如果精密转轴14上的被测镜面R1存在中心误差χ,那么在精密转轴14旋转一周的过程中,被测镜面R1与参考镜5的虚像M1′之间的夹角变化将会为2χ,即它们间的楔角变化为2χ,由公式(3)得:
2 χ = α = Nλ 2 nD - - - ( 4 )
χ = Nλ 4 nD - - - ( 5 )
公式(5)中,N表示精密转轴14旋转一周的过程中条纹数的变化量,D则表示被测镜面测量光斑覆盖面的直径,此时被测镜面R1与参考镜5的虚像M1′之间的介质为空气,折射率为1,即n=1。图5中,δ为中心误差χ的线量表达形式,即δ=χR,式中R为被测镜面R1的曲率半径。
由几何光学和相似三角形的知识可以得出,被测镜面R1与参考镜5的虚像M1′之间的干涉条纹与CCD探测器7上的干涉条纹一一对应,即精密转轴14旋转一周的过程中在CCD探测器7上测得的条纹数的变化量N就是被测镜面R1与参考镜5的虚像M1′之间由于夹角变化而产生的条纹数的变化量。设CCD探测器7上干涉场光斑直径为Ф,条纹最少时条纹间距为e1,条纹最多时条纹数为e2,那么可得条纹数的变化量N表示为:
N = Φ e 2 - Φ e 1 - - - ( 6 )
可见,由(5)、(6)两式可计算得到被测镜面的中心误差χ
χ = ( Φ e 2 - Φ e 1 ) · λ 4 nD - - - ( 7 )
如图6所示,当被测镜面为R2、R3、R4......Rn时,根据算得的相应中心误差χ除以各面相对于其之前所有镜面的倍率β即可,这样就可求得各面的中心误差,并用以指导装配。
因镜面的倍率β的与所有透镜的参数有关,需要进行光线追迹,通常利用光学设计软件完成,其详细推导方法详见“ZX-3型内调焦对心器研制工作报告”,王肇勋,光电工程1984年05期11-24页。
本发明的测量过程如下:
(1):通过改变从调焦组10出射的测量光束的会聚和发散程度,使光束因满足自准直条件而被被测镜面R1自准返回,与被参考镜5返回的光束满足等厚干涉条件,形成等厚干涉条纹;
(2):驱动精密转轴14旋转,形成间距变化的等厚干涉条纹;
(3):CCD探测器7采集并记录间距变化的等厚干涉条纹,计算组8通过图像处理程序计算出旋转过程中的条纹数变化量;
(4):根据公式(7)计算得出被测镜面R1的中心误差。
此外,在不脱离本发明宗旨的范围内可进行各种变形实施。

Claims (1)

1.一种基于等厚干涉法的中心误差的测量装置,其特征在于,所述测量装置包括激光器(1)、会聚镜(2)、星点板(3)、分光镜(4)、参考镜(5)、接收屏(6)、CCD探测器(7)、计算组(8)、调焦组(10)、折转反射镜(11)、被测透镜(12)、连接工装(13)和精密转轴(14),其中:
在激光器(1)的光轴上依次放置会聚镜(2)、星点板(3)和分光镜(4),星点板(3)位于会聚镜(2)的焦点上;激光器(1)发出的激光束经会聚镜(2)会聚后,经过星点板(3)的滤波,形成滤波光束,滤波光束到达分光镜(4)被分成参考光束和测量光束;
在参考光束的光轴方向上依次放置参考镜(5)、接收屏(6)和CCD探测器(7);在测量光束的光轴上依次放置调焦组(10)、折转反射镜(11);在测量光束经过折转反射镜(11)转折的光轴上依次放置被测透镜(12)、连接工装(13)和精密转轴(14);其中被测透镜(12)通过连接工装(13)固定在精密转轴(14)上;
上述测量装置的连接关系中,星点板(3)通过分光镜(4)的反射与参考镜(5)的曲率中心重合,又通过分光镜(4)的透射与调焦组(10)的物面重合;而接收屏(6)则通过分光镜(4)的透射与参考镜(5)的曲率中心重合,又通过分光镜(4)的反射与调焦组(10)的物面重合;即星点板(3)与接收屏(6)通过分光镜(4)形成共轭关系;
当参考光束到达参考镜(5)后,会被参考镜(5)原路反射,通过分光镜(4),会聚在接收屏(6)上;
而测量光束在经过调焦组(10)的内部组件调焦镜(9)的轴向移动而变换会聚和发散程度后,其会聚点与被测透镜(12)中指定的被测镜面(R1)的曲率中心接近或重合,则到达被测透镜(12)的测量光束会被被测镜面(R1)原路反射,再次通过折转反射镜(11)、调焦组(10)和分光镜(4)后,与上述经过参考镜(5)反射的参考光束发生干涉,然后发生干涉的参考光束和测量光束共同会聚在接收屏(6);
撤掉接收屏(6)后,等厚干涉条纹被CCD探测器(7)接收,然后转动精密转轴(14)一周,CCD探测器(7)记录条纹变化情况;
计算组(8)通过线路与CCD探测器(7)连接,通过计算组(8)对CCD探测器(7)记录条纹变化进行计算,得出被测镜面R1的中心误差。
CN2012104049978A 2012-10-22 2012-10-22 一种基于等厚干涉法的中心误差的测量装置 Pending CN102878956A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104049978A CN102878956A (zh) 2012-10-22 2012-10-22 一种基于等厚干涉法的中心误差的测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104049978A CN102878956A (zh) 2012-10-22 2012-10-22 一种基于等厚干涉法的中心误差的测量装置

Publications (1)

Publication Number Publication Date
CN102878956A true CN102878956A (zh) 2013-01-16

Family

ID=47480379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104049978A Pending CN102878956A (zh) 2012-10-22 2012-10-22 一种基于等厚干涉法的中心误差的测量装置

Country Status (1)

Country Link
CN (1) CN102878956A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007380A (zh) * 2017-11-23 2018-05-08 北京理工大学 一种球面面形误差和曲率半径误差在线检测装置和方法
CN114184138A (zh) * 2020-08-24 2022-03-15 深圳中科飞测科技股份有限公司 一种检测装置和检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046865A1 (en) * 2003-08-28 2005-03-03 Brock Neal J. Pixelated phase-mask interferometer
CN101226344A (zh) * 2008-01-31 2008-07-23 上海微电子装备有限公司 测量光学系统参数的测量装置及其测量方法
CN101571383A (zh) * 2009-05-05 2009-11-04 中国科学院长春光学精密机械与物理研究所 测量球面拼接望远镜子镜间相对曲率半径差的检测装置
CN101672628A (zh) * 2009-10-12 2010-03-17 中国兵器工业第二〇五研究所 非球面光学元件面形检测装置
CN102564340A (zh) * 2011-12-09 2012-07-11 中国科学院西安光学精密机械研究所 大口径平面镜面形检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046865A1 (en) * 2003-08-28 2005-03-03 Brock Neal J. Pixelated phase-mask interferometer
CN101226344A (zh) * 2008-01-31 2008-07-23 上海微电子装备有限公司 测量光学系统参数的测量装置及其测量方法
CN101571383A (zh) * 2009-05-05 2009-11-04 中国科学院长春光学精密机械与物理研究所 测量球面拼接望远镜子镜间相对曲率半径差的检测装置
CN101672628A (zh) * 2009-10-12 2010-03-17 中国兵器工业第二〇五研究所 非球面光学元件面形检测装置
CN102564340A (zh) * 2011-12-09 2012-07-11 中国科学院西安光学精密机械研究所 大口径平面镜面形检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴君君等: "基于等厚干涉原理的圆度误差测量方法", 《燕山大学学报》 *
曾金根等: "CCD等厚干涉实验仪的研究", 《实验室研究与探索》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007380A (zh) * 2017-11-23 2018-05-08 北京理工大学 一种球面面形误差和曲率半径误差在线检测装置和方法
CN108007380B (zh) * 2017-11-23 2019-06-04 北京理工大学 一种球面面形误差和曲率半径误差在线检测装置和方法
CN114184138A (zh) * 2020-08-24 2022-03-15 深圳中科飞测科技股份有限公司 一种检测装置和检测方法

Similar Documents

Publication Publication Date Title
CN101865670B (zh) 光纤点衍射移相干涉仪的平面面形测量方法
CN101650157B (zh) 双曲面凸面反射镜面形误差的检测方法及其装置
CN102095385B (zh) 新型球面绝对测量系统及方法
JP5399304B2 (ja) 非球面体測定方法および装置
CN102735184B (zh) 一种光学面形的检测装置及检测方法
CN103776389A (zh) 一种高精度非球面组合干涉检测装置与方法
CN103471521B (zh) 快速、准确的光学非球面的实时检测方法
CN103471522B (zh) 检测范围广的凹非球面的实时检测方法
CN104048619B (zh) 一种判断旋转轴对称非球面能否采用直接干涉检测的方法
CN103196361A (zh) 用于微球表面形貌快速检测的短相干瞬时移相干涉测量仪及测量方法
CN102175189B (zh) 双光束干涉透镜中心误差测量系统
CN104655053A (zh) 基于针孔式点衍射干涉仪球面镜曲率半径测量装置及方法
CN102901463A (zh) 轴锥镜面形的测量装置和测量方法
CN103162616A (zh) 用于微球表面形貌检测的瞬时移相干涉测量仪及采用该测量仪实现微球表面形貌的测量方法
CN102717305A (zh) 一种光学自由曲面原位测量方法
CN112902875B (zh) 一种非球面反射镜曲率半径检测装置及方法
CN103697806A (zh) 用于检测环形导轨外圆弧面的光学干涉仪
CN102519611A (zh) 共光路径向剪切数字波面干涉仪
CN113483995A (zh) 一种自聚焦透镜折射率分布检测系统及方法
CN102878956A (zh) 一种基于等厚干涉法的中心误差的测量装置
CN110631510B (zh) 一种基于迈克尔逊结构的高精度测角装置及测角方法
KR20110065365A (ko) 비구면체 측정 방법 및 장치
CN102073122B (zh) 用于离轴同心光学系统中同心光学元件的同心装配方法
CN103278105A (zh) 轴锥镜面形和锥角的检测方法
US8643831B1 (en) Distance to angle metrology system (DAMS) and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130116