CN102859355B - 通过检测kras突变和rtk表达水平来测定细胞对b-raf抑制剂治疗的敏感性 - Google Patents

通过检测kras突变和rtk表达水平来测定细胞对b-raf抑制剂治疗的敏感性 Download PDF

Info

Publication number
CN102859355B
CN102859355B CN201080048007.0A CN201080048007A CN102859355B CN 102859355 B CN102859355 B CN 102859355B CN 201080048007 A CN201080048007 A CN 201080048007A CN 102859355 B CN102859355 B CN 102859355B
Authority
CN
China
Prior art keywords
ras
raf
mutant
sudden change
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080048007.0A
Other languages
English (en)
Other versions
CN102859355A (zh
Inventor
G.哈齐瓦西利奥
S.马利克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of CN102859355A publication Critical patent/CN102859355A/zh
Application granted granted Critical
Publication of CN102859355B publication Critical patent/CN102859355B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/5743Specifically defined cancers of skin, e.g. melanoma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及用于鉴定对B-Raf抑制剂治疗不易感的肿瘤的预后方法,其通过检测K-ras基因或蛋白中的突变或者通过检测RTK和/或其配体的过表达来进行。还公开了用于实施所述方法的试剂盒。

Description

通过检测KRAS突变和RTK表达水平来测定细胞对B-RAF抑制剂治疗的敏感性
对相关申请的交叉引用
本申请依据35U.S.C.§119(e)要求2009年8月24日提交的美国临时申请流水号61/236466和2010年2月3日提交的61/301149的权益,为了所有目的通过提及而将它们完整收入本文。
发明领域
本发明涉及癌症诊断和治疗,且具体而言,涉及检测诊断和/或预后性的突变或RTK过表达及将所述检测与癌症治疗联系起来。
发明背景
受体酪氨酸激酶(RTK)及其配体是肿瘤细胞增殖、血管发生、和转移的重要调节物。例如,RTK的ErbB家族包括EGFR(HER1和ErbB1)、HER2(neu或ErbB2)、HER3(ErbB3)、和HER4(ErbB4),并且具有独特的配体结合和信号传导活性。结合ErbB受体的配体包括表皮生长因子(EGF)、转化生长因子a(TGFa)、肝素结合EGF样配体(HB-EGF)、双调蛋白(amphiregulin,AR)、β细胞调节素(betacellulin,BTC)、上皮调节蛋白(epiregulin,EPR)、Epigen(EPG)、调蛋白(heregulin,HRG)、和神经调节蛋白(neuregulin,NRG)。这些配体直接结合EGFR、HER3、或HER4,并且触发多种下游信号传导级联,包括RAS-ERK和PI3K-Akt途径。EGF和其它生长因子和细胞因子,诸如血小板衍生的生长因子(PDGF)经由Ras发信号。Ras突变以其活性的、GTP结合的状态永久地锁定Ras(Wislez,M等,Cancer Drug Discovery and Development:EGFRSignaling Networks in Cancer Therapy,J.D.Haley和WJ.Gullick编,HumanaPress,第89页-第95页,2008)。
MET是另一种RTK,其被其配体肝细胞生长因子(HGF)的活化诱导MET激酶催化活性,这触发酪氨酸Tyr 1234和Tyr 1235的转磷酸化。这两个酪氨酸衔接各种信号转导物,如此启动由MET驱动的生物学活性的全谱。HGF诱导持续的RAS激活,并且如此延长MAPK活性。
K-ras是在多种癌症中经历突变的ras基因之一。密码子12和13处的K-ras基因突变参与肿瘤发生,其导致对p21-ras蛋白,即一种K-ras基因产物的功能修饰,导致将过多的生长信号转移至细胞核以刺激细胞生长和分裂。因此,已经广泛使用K-ras基因突变的鉴定作为癌症诊断,例如胰腺、结肠直肠和非小细胞肺癌中的有用工具,并且研究已经提示了,它可能与一些肿瘤表型有关(Samowitz W S等,Cancer Epidemiol.Biomarkers Prev.9:1193-1197,2000;Andreyev H J等,Br.J.Cancer 85:692-696,2001;及Brink M等,Carcinogenesis24:703-710,2003)。
Ras在致癌性转化和发生中发挥至关重要的作用。致癌性H-、K-、和N-Ras源自限于少数位点(氨基酸12、13、59和61)的点突变。与正常的Ras不同,致癌性ras蛋白缺乏固有的GTP酶活性,并且因此保持组成性活化的(Trahey,M.和McCormick,F.(1987)Science 238:542-5;Tabin,C.J.等(1982)Nature.300:143-9;Taparowsky,E.等(1982)Nature.300:762-5)。人癌症中的致癌性ras参与估计为30%(Almoguera,C.等(1988)Cell.53:549-54)。
突变经常仅限于ras基因之一,并且频率是组织和肿瘤类型特异性的。K-ras是人癌症中的最常见突变的癌基因,尤其是密码子12突变。虽然已经在30%的人癌症中观察到源自单一核苷酸替代的H-、K-、和N-Ras的致癌性活化(Bos,J.L.(1989)Cancer Res 49,4682-9),但是超过90%的人胰腺癌表明密码子12K-ras突变(Almoguera,C.等(1988)Cell 53,549-54;Smit,V. T.等(1988)Nucleic Acids Res 16,7773-82;Bos,J.L.(1989)Cancer Res 49,4682-9)。胰管腺癌,即最常见的胰腺癌以其快速发作和对治疗的抗性而出名。人胰腺肿瘤中的K-ras突变的高频率提示了组成性Ras活化在胰腺肿瘤发生期间发挥至关重要的作用。外分泌胰腺腺癌占据西方国家的癌症相关死亡率的第四位原因。治疗已经获得有限的成功,并且五年存活仍然小于5%,其中具有手术不可切除的肿瘤的患者具有4个月的平均存活(Jemal,A等(2002)CA Cancer J Clin 52,23-47;Burris,H.A.,3rd等(1997)J Clin Oncol 15,2403-13)。此点突变可以在正常的立方胰管上皮进展成平坦的增生性损伤时在疾病过程早期鉴定,并且认为在胰腺癌的发病机制中成为原因(Hruban,R.H.等(2000)Clin Cancer Res 6,2969-72;Tada,M.等(1996)Gastroenterology110,227-31)。然而,人胰腺癌中的致癌性K-ras信号传导的调节很大程度上仍然未知。
K-ras突变存在于50%的结肠和肺癌中(Bos,J.L.等(1987)Nature.327:293-7;Rodenhuis,S.等(1988)Cancer Res.48:5738-41)。在泌尿道和膀胱癌中,突变主要在H-ras基因中(Fuita,J.等(1984)Nature.309:464-6;Visvanathan,K.V.等(1988)Oncogene Res.3:77-86)。N-ras基因突变存在于30%的白血病和肝癌中。约25%的人皮肤损伤牵涉Ha-Ras突变(对于鳞状细胞癌为25%,而对于黑素瘤为28%)(Bos,J.L.(1989)Cancer Res.49:4683-9;Migley,R.S和Kerr,D.J.(2002)Crit Rev Oncol Hematol.44:109-20)。50-60%的甲状腺癌在具有所有三种基因中的突变方面是独特的(Adjei,A.A.(2001)JNatl Cancer Inst.93:1062-74)。
可以经由致癌性突变或者经由超活化的生长因子受体诸如EGFR来实现Ras的组成性活化。EGFR家族成员,尤其是EGFR和HER2的表达和/或扩增升高已经牵涉各种形式的人恶性肿瘤(如综述于Prenzel,N.等(2001)EndocrRelat Cancer.8:11-31的)。在这些癌症中的一些(包括胰腺、结肠、膀胱、肺)中,EGFR/HER2过表达由于致癌性Ras突变的存在而增加(compound)。肿瘤中的这些受体的异常活化可以归因于过表达、基因扩增、组成性激活突变或自分泌生长因子环(Voldborg,B.R.等(1997)Ann Oncol.8:1197-206)。对于生长因子受体,尤其是EGFR,这些受体的扩增或/和过表达经常在乳腺、卵巢、胃、食管、胰腺、肺、结肠癌和成神经细胞瘤中发生。
RAS-MAPK信号传导途径控制细胞生长、分化和存活。基于此信号传导途径在调节来自广谱人肿瘤的细胞的生长和存活中的中心作用,它长期被视为一种用于抗癌疗法的有吸引力的途径,并且此信号传导途径的组分中的突变成为哺乳动物细胞中肿瘤启动的基础(Sebolt-Leopold等(2004)Nat RevCancer 4,pp 937-47)。
RAS-MAPK信号传导途径受多种胞外信号(激素和生长因子)激活,所述胞外信号通过用GTP交换GDP来激活RAS。然后,Ras将RAF募集至质膜,在那里发生其活化。如上文所记录的,导致组成性活化的信号传导途径组分中的突变成为哺乳动物细胞中肿瘤启动的基础。例如,生长因子受体,诸如表皮生长因子受体(EGFR)在许多癌症(占非小细胞肺癌的多至25%和成胶质细胞瘤的60%)中进行扩增和突变。Braf也经常突变,特别地在黑素瘤(约70%的病例)和结肠癌(约15%的病例)中。此外,ras是最常突变的癌基因,在所有人癌症的约30%中发生。突变的ras基因(H-ras、K-ras或N-ras)的频率和类型随肿瘤类型而广泛变化。然而,K-ras是最常突变的基因,在胰腺癌(约90%)和结肠直肠癌(约45%)中检出最高的发生率。这使其及所述信号传导途径的其它组分成为一种适合于抗癌疗法的靶物。实际上,为了靶向此途径的各个步骤而设计的小分子量抑制剂已经进入临床试验。此外,针对肾细胞癌最近已经批准索拉非尼(soragenib)(Nexavar.RTM.,Bayer HealthCarePharmaceuticals),即一种导致RAS信号传导抑制的RAF-激酶抑制剂。遵循这些数据,在靶向RAS-MAPK途径以开发改良的癌症疗法方面仍然有高水平的兴趣。
RAS-MAPK信号传导途径受多种胞外信号(激素和生长因子)激活,所述胞外信号通过用GTP交换GDP来激活RAS。然后,Ras将RAF募集至质膜,在那里发生其活化。如上文所记录的,导致组成性激活的信号传导途径组分中的突变成为哺乳动物细胞中肿瘤启动的基础。例如,生长因子受体,诸如表皮生长因子受体(EGFR)在许多癌症(占非小细胞肺癌的多至25%和成胶质细胞瘤的60%)中进行扩增和突变。Braf也经常突变,特别地在黑素瘤(约70%的病例)和结肠癌(约15%的病例)中。此外,ras是最常突变的癌基因,在所有人癌症的约30%中发生。突变的ras基因(H-ras、K-ras或N-ras)的频率和类型随肿瘤类型而广泛变化。然而,K-ras是最常突变的基因,在胰腺癌(约90%)和结肠直肠癌(约45%)中检出最高的发生率。这使其及所述信号传导途径的其它组分成为一种适合于抗癌疗法的靶物。实际上,为了靶向此途径的各个步骤而设计的小分子量抑制剂已经进入临床试验。此外,针对肾细胞癌最近已经批准索拉非尼(Nexavar.RTM.,Bayer HealthCarePharmaceuticals),即一种导致RAS信号传导抑制的RAF-激酶抑制剂。遵循这些数据,在靶向RAS-MAPK途径以开发改良的癌症疗法方面仍然有高水平的兴趣。
如Downward,J.(2002)Nature Reviews Cancer,第3卷,第11页-第22页中所描述的,RAS蛋白是低分子量GTP结合蛋白大型超家族的成员,其可以依照序列保守程度分成几个家族。不同家族对于不同细胞过程是重要的。例如,RAS家族控制细胞生长,而RHO家族控制肌动蛋白细胞骨架。常规地,RAS家族被描述为由三个成员H-、N-和K-RAS组成,其中K-RAS生成主要(4B)和次要(4A)剪接变体(Ellis,C.A和Clark,G.(2000)Cellular Signalling,12:425-434)。发现人肿瘤中RAS家族成员通过突变而活化,并且具有有力的转化潜力。
RAS成员是极其紧密相关的,具有85%氨基酸序列同一性。虽然RAS蛋白以非常相似的方式发挥功能,但是它们间细微差异的一些指标最近已经众所周知。H-ras、K-ras和N-ras蛋白被广泛表达,其中K-ras在几乎所有的细胞类型中表达。敲除研究已经显示了单独或组合的H-ras和N-ras不是小鼠中的正常发育需要的,而K-ras是至关重要的(Downward,J.(2002)在第12页)。
此外,如Downward,J.(2002)中所描述的,经由RAS途径的异常信号传导由于肿瘤细胞中的几种不同类突变性损伤而发生。这些突变最明显的是在ras基因自身中。约20%的人肿瘤具有ras中,最经常地K-ras(占总共的约85%),然后是N-ras(约15%),然后是H-ras(小于1%)中的激活性点突变。这些突变都危害RAS的GTP酶活性,阻止GAP促进RAS上的GTP水解,并且因此引起RAS以GTP结合的活性形式积累。肿瘤中的几乎所有RAS活化由密码子12、13和61中的突变造成(Downward,J.(2002)在第15页)。
若可以使癌症治疗适应特定的癌症,则会是有用的。特别地,本发明提供了一种测定某些批准的且可得的治疗是否仍然不会对特定类型的癌症有益的手段。
发明概述
本发明涉及用于鉴定对B-Raf抑制剂治疗不易感的肿瘤的预后方法,其通过检测K-ras基因或蛋白中的突变来进行。该方法牵涉测定样品中突变的K-ras基因或蛋白的存在或缺乏,由此鉴定不响应B-Raf抑制剂治疗的肿瘤。还公开了用于实施所述方法的试剂盒。
在另一方面,本发明涉及用于鉴定对B-Raf抑制剂治疗不易感的肿瘤的预后方法,其通过检测RTK的异常表达水平来进行。该方法牵涉测定样品中某些RTK的表达水平,由此RTK的过表达与对B-Raf抑制剂治疗的非响应性相关联。与B-Raf治疗的响应性相关联的RTK的例子包括但不限于EGFR和cMet。该方法还牵涉测定样品中某些RTK配体的诱导水平,由此异常高水平的配体诱导与对B-Raf抑制剂治疗的非响应性相关联。与B-Raf治疗的响应性相关联的配体的例子包括但不限于EGF和HGF。所述方法还牵涉测定样品中Ras-GTP的水平,由此异常高水平的Ras-GTP与对B-Raf抑制剂治疗的非响应性相关联。还公开了用于实施所述方法的试剂盒。
在另一方面,本发明涉及治疗不响应B-Raf抑制剂治疗的肿瘤的方法。该方法包括与EGFR抑制剂组合施用B-Raf抑制剂。
附图简述
图1描绘了生物化学酶测定法数据。该数据显示了在生理学[ATP]时,仅GDC-0879维持针对B-RafV600E和WT Raf同等型两者的有效效力。
图2描绘了不同Raf/Ras突变状态的肿瘤系中的存活力测定法。
图3描绘了仅在非B-RafV600E系中Raf抑制剂的持续pMEK诱导。相对于抑制剂针对WT Raf的IC50,pMEK水平达到平台。
图4描绘了c-Raf是主要负责非B-RafV600E系中Raf抑制剂的pMEK诱导的Raf同等型。
图5描绘了仅在非B-RafV600E系中由两种抑制剂诱导的c-Raf特异性活性。在Raf诱导条件下没有Sprouty水平的降低。
图6描绘了没有pERK水平的诱导。抑制剂的相对效力与其生物化学IC50相关联。
图7描绘了基础条件下对pMEK水平的钟形影响。GDC-0879的抑制效果在血清刺激后占优势。
图8A描绘了BRAF途径抑制的持续时间和程度决定原发性人肿瘤异种移植物模型中的B-Raf抑制剂GDC-0879功效。Kaplan-Meier图显示了每天用100mg/kg GDC-0879或媒介物处理的患者衍生的黑素瘤和非小细胞肺癌肿瘤模型的肿瘤加倍前时间。标示BRAF、N-ras和K-ras的基因型。对MEXF 989、MEXF 276、和MEXF 355肿瘤记录到肿瘤进展中的统计学显著性(P<0.05)延迟。GDC-0879施用显著加速一些K-ras突变体非小细胞肺癌,诸如LXFA 1041和LXFA 983的生长。
图8B描绘了GDC-0879处理下调BRAFV600E原发性人异种移植物肿瘤中的ERK1/2磷酸化。在时间过程药效学研究中,将小鼠用100mg/kg GDC-0879处理,并在最后一剂(第21天-第24天)后1或8小时处死。显示了磷酸化的和总的ERK1/2的免疫印迹。持续到8小时的有力的磷酸-ERK1/2抑制与BRAFV600E状态和GDC-0879抗肿瘤功效强烈相关联。在所有样品中检查总的ERK1/2表达作为加载对照。
图9A、B、C和D描绘了K-ras突变体肿瘤细胞系在体内和在体外显示对GDC-0879RAF和MEK抑制剂的不同敏感性。A和B,对MEK,而不是RAF的抑制阻止K-RAS突变体HCT116肿瘤的体内生长。在肿瘤达到约200mm3时将小鼠随机化,并用100mg/kg GDC-0879(A)或25mg/kgMEK抑制剂(MEKInh;B)按每日日程表启动处理。点,均值;柱,SE。C,显示了130种细胞系的GDC-0879EC50值作为BRAF和K-RAS突变状态的函数。GDC-0879介导的对细胞生长的抑制与BRAF突变强烈相关联。D,依照基因型组织MEK抑制剂EC50值的点图。MEK抑制对显著分数的表达野生型BRAF的细胞系也是有力的。数据代表一式四份测量的均值。
图10-18描绘了用GDC-0879剂量给药后肺肿瘤异种移植物中的生长。
图19A和B描绘了Raf抑制剂在非B-RAFV600E细胞中诱导野生型RAF向质膜的RAS依赖性移位。(A)将MeWo(RAS/RAFWT)细胞用GDC-0879(2-{4-[(1E)-1-(羟基亚氨基)-2,3-二氢-1H-茚-5-基]-3-(吡啶-4-基)-1H-吡唑-1-基}乙-1-醇)、PLX4720(N-[3-[(5-氯-1H-吡咯并[2,3-b]吡啶-3-基)羰基]-2,4-二氟苯基]-1-丙磺酰胺)或AZ-628(3-(2-氰基丙-2-基)-N-(4-甲基-3-(3-甲基-4-氧-3,4-二氢喹唑啉-6-基氨基)苯基)苯甲酰胺)(均为0.1、1、10mM)处理1小时,并分级成膜(P100)和胞质(S100)级分。用指定的抗体对膜和胞质级分的等分试样进行免疫印迹。(B)用Venus-C-RAF(绿色)、CFP-K-RAS(红色)和mCherry-H2B(蓝色)瞬时转染HEK293T细胞。加Venus标签的C-RAF与CFP-KRAS在细胞中的质膜上共定位,所述细胞用10mM GDC-0879或AZ-628处理4小时,接着使用共焦荧光显微术进行活细胞成像。在替代KRASWT转染显性负性加CFP标签的KRASS17N(右侧小图)时阻断膜移位。
图20A、B、C和D描绘了活性Ras在RAF抑制剂的C-RAF活化和磷酸-MEK诱导中发挥的作用的重要性。(A)将A375(B-RAFV600E)细胞用GDC-0879或PLX4720处理1小时,并在低渗缓冲液中裂解以进行膜分级。用指定的抗体将膜(P100)和胞质(S 100)级分两者进行免疫印迹。(B)将MeWo细胞用KRASWT或KRASS17N瞬时转染,用GDC-0879或PLX4720(为0.1、1、10mM)处理1小时,并分级成膜(P100)和胞质(S100)级分。用抗磷酸和抗总MEK抗体将膜和胞质级分的等分试样进行免疫印迹。(C)使用固定化的C-RAF-RBD作为诱饵来捕捉RAS-GTP,用Ras-GTP ELISA方案自MeWo(RAS/RAFWT)、A375(B-RAFV600E)和H2122(KRASMT)细胞溶胞物测量RAS-GTP水平。相对发光单位代表结合RBD的抗RAS抗体的RAS检测。RAS-GTPH2122>>Mewo>A375。(D)A375(B-RAFV600E)细胞中的突变体KRASG12D(而不是KRASWT)的转染容许细胞在存在RAF抑制剂GDC-0879(以0.1、1、10mM给药)的情况中诱导B-RAF:C-RAF异二聚体和C-RAF激酶活化。自对照和经抑制剂处理的细胞免疫沉淀C-RAF,并测定蛋白质活性和B-RAF异二聚化。通过免疫沉淀物中的WB显示的总C-RAF水平指示每道的加载。
图21A、B、C和D描绘了测量B-RafV600E和WT B-Raf细胞系中Raf抑制剂的基础的和EGF刺激的pERK敲低。(A)测试的系中的基因型和EGFR水平的表。(B)测量基础的和刺激的pERK水平:用无血清培养基中的0.0004-10mM化合物处理细胞1小时。对于刺激,添加20ng/ml EGF,5分钟之后,将细胞裂解。将溶胞物转移至MSD板,其中测量磷酸和总ERK水平。(C)对两种Raf抑制剂(CHR-265,1-甲基-5-[[2-[5-(三氟甲基)-1H-咪唑-2-基]-4-吡啶基]氧基]-N-[4-(三氟甲基)苯基]-1H-苯并咪唑-2-胺和GDC-0879)在基础的和EGF刺激的条件下将pERK IC50数据绘图。(D)用Raf抑制剂处理指定的WT B-Raf系1小时后的pERK诱导的剂量响应曲线。
图22A和B描绘了EGF刺激使得B-RAF V600E突变体细胞系的磷酸-MEK水平和细胞增殖对RAF抑制剂有抗性。(A)将细胞用无血清培养基中的0.0004-10mM化合物处理1小时。对于刺激,添加20ng/ml EGF,5分钟之后,将细胞裂解。将溶胞物转移至MSD板,其中测量磷酸和总ERK水平。在基础的和EGF刺激的条件下对指定的两种Raf抑制剂将磷酸MEK(pMEK)IC50数据绘图。GDC-0879在敲低磷酸-MEK水平方面更有效,因为它比PLX4720具有更低的针对野生型C-RAF和B-RAF同等型的调整的IC50。(B)EGF处理使B-RAFV600E细胞对RAF抑制剂有抗性,但是与Tarceva(或MEK抑制剂,例如PD-0325901)的组合克服所述抗性。在存在培养基中的20ng/ml EGF的情况中单独或组合地用指定的抑制剂对细胞给药。
图23描绘了EGF刺激在B-RAFV600E突变体系(LOX,888是黑素瘤,而HT29是结肠)中诱导B-RAF和C-RAF活性。所有细胞系都表达表面EGFR水平。888就B-RAF V600E等位基因而言是纯合的,所有其它细胞系是杂合的,因此也携带野生型B-RAF等位基因。杂合细胞系诱导B-RAF和C-RAF活性两者,而纯合系仅诱导C-RAF活性。此野生型RAF活性不可被B-RAF V600E选择性RAF抑制剂抑制,因此EGF的磷酸-MEK诱导水平对这些系中的RAF抑制有抗性,而由B-RAF V600E驱动的内源磷酸MEK水平对B-RAF V600E选择性RAF抑制剂敏感。
图24描绘了高EGF mRNA水平(x轴)和RAF抑制剂IC50(uM,在y轴中)间负相关的趋势。对B-RAF V600E黑素瘤细胞系显示了细胞功效数据,并且其代表对B-RAF V600E同等型生物化学选择性且针对野生型RAF同等型具有较低的相应生物化学和细胞效力的RAF抑制剂。
图25描绘了各种肿瘤类型中的RAS-GTP水平。RAS-GTP水平在K-RASWT肿瘤中较低,而在携带突变的K-RAS的肿瘤,例如H2122肿瘤中较高。通过RBD-Elisa测定法测定Ras-GTP水平。
图26描绘了在B-Raf V600E细胞中在有(+EGF)和没有(NI)EGF诱导的情况中的Ras-GTP水平。EGF刺激提高BRAF V600E细胞中的Ras-GTP水平。
图27描绘了在B-Raf V600E细胞中在有(刺激)和没有(未刺激)EGF诱导的情况中的pERK水平。EGF刺激提高BRAF V600E细胞中的Ras-GTP水平,导致经由活化C-Raf(见图23中显示的C-Raf活化)在B-RAF V600E细胞系中的pERK水平升高。所有4种细胞系都是B-Raf V600E突变体,但是那些之中,A375具有最低的Ras-GTP水平(最低水平的活性Ras),而且没有显示响应EGF的pMEK和pERK水平的强力诱导。已知A375细胞对Raf抑制剂敏感。
图28描绘了在B-Raf V600E细胞中在有(刺激)和没有(未刺激)EGF诱导的情况中的pMEK水平。EGF刺激提高BRAF V600E细胞中的Ras-GTP水平,导致经由活化C-Raf(见图23中显示的C-Raf活化)在B-RAF V600E细胞系中的pMEK水平升高。
图29汇总了某些RAF抑制剂(GDC-0879、PLX-4720和“Raf inh a”,其是2,6-二氟-N-(3-甲氧基-1H-吡唑并[3,4-b]吡啶-5-基)-3-(丙基磺酰氨基)苯甲酰胺)响应EGF刺激阻断细胞pERK诱导的效力。将表达EGFR的BRAF V600E细胞进行血清饥饿,然后在存在不同剂量的指定RAF抑制剂的情况中保持未刺激(-EGF)或用EGF刺激(+EGF)。生成pERK抑制曲线,并将IC50值绘图。如图1中所显示的,GDC-0879可以更有效地阻断野生型RAF信号传导,而剩余的两种抑制剂是BRAF V600E选择性的。
图30描绘了HGF刺激(+HGF)如何导致过表达c-MET的细胞中的pERK诱导。此诱导不被RAF抑制剂阻断。然而,由BRAF V600E驱动的基础pERK水平被RAF抑制剂有效阻断。这表明c-MET信号传导也经由野生型RAF同种型。
因此受体酪氨酸激酶(RTK),包括EGFR的异常表达,或由相应配体的异常诱导可以使细胞对RAF抑制剂有抗性。
图31显示了EGFR表达如何与B-RAFV600E细胞中对RAF抑制剂的抗性关联。此图代表在存活力测定前用RAF抑制剂处理4天的B-RAF V600E突变体黑素瘤和结肠细胞系的细胞存活力EC50值(uM)。通过Western印迹测定EGFR水平,并在细胞溶胞物用抗EGFR抗体通过Western印迹未能检出条带时分类为阴性。在EGFR阳性细胞系中,存在着从低至中等和高的表达范围。抗性(>20uM EC50)的单一EGFR阴性细胞系是PTEN空的。
图32A-C描绘了具有不同EGFR表达水平的结肠肿瘤系中的RAF抑制剂和EGFR抑制剂(Tarceva)的组合研究。
在图32A中,来自两种BRAF V600E结肠系的溶胞物的Western印迹显示其不同的总EGFR水平:COLO201具有低的EGFR水平,而CX-1具有相对较高的EGFR水平。
在图32B中,显示了用单独的RAF抑制剂、单独的Tarceva或RAF抑制剂和Tarceva的组合联合处理COLO201细胞的效果。
在图32C中,显示了用单独的RAF抑制剂、单独的Tarceva或RAF抑制剂和Tarceva的组合联合处理CX-1细胞的效果。单独的RAF抑制剂或单独的Tarceva都不如组合一样有效地抑制增殖。在对CX-1细胞一起施用时,这两种抑制剂都显示良好的协同。
因此,在表达EGFR的BRAFV600E细胞中,高水平的EGFR预示RAF抑制剂和EGFR抑制剂间的强烈协同。特别地在结肠癌(其中高EGFR表达在BRAFV600E肿瘤中是普遍的)中,这些RAF抑制剂和Tarceva的组合在抑制肿瘤细胞增殖方面显示协同。
图33显示了表达高EGFR水平的BRAFV600E肿瘤细胞中RAF抑制剂和Tarceva间协同的机制基础。对没用抑制剂(第1道、第5道、第9道、第13道)或用等于其细胞EC50值的浓度的单独的RAF抑制剂(第2道、第6道、第10道、第14道)、单独的Tarceva(第3道、第7道、第11道、第15道)或RAF抑制剂和Tarceva的组合(第4道、第8道、第12道、第16道)处理1小时或24小时的细胞制备Western印迹。24小时时间点显示具有高EGFR表达的B-RAFV600E突变体细胞(CX-1)中的ERK磷酸化具有降低的对RAF抑制剂抑制的敏感性,并且需要RAF抑制剂和EGFR抑制剂组合以实现最大功效。对ERK的激活信号的一部分来自野生型RAF,其在EGFR的下游激活,并且可以不被BRAF V600E选择性RAF抑制剂阻断。
图34A-C显示了来自对携带皮下HT-29BRAF V600E人结肠直肠癌异种移植物的NCR裸(Taconic)鼠组合给予的RAF抑制剂a和厄洛替尼(erlotinib)(Tarceva)的相互作用和功效的结果。在图34A中,与剂量渐增的Tarceva一起以100mg/kg给予RAF inh a。在图34B中,对所有动物与浓度渐增的RAF inh a一起给予Tarceva。在组合施用这两种化合物时观察到升高的功效。在图34C中,通过Western印迹对来自图34A和B中的指定剂量的抑制剂处理的肿瘤的溶胞物分析磷酸ERK(pERK)水平。RAF抑制剂a和Tarceva在小鼠中共施用时在降低肿瘤中的磷酸ERK水平方面协同。
发明详述
在一个实施方案中,本文中所公开的主题涉及鉴定不响应用B-Raf抑制剂治疗的患者的方法,包括测定RTK和/或其配体的表达或诱导量。该方法牵涉测定样品中某些RTK和/或其配体的表达或诱导水平,由此RTK和/或其配体的过表达与对B-Raf抑制剂治疗的非响应性相关联。在一个实施方案中,所述样品表达B-RafV600E突变体。与B-Raf治疗的响应性相关联的RTK的例子包括但不限于EGFR和cMet。该方法还牵涉测定样品中某些RTK配体的表达水平,由此异常高水平的配体表达与对B-Raf抑制剂治疗的非响应性相关联。与B-Raf治疗的响应性相关联的配体的例子包括但不限于EGF和HGF。
在一个实施方案中,本文中所公开的主题涉及鉴定不响应用B-Raf抑制剂治疗的患者的方法,包括测定样品中Ras-GTP的量,由此升高的量指示患者不会响应所述B-Raf抑制剂治疗。在一个例子中,升高的量大于正常的未刺激样品中找到的量。用于测量样品中Ras-GTP水平的方法是已知的,例如使用ELISA测定法(例如来自Upstate,Inc.的Ras-GTP酶ELISA测定法)。在一个例子中,所述方法进一步包括对所述非响应性患者施用有效量的MEK或ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在一个实施方案中,本文中所公开的主题涉及鉴定不响应用B-Raf抑制剂治疗的患者的方法,包括测定样品中EGF或EGFR表达的水平,由此EGF或EGFR的过表达水平指示患者不会响应所述B-Raf抑制剂治疗。在一个例子中,测定EGF mRNA的量。用于测量样品中EGF和EGFR表达水平的方法是已知的,例如,使用ELISA免疫测定法(例如来自R&D Systems,Inc.的免疫测定法)。在一个例子中,所述方法进一步包括对所述非响应性患者施用有效量的MEK或ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在一个实施方案中,本文中所公开的主题涉及鉴定不响应用B-Raf抑制剂治疗的患者的方法,包括测定样品中HGF或cMET表达的水平,由此HGF或cMET的过表达水平指示患者不会响应所述B-Raf抑制剂治疗。在一个例子中,患者表达B-Raf V600E。在一个例子中,测定HGF mRNA的量。用于测量样品中HGF和cMET表达水平的方法是已知的,例如,使用定量RT-实时PCR测定法。在另一个例子中,使用ELISA免疫测定法(例如来自EMDChemicals,Inc的cMET ELISA试剂盒,或来自Invitrogen,Inc.的cMET人ELISA试剂盒)。在一个例子中,所述方法进一步包括对所述非响应性患者施用有效量的cMET或HGF抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的cMET或HGF抑制剂。
在一个实施方案中,本文中所公开的主题涉及鉴定不响应用B-Raf抑制剂治疗的患者的方法,包括测定K-ras突变的存在或缺乏,由此K-ras突变的存在指示患者不会响应所述B-Raf抑制剂治疗。在一个例子中,所述方法进一步包括对所述非响应性患者施用有效量MEK或ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在某些实施方案中,本文中所公开的主题涉及测定肿瘤是否会响应用B-Raf抑制剂治疗的方法,包括在所述肿瘤的样品中测定突变体K-ras蛋白或基因的存在,由此突变体K-ras蛋白或基因的存在指示肿瘤不会响应用B-Raf抑制剂的治疗。在一个例子中,所述方法进一步包括对所述非响应性肿瘤施用有效量的MEK或ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在某些实施方案中,提供了预测患者是否会不响应用B-Raf抑制剂治疗的方法。在某些实施方案中,所述方法包括测定患者肿瘤中K-ras突变的存在或缺乏,其中K-ras突变在密码子12或密码子13中。在某些实施方案中,若存在K-ras突变,则预示患者不响应用B-Raf抑制剂的治疗。
在某些实施方案中,提供了预测肿瘤是否会不响应用B-Raf抑制剂治疗的方法。在某些实施方案中,所述方法包括测定所述肿瘤的样品中K-ras突变的存在或缺乏,其中K-ras突变在密码子12或密码子13中。在某些实施方案中,K-ras突变的存在指示肿瘤会不响应用B-Raf抑制剂的治疗。
在某些实施方案中,提供了依照治疗方案将人受试者分层的方法。该方法包括测定来自受试者的样品中突变体K-ras基因或其蛋白的存在,由此突变体K-ras基因或蛋白的存在指示受试者不会响应B-Raf抑制剂治疗,并且自用B-Raf抑制剂的治疗排除受试者。此方法可以包括将受试者分层成例如临床试验中的特定亚组。在另一个实施方案中,所述方法进一步包括对具有所述突变体K-ras基因或蛋白的所述受试者施用有效量的MEK或ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在一个实施方案中,提供了将乳腺、肺、结肠、卵巢、甲状腺、黑素瘤或胰腺肿瘤分类的方法。该方法包括下列步骤:获得或提供肿瘤样品;检测所述样品中(i)编码B-Raf V600E突变体的基因和(ii)编码k-Ras突变体的基因的表达或活性。该方法可以进一步包括基于所述检测步骤的结果将所述肿瘤分类为属于肿瘤亚类;并基于所述分类步骤选择治疗,其中若所述k-RAS突变体在所述肿瘤样品中过表达,则所述治疗与B-Raf V600E特异性抑制剂不同。在一个例子中,治疗包括对所述非响应性肿瘤施用有效量的MEK或ERK抑制剂。在另一个例子中,该方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
在另一个实施方案中,提供了治疗结肠直肠或肺癌的方法。该方法包括测定癌症是K-ras还是B-Raf驱动的,由此在治疗测定为K-ras驱动的此类癌症中,治疗不包括B-Raf抑制剂。在一个例子中,治疗包括对所述K-ras驱动的癌症施用有效量的MEK或ERK抑制剂。还提供了一种试剂盒,其包含用于检测癌症是K-ras驱动的还是B-Raf驱动的特异性材料和用于鉴定不响应B-Raf抑制剂治疗的患者或肿瘤的指令。
在某些实施方案中,测定受试者中一项或多项K-ras突变的存在或缺乏包括测定来自受试者的样品中突变体K-ras多肽的表达的存在或量。在某些实施方案中,测定受试者中一项或多项K-ras突变的存在或缺乏包括测定来自受试者的样品中突变体K-ras多核苷酸的转录或翻译的存在或量。
在某些实施方案中,测定受试者中一项或多项K-ras突变的存在或缺乏包括测定包含至少一种选自下组的氨基酸序列的多肽的表达的存在或量:US2009/0075267中所列的下列SEQ ID NO:SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、和SEQ IDNO:16。在某些实施方案中,测定受试者中一项或多项K-ras突变的存在或缺乏包括测定来自受试者的样品中编码至少一种选自下组的氨基酸序列的多核苷酸的转录或翻译的存在或量:US2009/0075267中所列的下列SEQ IDNO.:SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ IDNO:12、SEQ ID NO:14、和SEQ ID NO:16。
在某些实施方案中,提供了测定编码突变体K-ras多肽的多核苷酸的存在或缺乏。在某些实施方案中,测定样品中编码突变体K-ras多肽的多核苷酸的存在或缺乏的方法包括(a)将样品暴露于与编码突变体K-ras多肽的下述区域的多核苷酸杂交的探针,其中所述区域包含至少一项选自G12S、G12V、G12D、G12A、G12C、G13A、和G13D的K-ras突变,并(b)测定样品中编码突变体K-ras多肽的多核苷酸的存在或缺乏。在某些实施方案中,测定样品中突变体K-ras多肽的存在或缺乏的方法包括(a)将样品暴露于与编码突变体K-ras多肽的下述区域的多核苷酸杂交的探针,其中所述区域包含至少一项选自G12S、G12V、G12D、G12A、G12C、G13A、和G13D的K-ras突变,并(b)测定样品中突变体K-ras多肽的存在或缺乏。
在某些实施方案中,提供了测定编码突变体B-Raf多肽的多核苷酸的存在或缺乏。在某些实施方案中,测定样品中编码突变体B-Raf多肽的多核苷酸的存在或缺乏的方法包括(a)将样品暴露于与编码突变体B-Raf多肽的下述区域的多核苷酸杂交的探针,其中所述区域包含V600E突变,并(b)测定样品中编码突变体B-Raf多肽的多核苷酸的存在或缺乏。在某些实施方案中,测定样品中突变体B-Raf多肽的存在或缺乏的方法包括(a)将样品暴露于与编码突变体B-Raf多肽的下述区域的多核苷酸杂交的探针,其中所述区域包含V600E突变,并(b)测定样品中突变体B-Raf多肽的存在或缺乏。
在某些实施方案中,提供了用于检测受试者中编码突变体K-ras多肽的多核苷酸的试剂盒。在某些此类实施方案中,试剂盒包含与编码突变体K-ras多肽的下述区域的多核苷酸杂交的探针,其中所述区域包含至少一项选自G12S、G12V、G12D、G12A、G12C、G13A、和G13D的K-ras突变。在某些实施方案中,试剂盒进一步包含两种或更多种扩增引物。在某些实施方案中,试剂盒进一步包含检测组分。在某些实施方案中,试剂盒进一步包含核酸取样组分。任选地,试剂盒可以含有用于检测B-Raf突变的材料。这些材料是本领域中已知的。能够检测K-ras和B-Raf突变体基因或蛋白的试剂盒组合特别可用于治疗结肠和肺癌。试剂盒中包含的是用于鉴定在癌症是K-ras驱动时不响应B-Raf抑制的患者或肿瘤的指令。RAS驱动的癌症是本领域中已知的。Ras驱动的癌症是Ras蛋白的异常活性导致经转化的细胞生成或癌症或肿瘤形成的任何癌症或肿瘤。
在某些实施方案中,对于测定为不响应B-Raf抑制剂的那些样品、肿瘤、癌症、受试者或患者,所述方法进一步包括对所述非响应性样品、肿瘤、癌症、受试者或患者施用有效量的MEK抑制剂。
在某些实施方案中,对于测定为不响应B-Raf抑制剂的那些样品、肿瘤、癌症、受试者或患者,所述方法进一步包括对所述非响应性样品、肿瘤、癌症、受试者或患者施用有效量的ERK抑制剂。在另一个例子中,所述方法进一步包括施用有效量的EGFR信号传导抑制剂。在另一个例子中,所述方法进一步包括与B-Raf抑制剂组合施用有效量的EGFR信号传导抑制剂。
可以通过多种方法,包括抑制EGFR激酶活性,结合EGFR的胞外域以抑制活化或者通过抑制EGF配体的活性和信号传导来抑制EGFR信号传导。
EGFR信号传导抑制剂是本领域中已知的,并且包括例如厄洛替尼(erlotinib)吉非替尼(gefitinib)拉帕替尼(lapatinib)、培利替尼(pelitinib)、西妥昔单抗(Cetuximab)、帕尼单抗(panitumumab)、扎鲁木单抗(zalutumumab)、尼妥珠单抗(nimotuzumab)和马妥珠单抗(matuzumab),及那些记载于美国专利No.5,747,498的。
B-Raf抑制剂是本领域中已知的,并且包括例如索拉非尼(sorafenib)、PLX4720、PLX-3603、GSK2118436、GDC-0879、N-(3-(5-(4-氯苯基)-1H-吡咯并[2,3-b]吡啶-3-羰基)-2,4-二氟苯基)丙-1-磺酰胺,和那些记载于WO2007/002325、WO2007/002433、WO2009111278、WO2009111279、WO2009111277、WO2009111280和美国专利No.7,491,829的。
cMET抑制剂是本领域中已知的,并且包括但不限于AMG208、ARQ197、ARQ209、PHA665752(3Z)-5-[(2,6-二氯苄基)磺酰基]-3-[(3,5-二甲基-4-{[(2R)-2-(吡咯烷-1-基甲基)吡咯烷-1-基]羰基}-1H-吡咯-2-基)亚甲基]-1,3-二氢-2H-吲哚-2-酮、N-(4-(3-((3S,4R)-1-乙基-3-氟哌啶-4-基氨基)-1H-吡唑并[3,4-b]吡啶-4-基氧基)-3-氟苯基)-2-(4-氟苯基)-3-氧-2,3-二氢哒嗪-4-甲酰胺和SU11274,及那些记载于美国专利No.7,723,330的。
MEK抑制剂是本领域中已知的,并且包括但不限于ARRY-162、AZD8330、AZD6244、U0126、GDC-0973、PD184161和PD98059,及那些记载于WO2003047582、WO2003047583、WO2003047585、WO2003053960、WO2007071951、WO2003077855、WO2003077914、WO2005023251、WO2005051300、WO2005051302、WO2007022529、WO2006061712、WO2005028426、WO2006018188、US20070197617、WO  2008101840、WO2009021887、WO2009153554、US20090275606、WO2009129938、WO2009093008、WO2009018233、WO2009013462、WO2008125820、WO2008124085、WO2007044515、WO2008021389、WO2008076415和WO2008124085的。
ERK抑制剂是本领域中已知的,并且包括但不限于FR180204和3-(2-氨基乙基)-5-((4-乙氧基苯基)亚甲基)-2,4-噻唑烷二酮,和那些记载于WO2006071644、WO2007070398、WO2007097937、WO2008153858、WO2008153858、WO2009105500和WO2010000978的。
用于检测突变体K-ras基因或蛋白的任何已知方法适合于本文中所公开的方法。外显子1中检出的特定突变是:G12C;G12A;G12D;G12R;G12S;G12V;G13C;G13D。用于测定K-ras突变的存在的方法也与那些用于鉴定K-ras和EGFR突变的方法类似,例如如已公布的美国专利申请No.US2009/0202989A1记载的,以SEQ ID No.55、56、57和58列出的用于PCR的K-ras寡聚物,通过提及而将其完整收入本文。举例而言,用于检测突变体K-ras基因或蛋白的其它方法和引物、寡聚物及SEQ ID No.披露于已公布的美国专利申请No.US2009/0202989A1、US2009/0075267A1、US20090143320、US20040063120和US2007/0003936。一般地,依照本领域中公知的常规方法且如遍及本说明书引用并讨论的各种一般的和更具体的参考文献中所描述的那样来实施技术和规程。参见例如Sambrook等Molecular Cloning:ALaboratory Manual(第2版,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,N.Y(1989)),通过提及而将其收入本文。
检测多核苷酸中的突变的某些方法是本领域中已知的。某些例示性的方法包括但不限于测序、引物延伸反应、电泳、Picogreen测定法、寡核苷酸连接测定法、杂交测定法、TaqMan测定法、SNPlex测定法、和记载于例如美国专利No.5,470,705、5,514,543、5,580,732、5,624,800、5,807,682、6,759,202、6,756,204、6,734,296、6,395,486、和美国专利公开文本No.US 2003-0190646A1的测定法。
在某些实施方案中,检测多核苷酸中的突变包括首先扩增可能包含突变的多核苷酸。用于扩增多核苷酸的某些方法是本领域中已知的。此类扩增产物可以在本文中所描述的或本领域中已知的用于检测多核苷酸中的突变的任何方法中使用。
检测多肽中的突变的某些方法是本领域中已知的。某些例示性的此类方法包括但不限于使用对突变体多肽特异性的特异性结合剂来检测。检测突变体多肽的其它方法包括但不限于电泳和肽测序。
检测多核苷酸和/或多肽中的突变的某些例示性方法记载于例如Schimanski等(1999)Cancer Res.,59:5169-5175;Nagasaka等(2004)J.Clin.Oncol.,22:4584-4596;PCT公开文本No.WO 2007/001868A1;美国专利公开文本No.2005/0272083A1;及Lievre等(2006)Cancer Res.66:3992-3994。
在某些实施方案中,提供了包含编码一种或多种突变体K-ras多肽的一种或多种多核苷酸的微阵列。在某些实施方案中,提供了包含与编码一种或多种突变体K-ras多肽的一种或多种多核苷酸互补的一种或多种多核苷酸的微阵列。在某些实施方案中,提供了包含编码一种或多种突变体B-Raf多肽的一种或多种多核苷酸的微阵列。在某些实施方案中,提供了包含与编码一种或多种突变体B-Raf多肽的一种或多种多核苷酸互补的一种或多种多核苷酸的微阵列。
在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体K-ras多核苷酸的存在或缺乏。在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体K-ras多核苷酸的数量。
在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体B-Raf多核苷酸的存在或缺乏。在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体B-Raf多核苷酸的数量。
在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体K-ras多肽的存在或缺乏。在某些此类实施方案中,首先自细胞或组织样品提取mRNA,随后转化成cDNA,该cDNA与微阵列杂交。在某些此类实施方案中,特异性结合微阵列的cDNA的存在或缺乏指示突变体K-ras多肽的存在或缺乏。在某些此类实施方案中,通过定量特异性结合微阵列的cDNA量来评估一种或多种突变体K-ras多肽的表达水平。
在某些实施方案中,使用微阵列技术来评估两种或更多种细胞或组织样品中一种或多种突变体B-raf多肽的存在或缺乏。在某些此类实施方案中,首先自细胞或组织样品提取mRNA,随后转化成cDNA,该cDNA与微阵列杂交。在某些此类实施方案中,特异性结合微阵列的cDNA的存在或缺乏指示突变体B-Raf多肽的存在或缺乏。在某些此类实施方案中,通过定量特异性结合微阵列的cDNA量来评估一种或多种突变体B-Raf多肽的表达水平。
在某些实施方案中,提供了包含针对一种或多种突变体K-ras多肽的一种或多种特异性结合剂的微阵列。在某些此类实施方案中,评估细胞或组织中一种或多种突变体K-ras多肽的存在或缺乏。在某些此类实施方案中,评估细胞或组织中一种或多种突变体K-ras多肽的数量。
在某些实施方案中,提供了包含针对一种或多种突变体B-Raf多肽的一种或多种特异性结合剂的微阵列。在某些此类实施方案中,评估细胞或组织中一种或多种突变体B-Raf多肽的存在或缺乏。在某些此类实施方案中,评估细胞或组织中一种或多种突变体B-raf多肽的数量。
在此通过提及而将本文中所引用的所有参考文献,包括专利、专利申请、文章、教科书等,及其中所引用的参考文献(就尚未收录而言)完整收入本文。在通过提及而收录的一份或多份文件对某术语的定义与本申请中对该术语的定义矛盾的情况中,以本申请为准。本文中所使用的标题部分仅出于组织目的,而不应解释为限制所描述的主题。定义
除非另有定义,与本发明结合使用的科学和技术术语应当与本领域普通技术人员的通常理解具有相同的意义。此外,除非上下文另有需要,单数术语应当包括复数,而复数术语应当包括单数。
术语“B-Raf抑制剂”指抑制降低B-Raf激酶活性的任何化合物或药剂。此类抑制剂可能还抑制其它激酶,包括其它raf激酶。“特异性B-Raf激酶抑制剂”指与野生型B-Raf相比对突变体B-Raf,诸如氨基酸位置600的缬氨酸残基处的突变,例如V600E突变具有选择性的抑制剂。与野生型B-Raf相比,此类抑制剂的效力为至少2倍,更经常至少3倍或更多。效力也可以就测量生长抑制的细胞测定法的IC50值而言进行比较。
术语“治疗方案”指施用一种或多种药剂以治疗病症或疾病的治疗方式或过程。这包括临床试验。
术语“X#Y”在多肽序列中的突变的上下文中是本领域公认的,其中“#”指示就多肽的氨基酸编号而言的突变位置,“X”指示野生型氨基酸序列中所述位置处找到的氨基酸,而“Y”指示所述位置处的突变体氨基酸。例如,提及K-ras多肽的标记“G12S”指示野生型K-ras序列的氨基酸编号12处有甘氨酸,并且在突变体K-ras序列中该甘氨酸用丝氨酸替换。
术语“突变体K-ras多肽”和“突变体K-ras蛋白”可互换使用,指包含至少一项选自G12S、G12V、G12D、G12A、G12C、G13A、和G13D的K-ras突变的K-ras多肽。某些例示性的突变体K-ras多肽包括但不限于等位变体、剪接变体、衍生变体、替代变体、删除变体、和/或插入变体、融合多肽、直向同系物、和种间同系物。在某些实施方案中,突变体K-ras多肽包括C-或N-端的额外残基,诸如但不限于前导序列残基、靶向残基、氨基端甲硫氨酸残基、赖氨酸残基、标签残基和/或融合蛋白残基。
术语“突变体B-Raf多肽”和“突变体B-Raf蛋白”可互换使用,指包含V600E突变的B-Raf多肽。某些例示性突变体B-Raf多肽包括但不限于等位变体、剪接变体、衍生变体、替代变体、删除变体、和/或插入变体、融合多肽、直向同系物、和种间同系物。在某些实施方案中,突变体B-Raf多肽包括C-或N-端的额外残基,诸如但不限于前导序列残基、靶向残基、氨基端甲硫氨酸残基、赖氨酸残基、标签残基和/或融合蛋白残基。
术语“突变体K-ras多核苷酸”、“突变体K-ras寡核苷酸”、和“突变体K-ras核酸”可互换使用,指编码包含至少一项选自G12S、G12V、G12D、G12A、G12C、G13A、和G13D的K-ras突变的K-ras多肽的多核苷酸。
术语“突变体B-Raf多核苷酸”、“突变体B-Raf寡核苷酸”、和“突变体B-Raf核酸”可互换使用,指编码包含V600E突变的B-Raf多肽的多核苷酸。
术语“药剂”在本文中用于意指化学化合物、化学化合物的混合物、生物学大分子、或自生物学材料生成的提取物。
如本文中所使用的,术语“药用药剂或药物”指在对患者适当施用时能够诱导期望的治疗效果的化学化合物或组合物。本文中其它化学术语依照本领域中常规的用法使用,如由The McGraw-Hill Dictionary of Chemical Terms(Parker,S.编,McGraw-Hill,San Francisco(1985),通过提及而将其收入本文)例示的。
术语“患者”包括人和动物受试者。
出于治疗的目的,术语“哺乳动物”和“动物”指分类为哺乳动物的任何动物,包括人、家畜和牲畜,和动物园、运动、或宠物动物,诸如犬、马、猫、牛等。优选地,哺乳动物是人。
术语“疾病状态”指细胞或整个哺乳动物的生理学状态,其中已经发生细胞或身体功能、系统、或器官的中断、停止、或紊乱。
术语“治疗”或“处理”指治疗性处理和预防性或防范性措施两者,其中目的是阻止或减缓(减轻)不想要的生理学变化或病症,诸如癌症的形成或扩散。出于本发明的目的,有益的或期望的临床结果包括但不限于症状的减轻、疾病程度的减弱、疾病的稳定化(即不恶化)状态、疾病进展的延迟或减缓、疾病状态的改善或减轻、和消退(不论部分还是完全),无论可检出还是不可检出。“治疗/处理”还可以意指与若没有接受治疗预期的存活相比延长的存活。需要治疗的主体包括那些已经患有状况或病症的及那些易于患上状况或病症的或那些要预防状况或病症的。
如本文中所使用的,术语“响应”意指依照RECIST(实体瘤响应评估标准),患者或肿瘤在施用药剂后显示完全响应或部分响应。如本文中所使用的术语“非响应”意指依照RECIST,患者或肿瘤在施用药剂后显示稳定的疾病或进展性疾病。RECIST记载于例如Therasse等,2000年2月,“NewGuidelines to Evaluate the Response to Treatment in Solid Tumors,”J.Natl.Cancer Inst.92(3):205-216,通过提及而将其完整收入本文。
“病症”指会受益于一种或多种治疗的任何状况。这包括慢性和急性病症或疾病,包括那些使哺乳动物倾向于所讨论病症的病理学状况。本文中要治疗的病症的非限制性例子包括良性和恶性肿瘤、白血病、和淋巴样恶性肿瘤。“肿瘤”包括一种或多种癌性细胞。癌症的例子包括但不限于癌瘤、淋巴瘤、母细胞瘤(blastoma)、肉瘤、和白血病或淋巴样恶性肿瘤。此类癌症的更具体的例子包括鳞状细胞癌(例如,上皮鳞状细胞癌)、肺癌(包括小细胞肺癌、非小细胞肺癌(“NSCLC”)、肺的腺癌和肺的鳞癌)、腹膜癌、肝细胞癌(hepatocellular cancer)、胃癌(包括胃肠癌)、胰腺癌、成胶质细胞瘤、宫颈癌、卵巢癌、肝癌、膀胱癌、肝瘤(hepatoma)、乳腺癌、结肠癌、直肠癌、结肠直肠癌、子宫内膜或子宫癌、唾液腺癌、肾癌、前列腺癌、外阴癌、甲状腺癌、肝癌、肛门癌、阴茎癌、及头颈癌。特别地,本方法适合于乳腺、结肠直肠、卵巢、胰腺或肺癌。更特别地,癌症是结肠、肺或卵巢的。癌症可以是Ras驱动的癌症。
与突变体K-ras有关的疾病或状况包括下列一种或多种:由突变体K-ras基因或蛋白引起的疾病或状况;由突变体K-ras基因或蛋白促成的疾病或状况;和与突变体K-ras基因或蛋白的存在有关的疾病或状况。在某些实施方案中,与突变体K-ras有关的疾病或状况是癌症。
“与突变体K-ras多肽有关的疾病或状况”包括下列一种或多种:由突变体K-ras多肽引起的疾病或状况;由突变体K-ras多肽促成的疾病或状况;引起突变体K-ras多肽的疾病或状况;和与突变体K-ras多肽的存在有关的疾病或状况。在某些实施方案中,与突变体K-ras多肽有关的疾病或状况可以在没有突变体K-ras多肽的情况中存在。在某些实施方案中,与突变体K-ras多肽有关的疾病或状况可以由于突变体K-ras多肽的存在而恶化。在某些实施方案中,与突变体K-ras多肽有关的疾病或状况是癌症。
以下实施例(包括进行的实验和实现的结果)仅为了例示目的而提供,而不应解释为对权利要求的限制。
实施例
实施例1:B-RAF删除和药理学抑制增强K-ras驱动的肿瘤发生
Ras GTP酶家族响应调节细胞过程,包括增殖和存活的信号而控制许多下游信号传导级联。虽然Ras是人肿瘤中的功能获得性突变的最普遍的靶物之一,但是仍存在关于Ras效应器途径在突变体K-ras驱动的肿瘤发生中如何发挥功能的问题。因为K-ras的重要功能牵涉规范的MAPK信号传导途径内的B-Raf活化,所以我们启动了一项研究以测定B-Raf在突变体K-ras驱动的肿瘤促进和维持的背景中的作用。在一些K-ras突变体肿瘤中,B-Raf抑制不仅没有显示任何肿瘤益处,它甚至加速肿瘤生长。见图8A,其显示了肿瘤加倍前的时间。
将表达Cre重组酶的腺病毒投递至拥有条件K-rasG12D等位基因(K-rasLSL-G12D)和0、1或两拷贝的侧翼有LoxP位点的B-raf基因(B-rafCKO)的遗传工程小鼠的肺。此规程导致在存在或缺乏小鼠肺内删除的一个或两个B-raf等位基因的情况中突变体K-rasG12D的表达。令人惊讶地,B-Raf删除显著增加肺肿瘤数目和负荷,并降低总体存活。在含有K-rasG12D突变的鼠非小细胞肺癌系中使用靶向B-Raf的高度特异性小分子抑制剂时,我们观察到细胞增殖和软琼脂集落形成增加。进一步的调查揭示了用B-Raf抑制剂处理表达K-rasG12D的细胞增强MEK和Erk磷酸化。因此,这些数据提示了虽然B-Raf删除没有抑制K-ras驱动的肿瘤启动和疾病进展,但是其存在可以在建立组成性突变体K-ras活性的负反馈调节中发挥枢要的作用。
实施例2:了解B-RAFV600E突变体对野生型肿瘤中的RAF信号传导
为了了解在Ras和Raf基因中具有不同突变的Raf途径的作用,我们表征了针对野生型(WT)B-Raf和c-Raf对突变体(MT)B-RafV600E具有独特的效力概况的两种选择性小分子Raf抑制剂。尽管其生物化学差异,它们具有相同的细胞概况,针对B-RafV600E,而非WT或Ras MT肿瘤是有效力的。这两种抑制剂主要经由c-Raf同等型在非BRAFV600E系中诱导Raf/MEK/ERK途径的激活。相反,它们依照其预测的生物化学效力抑制佛波醇酯和生长因子刺激的Raf/MEK/ERK活性。如此,选择性Raf抑制剂对B-RafV600E系的细胞特异性不仅是其对B-RafV600E同等型的选择性的反映,而且反映不同细胞背景中Raf活性的复杂调节。B-RafV600E的生物化学选择性不是Raf抑制剂的细胞功效概况的唯一驱动物。抑制剂经由c-Raf在非V600E突变体系中选择性诱导pMEK水平。抑制剂依照其效力快速地且以剂量依赖性方式诱导c-Raf特异性活性和pMEK水平。在基础条件下,GDC-0879的钟形曲线提示对c-Raf的双重刺激对抑制效果。不同背景中的B-和c-Raf途径状态确定Raf抑制药效学。图1-7中显示了表征结果。
实施例3:用B-Raf抑制剂给药后肺肿瘤异种移植物中的生长
下文显示了数据,并且图10-14中显示了关于实验H331的数据,而图15-18中显示了关于实验H327的数据。

Claims (10)

1.特异性检测K-ras突变的材料在制备供鉴定不响应用B-Raf抑制剂治疗的患者的方法使用的试剂盒中的用途,其中所述方法包括测定K-ras突变的存在或缺乏,其中所述K-ras突变为至少G12D,由此K-ras突变的存在指示患者不会响应所述B-Raf抑制剂治疗。
2.特异性检测突变体K-ras蛋白或基因的材料在制备供测定肿瘤是否会响应用B-Raf抑制剂治疗的方法使用的试剂盒中的用途,其中所述方法包括在所述肿瘤的样品中测定突变体K-ras蛋白或基因的存在,其中所述突变体K-ras为至少G12D,由此突变体K-ras蛋白或基因的存在指示所述肿瘤不会响应用B-Raf抑制剂的治疗。
3.特异性检测K-ras突变的材料在制备供预测患者是否会不响应用特定(specific)B-Raf抑制剂治疗的方法使用的试剂盒中的用途,其中所述方法包括测定所述患者的肿瘤中K-ras突变的存在或缺乏,其中所述K-ras突变为至少G12D;且其中若存在K-ras突变,则预测所述患者不响应用特定B-Raf抑制剂的治疗。
4.权利要求1-3任一项的用途,其中所述B-Raf抑制剂是特异性B-Raf激酶抑制剂。
5.权利要求4的用途,其中所述特异性B-Raf激酶抑制剂是GDC-0879。
6.权利要求2或3的用途,其中通过扩增来自所述肿瘤的K-ras核酸,或怀疑含有突变的其片段,并对所述扩增核酸测序来测定K-ras突变的存在。
7.权利要求2或3的用途,其中通过扩增来自所述肿瘤的K-RAS核酸,或怀疑含有突变的其片段,并比较所述扩增核酸的电泳迁移率与相应的野生型K-ras核酸或片段的电泳迁移率来测定K-ras突变的存在。
8.权利要求1的用途,其中所述测定患者中K-ras突变的存在或缺乏包括扩增来自所述患者的K-ras核酸,并对所述扩增核酸测序。
9.权利要求1的用途,其中所述测定患者中K-ras突变的存在或缺乏包括使用针对突变体K-ras多肽的特异性结合剂来检测所述患者样品中的突变体K-ras多肽。
10.权利要求2或3的用途,其中所述测定肿瘤中K-ras突变的存在或缺乏包括使用针对突变体K-ras多肽的特异性结合剂来检测所述肿瘤样品中的突变体K-ras多肽。
CN201080048007.0A 2009-08-24 2010-08-24 通过检测kras突变和rtk表达水平来测定细胞对b-raf抑制剂治疗的敏感性 Expired - Fee Related CN102859355B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23646609P 2009-08-24 2009-08-24
US61/236,466 2009-08-24
US30114910P 2010-02-03 2010-02-03
US61/301,149 2010-02-03
PCT/US2010/046520 WO2011028540A1 (en) 2009-08-24 2010-08-24 Determining sensitivity of cells to b-raf inhibitor treatment by detecting kras mutation and rtk expression levels

Publications (2)

Publication Number Publication Date
CN102859355A CN102859355A (zh) 2013-01-02
CN102859355B true CN102859355B (zh) 2015-10-07

Family

ID=43649583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080048007.0A Expired - Fee Related CN102859355B (zh) 2009-08-24 2010-08-24 通过检测kras突变和rtk表达水平来测定细胞对b-raf抑制剂治疗的敏感性

Country Status (16)

Country Link
US (2) US20120214828A1 (zh)
EP (1) EP2470898A4 (zh)
JP (1) JP2013502236A (zh)
KR (1) KR20120050493A (zh)
CN (1) CN102859355B (zh)
AU (1) AU2010289794B2 (zh)
BR (1) BR112012003926A2 (zh)
CA (1) CA2771369A1 (zh)
HK (1) HK1175248A1 (zh)
IL (2) IL218099A0 (zh)
IN (1) IN2012DN01403A (zh)
MX (1) MX338856B (zh)
MY (1) MY165154A (zh)
RU (2) RU2015104058A (zh)
SG (2) SG10201402917XA (zh)
WO (1) WO2011028540A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008337286B2 (en) 2007-12-19 2014-08-07 Cancer Research Technology Limited Pyrido[2,3-b]pyrazine-8-substituted compounds and their use
NZ601033A (en) 2009-12-31 2014-02-28 Ct Nac Investigaciones Oncologicas Cnio Tricyclic compounds for use as kinase inhibitors
ES2469367T3 (es) 2010-02-01 2014-06-18 Cancer Research Technology Limited 1-(5-Terc-butil-2-fenil-2H-pirazol-3-il)-3-[2-fluoro-4-(1-metil-2-oxo-2,3-dihidro-1H-imidazo[4,5-b]piridin-7-iloxi)-fenil]-urea y compuestos relacionados y su uso en terapia
US8709419B2 (en) 2010-08-17 2014-04-29 Hoffmann-La Roche, Inc. Combination therapy
US9295669B2 (en) 2010-12-14 2016-03-29 Hoffman La-Roche Inc. Combination therapy for proliferative disorders
WO2012098387A1 (en) 2011-01-18 2012-07-26 Centro Nacional De Investigaciones Oncológicas (Cnio) 6, 7-ring-fused triazolo [4, 3 - b] pyridazine derivatives as pim inhibitors
EP2758055A1 (en) * 2011-09-19 2014-07-30 F.Hoffmann-La Roche Ag Combination treatments comprising c-met antagonists and b-raf antagonists
US9408885B2 (en) 2011-12-01 2016-08-09 Vib Vzw Combinations of therapeutic agents for treating melanoma
WO2013106683A1 (en) * 2012-01-11 2013-07-18 Duke University Methods of treating and preventing cancer by disrupting the binding of copper in the map kinase pathway
US9216170B2 (en) 2012-03-19 2015-12-22 Hoffmann-La Roche Inc. Combination therapy for proliferative disorders
MY176031A (en) * 2012-08-07 2020-07-22 Array Biopharma Inc Pharmaceutical combinations comprising a b-raf inhibitor, an egfr inhibitor and optionally a pi3k-alpha inhibitor
SG11201500582UA (en) 2012-08-17 2015-04-29 Hoffmann La Roche Combination therapies for melanoma comprising administering cobimetinib and vemurafinib
KR20150070393A (ko) * 2012-10-25 2015-06-24 글락소스미스클라인 엘엘씨 조합물
EP2786764B1 (en) 2013-04-01 2017-03-08 Samsung Electronics Co., Ltd. Combination therapy using anti-c-met antibody and sorafenib
US9532987B2 (en) 2013-09-05 2017-01-03 Genentech, Inc. Use of a combination of a MEK inhibitor and an ERK inhibitor for treatment of hyperproliferative diseases
GB201320732D0 (en) 2013-11-25 2014-01-08 Cancer Rec Tech Ltd Methods of chemical synthesis
GB201320729D0 (en) 2013-11-25 2014-01-08 Cancer Rec Tech Ltd Therapeutic compounds and their use
EP3143163B1 (en) 2014-05-13 2020-11-25 Board of Regents, The University of Texas System Gene mutations and copy number alterations of egfr, kras and met
WO2016106359A1 (en) * 2014-12-23 2016-06-30 Millennium Pharmaceuticals, Inc. Combination of raf inhibitors and taxanes
WO2017066664A1 (en) * 2015-10-16 2017-04-20 Millennium Pharmaceuticals, Inc. Combination therapy including a raf inhibitor for the treatment of colorectal cancer
EP3450555B1 (en) * 2016-04-28 2020-11-18 Denka Company Limited Method for determining tolerance of cancer cell to epidermal growth factor receptor inhibitor
US11471538B2 (en) 2017-02-10 2022-10-18 INSERM (Institut National de la Santéet de la Recherche Medicale) Methods and pharmaceutical compositions for the treatment of cancers associated with activation of the MAPK pathway
US11725185B2 (en) 2017-12-28 2023-08-15 University Of Houston System Stem cell culture systems for columnar epithelial stem cells, and uses related thereto
KR20230011277A (ko) * 2020-04-27 2023-01-20 베라스템, 인코포레이티드 비정상적 세포 성장의 치료 방법
US11873296B2 (en) 2022-06-07 2024-01-16 Verastem, Inc. Solid forms of a dual RAF/MEK inhibitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355928A (zh) * 2005-04-26 2009-01-28 卫材R&D管理株式会社 用于癌症免疫疗法的组合物和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042964A1 (en) * 2004-06-04 2016-07-13 Genentech, Inc. Egfr mutations
JP2008546421A (ja) * 2005-06-28 2008-12-25 ジェネンテック・インコーポレーテッド Egfrおよびkras変異
US8129114B2 (en) * 2005-08-24 2012-03-06 Bristol-Myers Squibb Company Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators
ES2426814T3 (es) * 2007-03-13 2013-10-25 Amgen Inc. Mutaciones de K-ras y B-raf y terapia con anticuerpos anti-EGFr

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355928A (zh) * 2005-04-26 2009-01-28 卫材R&D管理株式会社 用于癌症免疫疗法的组合物和方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
antitumor efficacy of the novel raf inhibitor gdc-0879 is predicted by brafv600e mutational status and sustained extracellular signal-regulated kinaes/mitogen-activated protein kinase pathway suppression;hoeflich等;《cancer research》;20090401;第69卷(第7期);第3042-3051页 *
bay 43-9006 exhibits broad spectrum oral antitumor activity and targets the raf/mek/erk pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis;wilhelm等;《cancer resesrch》;20041001;第64卷;第7099-7109页 *
gene expression deregulation by kras g12d and G12V in a braf v600e context;monticone等;《molecular cancer》;20081216;第7卷(第1期);第92页 *
inherent resistance to epidermal growth factor receptor antibodies in refractory metastatic colorectal cancer;gala等;《journal of medical science》;20050515;第9卷(第4期);第165-174页 *
KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression;Olivera等;《ONCOGENOMICS》;20060904;第26卷;摘要,第160页,附图1-2 *
k-ras oncogene mutations in sporadic colorectal cancer in the netherlands cohort study;brink等;《carcinogenesis》;20031231;第24卷(第4期);第703-710页 *
sorafenib inhibits non-small cell lung cancer cell growth by targeting b-raf in kras wild-type cells and c-raf;takezawa等;《cancer res.》;20090815;第69卷(第16期);第6515-6521页 *

Also Published As

Publication number Publication date
MX338856B (es) 2016-05-03
MY165154A (en) 2018-02-28
EP2470898A1 (en) 2012-07-04
IL218099A0 (en) 2012-04-30
EP2470898A4 (en) 2013-03-13
JP2013502236A (ja) 2013-01-24
RU2012111231A (ru) 2013-10-10
IL235398A0 (en) 2014-12-31
SG178866A1 (en) 2012-04-27
SG10201402917XA (en) 2014-08-28
BR112012003926A2 (pt) 2020-08-11
AU2010289794A1 (en) 2012-04-05
HK1175248A1 (zh) 2013-06-28
KR20120050493A (ko) 2012-05-18
AU2010289794B2 (en) 2014-10-02
CA2771369A1 (en) 2011-03-10
CN102859355A (zh) 2013-01-02
WO2011028540A1 (en) 2011-03-10
US20120214828A1 (en) 2012-08-23
RU2553379C2 (ru) 2015-06-10
US20150164895A1 (en) 2015-06-18
IN2012DN01403A (zh) 2015-06-05
RU2015104058A (ru) 2015-06-10
MX2012002292A (es) 2012-03-19

Similar Documents

Publication Publication Date Title
CN102859355B (zh) 通过检测kras突变和rtk表达水平来测定细胞对b-raf抑制剂治疗的敏感性
Cecchi et al. Targeting the HGF/Met signaling pathway in cancer therapy
Cocco et al. Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2)
Chia et al. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors
Herbertz et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway
US20220170107A1 (en) Phosphatidylinositol-3-kinase pathway biomarkers
Antonescu The GIST paradigm: lessons for other kinase‐driven cancers
Regales et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer
US20130230511A1 (en) Biomarkers for response to tyrosine kinase pathway inhibitors in cancer
CN103327976A (zh) 基于缺氧状态预选受试者以用于治疗性治疗
Sorokin et al. Targeting RAS mutant colorectal cancer with dual inhibition of MEK and CDK4/6
D’Arcangelo et al. Rare mutations in non-small-cell lung cancer
CN106456776A (zh) 用PI3K抑制剂Pictilisib治疗PR阳性腔性A乳腺癌的方法
Carneiro et al. Molecular targets and biological modifiers in gastric cancer
Ahn et al. Asian Thoracic Oncology Research Group (ATORG) expert consensus statement on MET alterations in NSCLC: diagnostic and therapeutic considerations
Wang et al. Molecular subtyping in colorectal cancer: A bridge to personalized therapy
CN110191897A (zh) 用于预防暴露于诱导p38活化的癌症治疗的受试者的转移的治疗
Goetsch et al. Selection criteria for c-Met-targeted therapies: emerging evidence for biomarkers
Pender et al. Understanding lung cancer molecular subtypes
Reguart et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in the Treatment of Patients with Non-small Cell Lung Cancer of Squamous Histology: Focus on Afatinib
AU2023248696A1 (en) Combination of a gremlin-1 antagonist with an inhibitor of ras-raf-mek-erk signalling
Foroughi Optimising colorectal cancer therapies using clinical registries
AU2014203196A1 (en) Determining sensitivity of cells to B-Raf inhibitor treatment by detecting Kras mutation and RTK expression levels
KR20160009070A (ko) 대장암 환자의 생존율 예측 및 개선 방법
Koikov et al. Society for Melanoma Research 2016 Congress

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1175248

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1175248

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151007

CF01 Termination of patent right due to non-payment of annual fee