CN102875844B - 一种改性碳纳米管及其制备方法 - Google Patents

一种改性碳纳米管及其制备方法 Download PDF

Info

Publication number
CN102875844B
CN102875844B CN201210390464.9A CN201210390464A CN102875844B CN 102875844 B CN102875844 B CN 102875844B CN 201210390464 A CN201210390464 A CN 201210390464A CN 102875844 B CN102875844 B CN 102875844B
Authority
CN
China
Prior art keywords
carbon nano
polyaniline
modified carbon
hyperbranched
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210390464.9A
Other languages
English (en)
Other versions
CN102875844A (zh
Inventor
梁国正
强志翔
顾嫒娟
张志勇
袁莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201210390464.9A priority Critical patent/CN102875844B/zh
Publication of CN102875844A publication Critical patent/CN102875844A/zh
Application granted granted Critical
Publication of CN102875844B publication Critical patent/CN102875844B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种改性碳纳米管及其制备方法。将聚苯胺溶解于二甲基亚砜中,滴加经封端处理的含环氧基的超支化聚硅氧烷和盐酸,得到超支化聚苯胺;将其与碳纳米管加入到二甲基亚砜中,再在甲醇中沉淀,经抽滤、洗涤,得到改性碳纳米管,其表面包覆超支化聚苯胺的导电层,通过调节包覆层的含量可实现改性碳纳米管的电导率的控制,从而对提供兼具高介电常数和低介电损耗等功能的导电、介电材料的制备及性能调控成为可能。由于超支化聚硅氧烷含有环氧、羟基等活性基团,为改性碳纳米管与树脂的复合及新型功能材料的研发奠定了良好基础。本发明提供的改性碳纳米管还具有制备方法适用性广、操作工艺简单的特点。

Description

一种改性碳纳米管及其制备方法
技术领域
本发明涉及一种改性碳纳米管及其制备方法。
背景技术
碳纳米管又名巴基管,是一种具有独特结构的一维量子材料。由于具有独特的电子结构和物理化学性质,碳纳米管在众多领域中的应用已引起了各国科学家的普遍关注。其中,碳纳米管与聚合物的复合成为碳纳米管的一个重要的应用形式。迄今,国内外学者已经展开了大量研发工作,结果表明碳纳米管在聚合物中的有效分散是碳纳米管/聚合物复合材料获得优异综合性能的前提和保障。然而,碳纳米管和聚合物的本质决定了碳纳米管难以在聚合物中获得良好的分散性,因此碳纳米管的改性成为碳纳米管及其相关材料研发的重要内容。
目前,能有效改善碳纳米管分散性的方法之一是在碳纳米管外形成包覆层。例如,文献(Mei Yang,Yong Gao,Huaming Li,Alex Adronov.Functionalization ofmultiwalled carbon nanotubes with polyamide 6 by anionic ring-openingpolymerization.Carbon;45;2007;2327–2333.)报道了在异氰酸根化的碳纳米管表面通过阴离子开环聚合接枝尼龙6,改性后的碳纳米管能均匀的分散在有机溶剂里。但是该方法建立在对碳纳米管进行多步化学处理的基础上,显著破坏了碳纳米管的表面,因此,不利于保持碳纳米管原有的性能优势。
Mai等人同样在对碳纳米管进行多步高温长时间下的化学处理的基础上,在碳纳米管上化学接枝末端含羟基的超支化聚氨酯(详见文献:Yingkui Yang,Xiaolin Xie,Jingao Wu,Zhifang Yang,Xiaotao Wang,Yiu-Wing Mai.MultiwalledCarbon Nanotubes  Functionalized by Hyperbranched Poly(urea-urethane)s by aOne-Pot Polycondensation.Macromol.Rapid Commun;2006;27;1695–1701.)。所得到的改性碳纳米管能在极性溶剂中具有良好的分散性,但是热分解温度低于原始碳纳米管。
文献(Milena Ginic-Markovic,Janis G.Matisons,Raoul Cervini,George P.Simon,Peter M.Fredericks.Chem.Mater;2006;18;6258-6265.)报道了由超声引发的乳液聚合制备聚苯胺包覆的碳纳米管,产物保持了碳纳米管的优良导电性。但是该方法在空气中于高温(590℃)下处理碳纳米管3个小时,如此处理条件势必破坏碳管结构,因此不利于保持碳纳米管原有的性能优势。此外,改性碳纳米管没有活性基团,且热分解温度降低(在240℃就有明显的失重)。
由上述现有技术可以看到,目前的改性碳纳米管制备技术虽然达到了某方面改性的目的,但却不可避免地破坏了碳纳米管的结构,不利于保持碳纳米管原有的性能优势。
发明内容
为了克服现有技术存在的不足,本发明的目的在于提供一种在保持碳纳米管高导电率的前提下,同时达到防止其团聚和赋予其具有反应性活性基团的改性碳纳米管,且制备方法简单易行、适于大规模应用。
实现本发明目的的技术方案是提供一种改性碳纳米管的制备方法,包括如下步骤:
1、在N2保护和搅拌下,按质量比,将10份聚苯胺溶解于500~1000份二甲基亚砜中,得到聚苯胺溶液;在聚苯胺溶液中逐滴加入1~3份经封端处理的含环氧基的超支化聚硅氧烷和0.05~0.1份的盐酸,在20~50℃的温度条件下搅拌10~72小时;反应结束后,洗涤、抽滤,去除溶剂,得到超支化聚苯胺;
2、按质量比,将0.5份碳纳米管与0.013~5份超支化聚苯胺加入到15~25份二甲基亚砜中,搅拌并超声处理20~40min得到反应产物;将反应产物加入40~50份甲醇中沉淀,抽滤并洗涤,得到超支化聚苯胺改性碳纳米管。
本发明技术方案中,所述的碳纳米管为单壁或多壁碳纳米管,或其组合;所述的聚苯胺为苯胺类单体的聚合物,可以为苯胺、邻甲苯胺、间氨基苯磺酸、2,3-二甲基苯胺、间甲苯胺、邻氨基苯磺酸、邻氨基苯甲酸、间氨基苯甲酸的均聚物,或它们任意组合的共聚物。
在本发明中,所述的经封端处理的含环氧基的超支化聚硅氧烷为现有技术,一般可由含环氧基的超支化聚硅氧烷经封端处理后得到,如按公开号为CN102199294A的中国发明专利制备方法可以得到含环氧基的超支化聚硅氧烷,再进行封端处理;具体方法可以是:在N2保护下,按摩尔计,将11~16份蒸馏水与10份含环氧基团的三烷氧基硅烷混合均匀,加入40~60份溶剂无水乙醇,在搅拌条件下缓慢滴加0.001~0.003份催化剂,滴加完毕后升温至50~70℃,反应6~8小时后,得到混合物A;按摩尔计,将6~8份蒸馏水与6份封端剂混合均匀,加入30~40份溶剂无水乙醇,在搅拌条件下缓慢滴加0.001~0.003份催化剂,滴加完毕后升温至50~70℃,反应4~6小时后,得到混合物B;再将混合物B逐滴加入混合物A中,升温至50~70℃,反应6~8小时后静置8~12小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。其中,所述的含环氧基的三烷氧基硅烷为3-缩水甘油醚氧基丙基三甲氧基硅烷、2-(3,4-环氧环己烷基)乙基三甲氧基硅烷、2-(3,4-环氧环己烷烷基)乙基三乙氧基硅烷,或它们的任意组合;所述的催化剂为盐酸、硫酸、对甲苯磺酸、四甲基氢氧化铵、四乙基氢氧化铵、氢氧化钠或氢氧化钾;所述的封端剂为六甲基二硅氧烷、三甲基氯硅烷、三苯基氯硅烷、三乙基氯硅烷或其组合。
本发明技术方案还包括一种按上述的制备方法得到的超支化聚苯胺改性碳纳米管。
与现有技术相比,本发明所取得的有益效果是:
1、本发明在碳纳米管表面包覆超支化聚苯胺的过程中不对碳纳米管进行化学和高温处理,因此,不破坏碳纳米管的结构。其包覆机理是依靠超支化聚苯胺支链所含有的大量苯环、醌环结构与碳纳米管表面形成大π体系,通过π-π作用而吸附在碳纳米管上。同时,超支化聚苯胺的存在克服了碳纳米管自身团聚力,达到分散碳纳米管的目的。
2、本发明合成的超支化聚苯胺含有多条聚苯胺链,而非单一的线型聚合物链,确保了在较少的加入量下就可实现对碳纳米管的良好分散。
3、超支化聚苯胺的支链为经酸掺杂的聚苯胺,其具有较高的电导率。因此,确保碳纳米管具有高的电导率,为制备导电材料、高介电常数材料等功能材料提供了性能保障。
4、超支化结构赋予超支化聚苯胺大量的环氧、羟基等活性反应基团,为改性碳纳米管在聚合物中获得良好的分散性及良好的化学界面作用力提供了有力支撑。
5、本发明所制备的超支化聚苯胺集成了聚硅氧烷的突出耐热性,因此具有优于未改性的聚苯胺的耐热性。
6、本发明所制备的改性碳纳米管表面的超支化聚苯胺进行了封端处理,大大降低了硅羟基含量,从而确保改性碳纳米管具有较低的介电损耗,为实现低介电损耗材料的制备奠定了基础。
附图说明
图1是本发明实施例1中超支化聚硅氧烷、聚苯胺、超支化聚苯胺的红外谱图;
图2是本发明实施例1中聚苯胺、超支化聚苯胺的紫外-可见光谱图;
图3是本发明实施例1中聚苯胺、超支化聚苯胺的1H-NMR(核磁共振)谱图;
图4是本发明实施例1中聚苯胺、超支化聚苯胺的扫描电子显微镜图;
图5是本发明实施例1中聚苯胺、超支化聚苯胺的X射线衍射谱图;
图6是本发明实施例1中聚苯胺、超支化聚苯胺的电导率曲线图;
图7是本发明实施例1中聚苯胺、超支化聚苯胺的热失重曲线图;
图8是本发明实施例1提供的超支化聚苯胺的结构示意图;
图9是本发明实施例1~5制备的改性碳纳米管、碳纳米管的X射线衍射谱图;
图10是本发明实施例1~5制备的改性碳纳米管、碳纳米管的拉曼谱图;
图11是本发明实施例3~5提供的碳纳米管和改性碳纳米管的在10Hz频率下交流电导率柱状图;
图12是本发明实施例5提供的比较例1和比较例2所制备的复合材料的介电常数随频率变化的曲线图;
图13是本发明实施例5提供的比较例1和比较例2所制备的复合材料的介电损耗随频率变化的曲线图;
图14是本发明实施例7、8制备的改性碳纳米管的扫描电子显微镜图。
具体实施方式
下面结合附图、实施例和比较例,对本发明技术方案作进一步的描述。
实施例1
1、超支化聚苯胺的制备
分别将0.9g苯胺、1.1g邻甲苯胺和1.7g间氨基苯磺酸混合,向混合物中加入150mL盐酸溶液(0.2mol/L);在N2保护和0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸铵(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温5小时直至反应结束,分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺,特性粘度为0.43dL/g。其红外谱图、紫外-可见光谱图、1H核磁共振谱图、扫描电子显微镜、X射线衍射谱、电导率曲线和热失重曲线分别如附图1、2、3、4、5、6和7所示。
取30mL无水乙醇作溶剂,向其中加入23.6g 3-缩水甘油醚氧基丙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.0g pH为2的HCl溶液;滴加完毕,升温至50℃继续反应8小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入9.7g六甲基二硅氧烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入1.1g pH为2的HCl溶液;滴加完毕,升温至70℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至50℃,反应8小时后静置8小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。其红外谱图如附图1所示。
在90mL二甲基亚砜中加入1g聚苯胺,N2保护、25℃条件下,机械搅拌30min使其充分溶解,取0.2g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌48小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,特性粘度为1.09dL/g,产率为73.12%。其结构示意图参见附图8,球形超支化聚硅氧烷的外围以化学键连接多条聚苯胺链,形成多支链结构,部分羟基与封端剂反应达到封端效果,剩余羟基则可进一步功能化,在本实施例中,
R1/R3=H/SO3H  R2/R4=H/CH3
Figure BDA00002258023700051
本实施例制备的超支化聚苯胺的红外谱图、紫外-可见光谱图、1H核磁共振谱图、扫描电子显微镜、X射线衍射谱、电导率曲线和热失重曲线分别如附图1、2、3、4、5、6和7所示。
2、改性碳纳米管的制备
将1g碳纳米管与0.025g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其X射线衍射谱、拉曼谱图分别如图9、10所示。
参见附图1,它是本实施例中的超支化聚硅氧烷、聚苯胺、超支化聚苯胺的红外谱图。由图1可以看出以下几点:(1)超支化聚苯胺保留了聚苯胺的骨架结构,1020~1160cm-1处存在较强较宽吸收带,是Si-O-Si的特征吸收峰,表明聚苯胺已成功连接到超支化聚硅氧烷的外围;(2)3500cm-1处Si-OH的吸收峰降低,表明封端剂六甲基二硅氧烷对-OH的封端效果显著;(3)810cm-1处存在较弱的环氧吸收峰,表明虽然聚苯胺上的氨基可以与超支化聚硅氧烷中的环氧基团反应,但超支化聚硅氧烷为球形立体结构,空间位阻较大,环氧基团不能完全反应,为聚苯胺的进一步改性与应用、新型高分子材料的研发、聚合物改性与高性能化、多官能化提供了可能。
参见附图2,它是本实施例中聚苯胺、超支化聚苯胺的紫外-可见光谱图。由图比较可知,与聚苯胺相比,超支化聚苯胺的两个强度较高的吸收带的波长都出现了蓝移现象,表明聚合物的共轭程度降低,超支化聚硅氧烷分子被成功引入聚苯胺中。
参见附图3,它是本实施例中聚苯胺、超支化聚苯胺的1H-NMR(核磁共振)谱图。与聚苯胺曲线对比可以发现,超支化聚苯胺的谱图中出现许多新的1H信号峰,表明超支化聚硅氧烷已成功连接到聚苯胺上,形成具有多条聚苯胺支链的超支化聚苯胺。
参见表1,它是本实施例制得的三元共聚苯胺与超支化聚苯胺的元素分析ED S表。由EDS数据可知,共聚苯胺中C、N、S、O的原子百分含量与加入的单体中各元素含量类似,表明其确实为苯胺的三元共聚物;超支化聚苯胺中Si、O含量有所增加,C、N、S含量略有降低,表明通过聚苯胺上的氨基与超支化聚硅氧烷上的环氧基团反应,超支化聚硅氧烷已被引入聚苯胺链中,证明了具有超支化结构的聚苯胺的合成。
表1聚苯胺、超支化聚苯胺的EDS数据
Figure BDA00002258023700061
参见附图4,它是本实施例中聚苯胺、超支化聚苯胺的扫描电子显微镜照片;图a、b分别为聚苯胺放大20K和5K,图c、d分别为超支化聚苯胺放大20K和5K。由比较可以看到,聚苯胺颗粒周边比较清晰规整,超支化聚苯胺颗粒较模糊,四周粗糙,表明其结晶不太完善,超支化聚硅氧烷被成功引入聚苯胺中。
参见附图5,它为聚苯胺、超支化聚苯胺的X射线衍射图谱图,由图可知,聚苯胺的衍射图中有四个峰,2θ值分别为8.5°、15.0°、20.1°和24.7°,其中8.5°、24.7°处峰形较尖锐,剩余两处峰形平缓,表明聚苯胺有一定的结晶能力,结晶结构和无定形结构共存。对于超支化聚苯胺,其衍射峰的数目、峰形、出峰的位置都与聚苯胺有较大的差别,表明超支化聚苯胺结晶能力下降,晶形不完善,无定形结构增多,超支化聚硅氧烷被成功引入聚苯胺中。
参见附图6,它为室温下聚苯胺及超支化聚苯胺的电导率随频率的变化曲线。由图可见,两者的电导率-频率曲线相似,且导电率大小相近,表明超支化聚苯胺基本保持了聚苯胺的良好导电率。
参见附图7,它为聚苯胺及超支化聚苯胺的热失重曲线。初始热分解温度(Tdi)常被用于表征材料的热稳定性,由图可知,聚苯胺和超支化聚苯胺的Tdi分别为282℃和350℃,表明超支化聚苯胺的热稳定性明显高于聚苯胺,这主要归结于聚硅氧烷分子链的存在。
根据以上性能数据可以看出,与聚苯胺相比,本发明制备的超支化聚苯胺在保持良好导电性的基础上,具有更好的耐热性,可用于制备耐热的导电材料、高介电常数材料等,应用前景广阔。
实施例2
1、超支化聚苯胺的制备
按实施例1技术方案制备超支化聚苯胺。
2、改性碳纳米管的制备
将1g碳纳米管与0.05g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其X射线衍射谱、拉曼谱图分别如图9和10所示。
实施例3
1、超支化聚苯胺的制备
按实施例1技术方案制备超支化聚苯胺。
2、改性碳纳米管的制备
将1g碳纳米管与0.1g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其X射线衍射谱、拉曼谱图和电导率分别如图9、10和11所示。
实施例4
1、超支化聚苯胺的制备
按实施例1技术方案制备超支化聚苯胺。
2、改性碳纳米管的制备
将1g碳纳米管与0.2g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其X射线衍射谱、拉曼谱图和电导率分别如图9、10和11所示。
实施例5
1、超支化聚苯胺的制备
按实施例1技术方案制备超支化聚苯胺。
2、改性碳纳米管的制备
将1g碳纳米管与0.033g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其X射线衍射谱、拉曼谱图和导电率分别如图9、10和11所示。
3、比较例1改性碳纳米管/环氧树脂复合材料的制备
将0.517g改性碳纳米管与和100g环氧树脂(牌号E-51)加入到烧瓶中,在60℃下搅拌并超声1小时后,真空脱泡30min,加入4g 2-乙基-4-甲基咪唑,继续搅拌10min,得到均匀的混合物;将混合物浇入到模具中,真空脱泡20min,按照80℃/2h+100℃/2h+120℃/2h和140℃/4h工艺进行热固化,即得到改性碳纳米管/环氧树脂复合材料。其介电常数随频率变化图、介电损耗随频率变化图分别见附图11和12。
4、比较例2碳纳米管/环氧树脂复合材料的制备
将0.5g碳纳米管与100g环氧树脂(牌号E-51)加入到烧瓶中,在60℃下搅拌并超声1小时后,真空脱泡30min,加入4g 2-乙基-4-甲基咪唑,继续搅拌10min,得到均匀的混合物;将混合物浇入到模具中,真空脱泡20min,按照80℃/2h+100℃/2h+120℃/2h和140℃/4h工艺进行热固化,即得到碳纳米管/环氧树脂复合材料。其介电常数随频率变化图、介电损耗随频率变化图分别见附图11和12。
参见附图9,它是碳纳米管、实施例1~5中改性碳纳米管的X射线衍射谱图。由图可见,加入超支化聚苯胺后,碳纳米管的衍射峰向小角度方向偏移,峰形尖锐程度降低,表明超支化聚苯胺与碳纳米管之间存在π-π作用。
参见附图10,它是碳纳米管、实施例1~5中改性碳纳米管的拉曼谱图。与碳纳米管的谱图相比,改性碳纳米管的D带和G带峰形略有变宽且发生了偏移,表明超支化聚苯胺与碳纳米管之间存在π-π作用。
参见附图11,它是实施例3、4和5制备的改性碳纳米管、碳纳米管的在10Hz频率下交流电导率柱状图。由图可知,与碳纳米管相比,改性碳纳米管具有更高的导电率,这是因为超支化聚苯胺与碳纳米管形成的大π体系有利于电荷的运动,从而易于获得高导电率。这对改性碳纳米管的应用有极大的意义。
参见附图12,它是本实施例所提供的比较例1和2制备的复合材料的介电常数随频率的变化曲线。由图可知,改性碳纳米管/环氧树脂复合材料在低频区的介电常数大大高于碳纳米管/环氧树脂复合材料,表明改性碳纳米管在制备高介电常数材料方面具有显著的应用前景。
参见附图13,它是本实施例所提供的比较例1和2制备的复合材料的介电损耗随频率的变化曲线。比较例2制备的碳纳米管/环氧树脂复合材料的介电损耗强烈依赖于频率,在低频下具有很高的介电损耗(例如102Hz下的复合材料的介电损耗高达350)。而比较例1制备的改性碳纳米管/环氧树脂复合材料的介电损耗对频率的依赖性大大减弱,同时低频下的介电损耗明显降低,表明改性碳纳米管在制备低介电损耗复合材料方面具有突出的优势。综合附图12可知,加入少量改性碳纳米管即可显著提高复合材料的介电常数并大大降低介电损耗,在制备兼具高介电常数、低介电损耗复合材料方面具有显著的优势。
实施例6
1、超支化聚苯胺的制备
按实施例1技术方案制备超支化聚苯胺。
2、改性碳纳米管的制备
将1g碳纳米管与1g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例7
1、超支化聚苯胺的制备
分别取0.9g苯胺、1.1g邻甲苯胺、1.7g间氨基苯磺酸,并向其中加入75mLH2SO4溶液(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸钾(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温12小时直至反应结束,分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺,特性粘度0.44dL/g。
取20mL无水乙醇作溶剂,向其中加入23.6g 3-缩水甘油醚氧基丙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为2的H2SO4溶液;滴加完毕,升温至70℃继续反应6小时,得到混合物A;取20mL无水乙醇作溶剂,向其中加入9.7g六甲基二硅氧烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入1.3g pH为2的H2SO4溶液;滴加完毕,升温至50℃继续反应6小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至70℃,反应6小时后静置12小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在45mL二甲基亚砜中加入1g聚苯胺,N2保护、20℃条件下,机械搅拌30min使其充分溶解,取0.2g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌72小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,特性粘度为1.17dL/g,产率为72.88%。
其结构示意图参见附图8,其中,
R1/R3=H/SO3H  R2/R4=H/CH3
2、改性碳纳米管的制备
将1g碳纳米管与5g超支化聚苯胺加入30mL二甲基亚砜中,25℃下搅拌并超声40mi n后,加入80mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。其扫描电子显微镜图如图14所示。
实施例8
1、超支化聚苯胺的制备
分别取1.4g苯胺、2.6g间氨基苯磺酸,并向其中加入150mL十二烷基苯磺酸溶液(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸铵(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温24小时直至反应结束,将反应液加入过量的甲醇中破乳,过滤后分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取25mL无水乙醇作溶剂,向其中加入23.6g 3-缩水甘油醚氧基丙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.0g pH为2的对甲苯磺酸溶液;滴加完毕,升温至60℃继续反应7小时,得到混合物A;取18mL无水乙醇作溶剂,向其中加入9.7g六甲基二硅氧烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入1.2g pH为2的对甲苯磺酸溶液;滴加完毕,升温至60℃继续反应5小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应7小时后静置10小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在70mL二甲基亚砜中加入1g聚苯胺,N2保护、50℃条件下,机械搅拌30min使其充分溶解,取0.2g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌10小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为71.42%。
其结构示意图参见附图8,其中,
R1/R3=H/SO3H  R2/R4=H
Figure BDA00002258023700111
2、改性碳纳米管的制备
将1g碳纳米管与10g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声40mi n后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。扫描电子显微镜图如图14所示。
参见附图14,图中的a、b图分别是实施例7、8中改性碳纳米管的扫描电子显微镜图。由图可知,改性碳纳米管均匀地贯穿在超支化聚苯胺中,表明本发明提供的超支化聚苯胺能通过π-π作用有效地分散碳纳米管。
实施例9
1、超支化聚苯胺的制备
分别取1.6g邻甲苯胺、2.6g间氨基苯磺酸,并向其中加入300mL十二烷基苯磺酸溶液(0.1mol/L),N2保护、0~5℃条件下,机械搅拌45min。随后逐滴加入100mL过硫酸钾(0.6mol/L)溶液,并剧烈搅拌。滴加完毕后,保温8小时直至反应结束,将上述反应液加入过量的甲醇中破乳、过滤,分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入23.6g 3-缩水甘油醚氧基丙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.0g pH为12的KOH溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入9.7g六甲基二硅氧烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入1.3g pH为12的KOH溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置8小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在80mL二甲基亚砜中加入1g聚苯胺,N2保护、25℃条件下,机械搅拌30min使其充分溶解,取0.1g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌48小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为71.91%。
其结构示意图参见附图8,其中,
R1/R3=H/SO3H  R2/R4=H/CH3
Figure BDA00002258023700121
2、改性碳纳米管的制备
将1g碳纳米管与0.2g超支化聚苯胺加入40mL二甲基亚砜中,25℃下搅拌并超声20mi n后,加入90mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例10
1、超支化聚苯胺的制备
取2.8g苯胺,并向其中加入150mL对甲苯磺酸溶液(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸铵(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温6小时直至反应结束,分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入24.6g 2-(3,4-环氧环己烷基)乙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.8g pH为2的HCl溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入13g三甲基氯硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为2的HCl溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置11小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在80mL二甲基亚砜中加入1g聚苯胺,N2保护、25℃条件下,机械搅拌30min使其充分溶解,取0.3g超支化聚硅氧烷和0.01g盐酸逐滴加入到该混合溶液中,继续搅拌48小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为68.53%。
其结构示意图参见附图8,其中,
R1/R2/R3/R4=H
2、改性碳纳米管的制备
将1g单壁碳纳米管与0.5g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声40min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例11
1、超支化聚苯胺的制备
分别取0.9g苯胺、1.1g邻甲苯胺、1.7g邻氨基苯磺酸,并向其中加入150mLβ-萘磺酸溶液(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸钾(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温24小时直至反应结束,分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入24.6g 2-(3,4-环氧环己烷基)乙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.8g pH为12的NaOH溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入13g三甲基氯硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为12的NaOH溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置9小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在60mL二甲基亚砜中加入1g聚苯胺,N2保护、25℃条件下,机械搅拌30min使其充分溶解,取0.3g超支化聚硅氧烷和0.01g盐酸逐滴加入到该混合溶液中,继续搅拌48小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为67.13%。
其结构示意图参见附图8,其中,
R1/R3=H  R2/R4=H/CH3/SO3H
Figure BDA00002258023700132
2、改性碳纳米管的制备
将1g单壁碳纳米管与1g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例12
1、超支化聚苯胺的制备
取3.3g间甲苯胺,并向其中加入150mL十二烷基苯磺酸溶液(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸铵(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温15小时直至反应结束,将上述反应液加入过量的甲醇中破乳,过滤后分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入23.6g 3-缩水甘油醚氧基丙基三甲氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.4g pH为12的四乙基氢氧化铵溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入13g三甲基氯硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为12的四乙基氢氧化铵溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置8小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在90mL二甲基亚砜中加入1g聚苯胺,N2保护、20℃条件下,机械搅拌30min使其充分溶解,取0.1g超支化聚硅氧烷和0.01g盐酸逐滴加入到该混合溶液中,继续搅拌72小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为71.97%。
其结构示意图参见附图8,其中,
R1/R3=CH3    R2/R4=H
Figure BDA00002258023700141
2、改性碳纳米管的制备
将1g碳纳米管与2g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例13
1、超支化聚苯胺的制备
分别取0.9g苯胺、1.1g邻甲苯胺、1.7g间氨基苯磺酸,并向其中加入300mL氨基磺酸(0.2mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸铵(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温8小时直至反应结束,将上述反应液过滤后分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入28.8g 2-(3,4-环氧环己烷基)乙基三乙氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.0g pH为2的HCl溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入35.34g三苯基氯硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为2的HCl溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置8小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在90mL二甲基亚砜中加入1g聚苯胺,N2保护、50℃条件下,机械搅拌30min使其充分溶解,取0.2g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌10小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为68.59%。
其结构示意图参见附图8,其中,
R1/R3=H/SO3H   R2/R4=H/CH3
Figure BDA00002258023700151
2、改性碳纳米管的制备
将1g碳纳米管与5g超支化聚苯胺加入40mL二甲基亚砜中,25℃下搅拌并超声20min后,加入90mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。
实施例14
1、超支化聚苯胺的制备
分别取1.4g苯胺、1.8g2,3-二甲基苯胺,并向其中加入600ml HNO3溶液(0.1mol/L),N2保护、0~5℃条件下,机械搅拌30min。随后逐滴加入100mL过硫酸钾(0.3mol/L)溶液,并剧烈搅拌。滴加完毕后,保温18小时直至反应结束,将上述反应液过滤后分别用稀盐酸溶液、丙酮、去离子水洗涤、抽滤,并在50℃下真空干燥24小时,得到聚苯胺。
取30mL无水乙醇作溶剂,向其中加入28.8g 2-(3,4-环氧环己烷基)乙基三乙氧基硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为12的四乙基氢氧化铵溶液;滴加完毕,升温至60℃继续反应6小时,得到混合物A;取15mL无水乙醇作溶剂,向其中加入35.34g三苯基氯硅烷,在室温、N2保护、磁力搅拌条件下缓慢逐滴加入2.2g pH为12的四乙基氢氧化铵溶液;滴加完毕,升温至60℃继续反应4小时,得到混合物B;再将混合物B逐滴加入混合物A中,N2保护升温至60℃,反应6小时后静置8小时,取下层溶液,洗涤、干燥,得到经封端处理的含环氧基的超支化聚硅氧烷。
在90mL二甲基亚砜中加入1g聚苯胺,N2保护、20℃条件下,机械搅拌30min使其充分溶解,取0.3g超支化聚硅氧烷和0.005g盐酸逐滴加入到该混合溶液中,继续搅拌72小时。反应结束后,将反应液加入过量的甲醇中,反复洗涤、抽滤,并在50℃下真空干燥24小时,得到超支化聚苯胺,产率为70.02%。
其结构示意图参见附图8,其中,
R1/R2=H/CH3    R3/R4=H/CH3
Figure BDA00002258023700161
2、改性碳纳米管的制备
将1g碳纳米管与10g超支化聚苯胺加入50mL二甲基亚砜中,25℃下搅拌并超声20min后,加入100mL甲醇中沉淀,抽滤并洗涤,并在50℃下真空干燥24小时,得到改性碳纳米管。

Claims (3)

1.一种改性碳纳米管的制备方法,包括如下步骤: 
(1)在N2保护和搅拌下,按质量比,将10份聚苯胺溶解于500~1000份二甲基亚砜中,得到聚苯胺溶液;在聚苯胺溶液中逐滴加入1~3份经封端处理的含环氧基的超支化聚硅氧烷和0.05~0.1份的盐酸,在20~50℃的温度条件下搅拌10~72小时;反应结束后,洗涤、抽滤,去除溶剂,得到超支化聚苯胺; 
(2)按质量比,将0.5份碳纳米管与0.013~5份超支化聚苯胺加入到15~25份二甲基亚砜中,搅拌并超声处理20~40min得到反应产物;将反应产物加入40~50份甲醇中沉淀,抽滤并洗涤,得到超支化聚苯胺改性碳纳米管; 
其特征在于:所述的碳纳米管为单壁或多壁碳纳米管,或其组合。 
2.根据权利要求1所述的一种改性碳纳米管的制备方法,其特征在于:所述的聚苯胺为苯胺类单体的聚合物。 
3.根据权利要求2所述的一种改性碳纳米管的制备方法,其特征在于:所述的苯胺类单体的聚合物为苯胺、邻甲苯胺、间氨基苯磺酸、2,3-二甲基苯胺、间甲苯胺、邻氨基苯磺酸、邻氨基苯甲酸、间氨基苯甲酸的均聚物或它们任意组合的共聚物。 
CN201210390464.9A 2012-10-15 2012-10-15 一种改性碳纳米管及其制备方法 Expired - Fee Related CN102875844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210390464.9A CN102875844B (zh) 2012-10-15 2012-10-15 一种改性碳纳米管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210390464.9A CN102875844B (zh) 2012-10-15 2012-10-15 一种改性碳纳米管及其制备方法

Publications (2)

Publication Number Publication Date
CN102875844A CN102875844A (zh) 2013-01-16
CN102875844B true CN102875844B (zh) 2014-01-01

Family

ID=47477384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210390464.9A Expired - Fee Related CN102875844B (zh) 2012-10-15 2012-10-15 一种改性碳纳米管及其制备方法

Country Status (1)

Country Link
CN (1) CN102875844B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778572B (zh) * 2014-12-24 2018-05-01 中国科学院宁波材料技术与工程研究所 一种石墨烯复合粉体及其制备方法
CN105778571B (zh) * 2014-12-24 2018-05-04 中国科学院宁波材料技术与工程研究所 一种石墨烯复合浆料及其制备方法
CN111068620A (zh) * 2020-01-10 2020-04-28 福州大学 一种竹节状磁性氮/金属钴掺杂的碳纳米管材料的制备方法及其应用
CN111876227B (zh) * 2020-08-05 2022-05-27 扬州工业职业技术学院 一种具有清净、防爬性能的层状液晶润滑剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442660B (zh) * 2011-10-14 2013-08-28 苏州大学 一种表面改性碳纳米管及其制备方法
CN102875973B (zh) * 2012-09-28 2014-09-17 苏州大学 一种改性碳纳米管/热固性树脂复合材料及其制备方法

Also Published As

Publication number Publication date
CN102875844A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN103059343B (zh) 一种改性碳纳米管及其制备方法
CN102875973B (zh) 一种改性碳纳米管/热固性树脂复合材料及其制备方法
CN102875844B (zh) 一种改性碳纳米管及其制备方法
CN110845870A (zh) 一种表面共价接枝改性六方氮化硼纳米片及其制备方法
CN100347201C (zh) 蒙脱土原位有机化制备聚合物/蒙脱土纳米复合材料的方法
CN102746514B (zh) 一种超支化聚硅氧烷改性聚苯胺及其制备方法
CN105885354A (zh) 一种笼型倍半硅氧烷改性碳纳米管的制备方法及应用
Li et al. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
CN101475179B (zh) 一种有机无机杂化氧化硅纳米球的制备方法
CN112795015B (zh) 一种四官能度丁香酚环氧功能化的笼型倍半硅氧烷及其制备方法和应用
CN113880876B (zh) 一种自交联石墨烯分散剂及制备方法和纳米碳材料分散液
Gao et al. Polyhedral oligomeric silsesquioxane modified carbon nanotube hybrid material with a bump structure via polydopamine transition layer
CN112626630A (zh) 一种基于二维纳米碳化钛导电浆的制备方法及应用
CN107008496B (zh) 一种亲油性改性石墨相氮化碳的制备方法
CN101735633A (zh) 功能化有机/无机杂化不对称结构粒子及其合成方法
CN112876685B (zh) 一种四环氧基液体笼型倍半硅氧烷及其制备方法和应用
CN102875843B (zh) 一种改性碳纳米管及其制备方法
CN102807674B (zh) 一种超支化聚硅氧烷改性聚苯胺及其制备方法
CN109456486A (zh) 一种多功能耐高温poss纳米分子材料及其制备方法
CN102875813B (zh) 一种聚硅氧烷改性聚苯胺及其制备方法
CN108864485B (zh) 一种高分散性的大体积链段改性氧化石墨烯的制备方法
CN114685907B (zh) 一种可调节双疏性荧光聚苯乙烯微球填料的制备方法以及应用
CN102875975B (zh) 多支链聚苯胺改性碳纳米管/热固性树脂复合材料及其制备方法
CN102875976B (zh) 超支化聚苯胺改性碳纳米管/热固性树脂复合材料及其制备方法
Wang et al. Preparation and characterization of polypyrrole coating on fly ash cenospheres: role of the organosilane treatment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140101

Termination date: 20161015