CN102858908A - 聚羧酸化物表面活性剂混合物在微乳液驱油中的用途 - Google Patents

聚羧酸化物表面活性剂混合物在微乳液驱油中的用途 Download PDF

Info

Publication number
CN102858908A
CN102858908A CN2011800125001A CN201180012500A CN102858908A CN 102858908 A CN102858908 A CN 102858908A CN 2011800125001 A CN2011800125001 A CN 2011800125001A CN 201180012500 A CN201180012500 A CN 201180012500A CN 102858908 A CN102858908 A CN 102858908A
Authority
CN
China
Prior art keywords
surfactant mixture
purposes
oil
surfactant
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800125001A
Other languages
English (en)
Other versions
CN102858908B (zh
Inventor
C·比特纳
G·奥特
J·廷斯利
C·施平德勒
S·迈特罗-沃格尔
G·阿尔瓦雷斯-于尔根森
M·古茨曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN102858908A publication Critical patent/CN102858908A/zh
Application granted granted Critical
Publication of CN102858908B publication Critical patent/CN102858908B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Abstract

本发明涉及一种借助表面活性剂混合物三次开采原油的方法和/或表面活性剂混合物用于通过Winsor III型微乳液驱油三次开采原油的用途,其中将表面活性剂混合物经由至少一个注水井压入矿物油藏中,并经由至少一个采出井从所述油藏中取出原油。所述表面活性剂混合物包含用于将油水之间的界面张力降至<0.1mN/m的至少一种如下组分:(a)一种或多种包含至少50mol%丙烯酸单元和/或甲基丙烯酸单元和/或马来酸单元和/或衣康酸单元或其盐的聚羧酸化物,和(b)一种或多种阴离子和/或非离子表面活性剂。

Description

聚羧酸化物表面活性剂混合物在微乳液驱油中的用途
本发明涉及包含一种或多种聚羧酸化物和阴离子和/或非离子表面活性剂的表面活性剂混合物用于通过Winsor III型微乳液驱油三次开采矿物油的用途,以及矿物油开采方法。
在天然矿物油藏中,矿物油存在于多孔储集岩的孔隙中,其在朝向地面一侧被不透顶层所密封。所述孔隙可为极细孔隙、毛细管、孔等。细孔颈例如可仅具有约1μm的直径。除了矿物油(包括天然气成分)之外,油藏还包含具有或高或低盐含量的水。
在矿物油开采中,通常分为一次开采、二次开采和三次开采。在一次开采中,矿物油由于油藏的自生压力,在油藏钻探开始后经由钻孔自动流动至表面。
因此在一次开采后使用二次开采。在二次开采中,除了用于开采矿物油的钻孔(所谓的采出井)之外,还在含矿物油的地层中钻入其他钻孔。经由这些所谓的注入井向油藏中注入水以维持压力或使其再次升高。由于注入水之故,矿物油由注入井沿采出井的方向经由孔隙被缓慢压入地层中。然而,这仅在孔隙完全被油填充且更粘稠的油被水推动前进的情况下才起作用。一旦运动的水穿透孔隙,其沿着此时阻力最小的路径流动,即流经形成的通道,且不再推动油前进。
一次开采和二次开采通常仅可开采所述油藏中所存在的矿物油量的约30-35%。
已知矿物油产量可通过三次采油措施进一步提高。三次采用的综述可参见例如“Journal of Petroleum Science of Engineering 19(1998)”,第265-280页。三次采油包括例如热方法,其中将热水或蒸汽注入油藏中。这使油的粘度降低。所用流动介质同样可为气体如CO2或氮气。
三次矿物油开采还包括其中使用合适的化学品作为采油助剂的方法。这些可用于影响水流动末端的状况,且因此也用于开采牢固保持于岩层中的矿物油。
在邻近二次开采末期,粘性力和毛细力作用于捕集在储集岩孔中的矿物油上,其中这两种力彼此相对的比例取决于微观油分离。这些力借助无量纲参数,即所谓的毛细管数描述。粘性力(速度×驱动相的粘度)对毛细力(油水之间的界面张力×岩石的润湿)的比例:
N c = &mu;v &sigma; cos &theta;
在该式中,μ为驱使矿物油运动的流体的粘度,ν为达西速度(单位面积的流量),σ为驱使矿物油运动的液体与矿物油之间的界面张力,且θ为矿物油与岩石之间的接触角(C.Melrose,C.F.Brandner,J.Canadian Petr.Techn.58,1974年10-12月)。毛细管数越高,油的运动性就越高,因此油去除程度也就越大。
已知邻近二次矿物油开采末期的毛细管数为约10-6,必须使毛细管数升高至约10-3-10-2,从而能够使额外的矿物油运动。
为此,可实施特定形式的驱油方法—称为微乳液驱油。在微乳液驱油中,注入的表面活性剂应与油藏中所存在的水相和油相形成Winsor III型微乳液。Winsor III型微乳液并非具有小液滴的乳液,而是水、油和表面活性剂的热力学稳定的液体混合物。其三个优点为:
-由此获得矿物油与水相之间的极低界面张力σ;
-其通常具有极低的粘度且因此不被多孔基体所捕集;
-其甚至在最低的能量输入下形成且可在无限长的时间内保持稳定(与此相反,常规乳液需要通常不在油藏中出现的高剪切力,且仅是动力学稳定化的)。
Winsor III型微乳液是过量水与过量油的平衡体系。在形成微乳液的这些条件下,表面活性剂覆盖油-水界面,且界面张力σ越低,则对<10-2mN/m(超低界面张力)的值越有利。为了获得最佳结果,在确定量的表面活性剂下,所述水-微乳液-油体系中的微乳液比例自然应为最大值,这是因为微乳液相越大,则界面张力就越低。
以此方式可改变油滴形状(油水之间的界面张力降至如此程度以至于最小的界面状态不再有利且球状不再有利),且它们可由于驱油水驱动通过毛细管开孔。
在过量表面活性剂存在下,当油-水界面被表面活性剂覆盖时,形成Winsor III型微乳液。其因此构成导致油相与水相之间的极低界面张力的表面活性剂储层。由于Winsor III型微乳液具有低粘度,其也在驱油过程中迁移通过多孔储集岩(与此相反,乳液可捕集于多孔基体中并堵塞油藏)。当Winsor III型微乳液与尚未被表面活性剂所覆盖的油-水界面相遇时,所述微乳液的表面活性剂可显著降低该新界面的界面张力,并导致油运动(例如由于油滴变形)。
所述油滴随后可与连续油储层合并。这具有两个优点:
首先,由于所述连续油储层向前推进通过新的多孔岩石,存在于其中的油滴可与所述储层合并。
此外,油滴合并形成油储层使油-水界面显著减小,且因此将不再需要的表面活性剂再次释放出来。其后,如上所述释放出的表面活性剂可驱使地层中残留的油滴运动。
因此,微乳液驱油是一种特别有效的方法,且与乳液驱油方法相比需要少得多的表面活性剂。在微乳液驱油中,通常将表面活性剂任选与助溶剂和/或碱性盐一起注入。随后,注入增稠的聚合物溶液以控制流动性。另一方案是注入增稠聚合物、表面活性剂、助溶剂和/或碱性盐的混合物,然后注入增稠聚合物的溶液以控制流动性。这些溶液通常应为澄清的,以防止堵塞油藏。当所用碱性盐为碱金属氢氧化物或碱金属碳酸盐时,由于存在于油藏中的碱土金属离子与氢氧根或碳酸根离子形成不溶配合物,这尤其是困难的。
对三次矿物油开采用表面活性剂的要求与对用于其它应用场合的表面活性剂的要求存在显著差异:用于三次采油的合适表面活性剂应将水与油之间的界面张力(通常为约20mN/m)降至小于10-2mN/m的特别低的值,从而能够使矿物油充分流动。这必须在通常为约15-130°C的油藏温度且在高盐含量的水存在下实现,更特别地也在高比例钙和/或镁离子存在下实现;因此所述表面活性剂也必须可溶于高盐含量的油藏水中。
因此,本领域技术人员根据给定油层中存在的条件(例如温度和盐含量),调节应用参数,例如表面活性剂类型、浓度和彼此相对的混合比。
为了满足这些参数,时常提出表面活性剂的混合物,尤其是阴离子和非离子表面活性剂的混合物。
US3,811,504公开了两种不同阴离子表面活性剂与非离子表面活性剂的混合物,其用于其油藏水包含0.15-1.2%钙和镁离子的油藏中。第一种阴离子表面活性剂包括具有5-25个碳原子的烷基磺酸盐或其烷基具有5-25个碳原子的烷基芳基磺酸盐,第二种阴离子表面活性剂包括其烷基具有7-20个碳原子的烷基聚乙氧基硫酸盐,且所述非离子表面活性剂包括其烷基具有6-20个碳原子的乙氧基化烷基酚或具有5-20个碳原子的脂族醇。
K.Wyatt和同事在“Economics of Field Proven Chemical FloodingTechnologies”,SPE 113126,Conference contribution for the SPESymposium On Improved Oil Recovery年度会议中描述了使用ASP(碱-表面活性剂-聚合物)方法(其是化学驱提高采收率领域中的一种最经济的方法)采油的优点。
早在二十世纪九十粘度,BASF AG描述了使用EDTA作为油田中的络合剂或者作为采油中的添加剂。
因此,本发明的目的是提供一种用于通过微乳液驱油三次开采矿物油的表面活性剂混合物,其首先导致界面张力的极大降低,其次有效防止碱土金属氢氧化物或碱土金属碳酸盐的沉淀。
因此,已发现表面活性剂混合物用于通过Winsor III型微乳液驱油三次开采矿物油的用途,其中将含水表面活性剂配制剂经由至少一个注入井注入矿物油藏中,并经由至少一个采出井从所述油藏中取出原油,其中所述表面活性剂混合物包含至少一种如下组分:
(a)一种或多种包含至少50mol%丙烯酸单元和/或甲基丙烯酸单元和/或马来酸单元和/或衣康酸单元或其盐的聚羧酸化物,和
(b)一种或多种阴离子和/或非离子表面活性剂。
所述目的同样通过一种借助Winsor III型微乳液驱油三次开采矿物油的方法,包括如下步骤:
(a)将本文所述的表面活性剂混合物经由至少一个注水井注入矿物油藏中,和
(b)经由至少一个采出井从所述油藏中取出原油。
令人惊讶地发现通过使用本发明的表面活性剂混合物,可显著降低油与水之间的界面张力并充分抑制微乳液驱油过程中的碱土金属氢氧化物或碱土金属碳酸盐的沉淀。
就本发明而言,尤其应如下文所述:在通过微乳液驱油开采矿物油的本发明方法中,使用包含聚羧酸化物和至少一种阴离子和/或非离子表面活性剂的表面活性剂配制剂。
在本发明的通过微乳液驱油三次开采矿物油的方法中,所述表面活性剂混合物的使用将油水之间的界面张力降至<0.1mN/m,优选<0.05mN/m,更优选<0.01mN/m的值。因此,将油水之间的界面张力降至处于0.1-0.0001mN/m范围内的值,优选降至处于0.05-0.0005mN/m范围内的值,更优选降至处于0.01-0.0001mN/m范围内的值。
本发明上下文中所用的聚羧酸化物优选包括聚丙烯酸化物,在本发明的特别优选实施方案中,尤其为均聚聚丙烯酸化物。在下文中,通常将这些本发明聚合聚羧酸化物简称为聚羧酸化物。
根据本发明,所述聚羧酸化物也可包括共聚聚羧酸化物,尤其是丙烯酸与甲基丙烯酸的那些共聚聚羧酸化物,以及丙烯酸或甲基丙烯酸与马来酸的那些共聚聚羧酸化物。已发现特别合适的共聚物为包含50-90重量%丙烯酸和50-10重量%马来酸的丙烯酸与马来酸的那些共聚物。
在本发明的一个实施方案中,所述聚羧酸化物优选呈中和形式,即其优选至少70mol%被中和。在本发明的另一优选实施方案中,所述羧酸化物优选呈其碱金属盐形式,尤其是呈钠盐形式。然而,在具体实施方案中,也可优选所述聚合物以其酸形式存在,即中和度小于50mol%,优选小于30mol%。
进一步优选这些聚羧酸化物具有窄摩尔质量分布。在该上下文中,窄摩尔质量分布意指特别优选链长和分布曲线在最大值两侧显著下降。特别窄的摩尔质量分布显示出陡的下降。摩尔质量分布可作为所述聚合物的重均摩尔质量Mw与数均摩尔质量Mn的比值加以度量。该比值是均一性或非均一性的度量,摩尔质量分布越宽,则该比值越大。确定的分子化合物具有Mw/Mn=1的比值。与此相反,聚合物通常具有显著大于1的Mw/Mn比值,且工业聚合物很有可能甚至具有显著大于10的值。然而,本发明所用的聚羧酸化物优选具有小于10,通常显著小于10的Mw/Mn比值。本发明优选的聚羧酸化物甚至具有小于8,尤其是甚至小于5的Mw/Mn比值。
下文对聚合羧酸化物所述的摩尔质量为重均摩尔质量Mw,所有重均摩尔质量Mw均通过凝胶渗透色谱法(GPC)测定。所述测量相对于聚丙烯酸酯外标进行,由于其与所研究的聚合物的结构关系,这获得实际摩尔质量值。
在本发明的优选实施方案中,所述聚羧酸化物为具有500-100000g/mol分子量的聚羧酸化物,优选具有500-13000g/mol平均分子量。
在本发明的另一优选实施方案中,所述聚羧酸化物为包含至少80%丙烯酸,优选至少90%丙烯酸,或其钠盐作为重复单元的羧酸化物。
在本发明的一般实施方案中,所述至少一种阴离子或非离子表面活性剂,即组分(B)包含一种或多种选自烷基烷氧基化物和烷基芳基烷氧基化物的表面活性剂。
在本发明的优选实施方案中,组分(B)包含一种或多种选自烷基烷氧基硫酸化物、烷基烷氧基磺酸化物、烷基芳基硫酸化物、烷基芳基磺酸化物、烷基烷氧基羧酸化物和烷基芳基烷氧基羧酸化物的表面活性剂。
在本发明的特别优选的实施方案中,组分(B)包含通式R2-O-(R3-O)n-R4的表面活性剂或表面活性剂混合物,其中基团R2、R3和R4和数n各自定义如下:
n为3-49,
R2为具有6-32个碳原子且优选具有0-5,优选1-3.5的平均支化度且选自如下组的支化或未支化的烃基:
R2a:饱和脂族烃基,或
R2b:不饱和脂族烃基,或
R2c:苯基或R6-苯基,其中R6为具有1-24个碳原子的烷基,
R2d:通式苯基-R7的苯基取代的烃基,其中R7为具有1-24个碳原子的二价烃基;
R3独立地为亚乙基或亚丙基,条件是如果通式存在所述亚乙基和亚丙基两种基团,则其可无规、交替排列或呈嵌段结构排列,且
R4为选自如下组的基团:-SO3H、-PO3H2、R5-COOH、-R5-SO3H或-R5-PO3H2或其盐,其中R5为具有1-4个碳原子的二价烃基。
在该通式中,R2为具有6-32个碳原子且具有0-5,优选1-3.5的平均支化度的脂族和/或芳族烃基。
此处,术语“支化度”应理解为意指R2基团中与除氢之外3个其他原子键接的碳原子平均数加上与除氢之外4个其他原子键接的碳原子数的二倍。这包括与-O-(R3-O)n-R4基团结合的碳原子。术语“平均支化度”和“平均碳原子数”涉及如下事实:不仅异构纯的醇可用于合成本发明所用的组分(B),而且可包含不同醇,尤其是不同异构体的特定分布的典型工业醇混合物可用于合成本发明所用的组分(B)。
根据该定义,例如在1位与-O-(R3-O)n-R4基团结合的正烷基具有为0的支化度,且不构成本发明范围的一部分,而经由一个非末端碳原子结合的正烷基具有为1的支化度。苯基具有为1的支化度,且单烷基取代的苯基具有为2的支化度。
R2基团选自R2a、R2b、R2c或R2d,优选选自R2a和R2b,更优选选自R2a
R2a包括具有6-32个碳原子的饱和脂族烃基。
合适的R2a基团实例包括来自天然来源的醇,例如C16C18脂肪醇。
优选R2a基团的其他实例尤其包括衍生自工业醇的基团,尤其是衍生自羰基合成醇和Guerbet醇(例如C16、C24、C28或C32Guerbet醇)的基团。
术语“羰基合成醇”和“Guerbet醇”是本领域技术人员所已知的。例如参见“alcohols,aliphatic”,Ullmann's Encyclopedia of IndustrialChemistry,第7版,电子版,2008,Wiley-VCH,Weinheim,New York第5-10页以及其中所引用的文献。在Guerbet反应过程中,在合适催化剂存在下伯醇最终二聚成α-支化的伯醇。根据该文献,由所述醇形成的主要产物为醛,所述醛随后由于羟醛缩合在消去水下二聚,随后氢化以获得饱和醇。除了所述主要产物,也可形成各种副产物,例如不饱和的α-支化伯醇(如果双键的氢化不完全),或者尤其是形成在侧链或主链中具有额外支链的α-支化伯醇。
优选的R2a基团为衍生自Guerbet醇的基团,即衍生自其中至少65mol%,优选至少80mol%的基团具有通式(II)的不同基团的工业混合物:
Figure BDA00002100666100081
其中p可为2-12。
R2b为具有6-32个碳原子的不饱和脂族烃基。
组分(B)的表面活性剂进一步包含n个-(R3-O)-基团。所述n个R3基团各自独立地为亚乙基或亚丙基。如果通式存在这两种基团的话,所述亚乙基和亚丙基可无规、交替排列或呈嵌段结构排列。优选其中丙氧基和乙氧基实际上以R2O-丙氧基嵌段-乙氧基嵌段顺序排列的嵌段结构。
此处,数n为3-49,优选为3-15。正如本领域技术人员所已知的那样,烷氧基化度为平均值。因此,n不为自然数,而是有理数。
通常所述n个R3基团的小于50%应为亚乙基。
R4可为氢。在这种情况下,组分(B)的表面活性剂为通式R2-O-(R3-O)n-H的非离子表面活性剂。
此外,所述基团可为选自如下组中的一种:-SO3H、-PO3H2、-R5-COOH、-R5-SO3H或-R5-PO3H2或其盐。R5基团为具有1-4个碳原子的二价烃基且可任选具有官能团,尤其是-OH作为取代基。所述基团优选为选自如下组中的一种:亚甲基-CH2-、1,2-亚乙基-CH2-CH2-、1,2-亚丙基-CH2-CH(CH3)-或-CH(CH3)-CH2-,或者1,3-亚丙基-CH2-CH(R8)-CH2-,其中R8可为H或OH。
组分B表面活性剂的盐的合适抗衡离子尤其包括NH4 +、具有有机基团的铵离子或碱金属离子,尤其为Li+、Na+和K+,更优选为Na+
所述端基导致获得选自如下组的组分(B)表面活性剂:聚醚硫酸化物R2-O-(R3-O)n-SO3H、聚醚磺酸化物R2-O-(R3-O)n-R5-SO3H、聚醚磷酸化物R2-O-(R3-O)n-PO3H2、聚醚膦酸化物R2-O-(R3-O)n-R5-PO3H2或聚醚羧酸化物R2-O-(R3-O)n-R5-COOH。优选非离子表面活性剂R2-O-(R3-O)n-H、聚醚硫酸化物R2-O-(R3-O)n-SO3H和聚醚磺酸化物R2-O-(R3-O)n-R5-SO3H。其他表面活性剂(组分(C))
除了上述组分B的表面活性剂,所述配制剂可任选额外包含其他表面活性剂。这些例如为烯烃磺酸盐(α-烯烃磺酸盐或内烯烃磺酸盐)型阴离子表面活性剂、甜菜碱表面活性剂和/或烷基乙氧基化物或烷基多葡糖苷型非离子表面活性剂。这些其他表面活性剂尤其也可为低聚物或聚合物表面活性剂。有利地使用这类聚合物型辅助表面活性剂以减少形成微乳液所需的表面活性剂的量。因此,这类聚合物型表面活性剂也称为“微乳液助剂”。这类聚合物型表面活性剂的实例包括两亲嵌段共聚物,其包含至少一个亲水嵌段和至少一个疏水嵌段。其实例包括聚氧化丙烯-聚氧化乙烯嵌段共聚物,聚异丁烯-聚氧化乙烯嵌段共聚物,以及具有氧化乙烯侧链和疏水主链的梳状共聚物,其中所述主链优选基本包含烯烃或(甲基)丙烯酸酯作为单体。此处,术语“聚氧化乙烯”在每种情况下应包括如上文所定义的包含氧化丙烯单元的聚氧化乙烯嵌段。这类表面活性剂的进一步细节公开于WO2006/131541A1中。
所述表面活性剂混合物在三次开采矿物油中的应用
根据本发明,将聚羧酸化物(A)与组分(B)的上述表面活性剂混合物用于微乳液驱油。通过显著降低油水之间的界面张力,导致矿物油层中的原油的特别好的运动性。此外,组分(A)聚羧酸化物的存在防止了碱土金属氢氧化物或碱土金属碳酸盐的沉淀。
根据本发明,组分(A)聚羧酸化物的量优选为0.01-5重量%,尤其为0.01-1重量%,优选为0.02-0.5重量%,更优选为0.03-0.2重量%,基于全部配制剂。
根据本发明,所述混合物中的组分(B)的所述一种或多种阴离子或非离子表面活性剂的量优选为0.05-5重量%,尤其为0.05-2重量%,优选为0.05-1重量%,更优选为0.1-0.5重量%,基于全部配制剂。
所述混合物中的组分(A)对组分(B)的重量比通常为至少1:9,优选为至少1:5,更优选为至少1:3。
为了进行三次矿物油开采,将呈合适配制剂形式的所述表面活性剂混合物经由至少一个注入井注入矿物油藏中,并经由至少一个采出井从所述油藏中取出原油。在该上下文中,术语“原油”当然并非意指单相油,而是指通常的原油-水乳液。油藏通常具有数个注入井和数个采出井。在注入所述表面活性剂配制剂(称为“表面活性剂驱”)或优选微乳液驱之后,可通过向所述配制剂中注入水(“水驱”)或者优选注入具有强增稠作用的聚合物的高粘度水溶液(“聚合物驱”)而维持压力。然而,还已知的是首先使表面活性剂作用于地层的技术。本领域技术人员知晓“表面活性剂驱”、“水驱”和“聚合物驱”的工业性能的细节,并根据油藏类型使用合适的技术。
对本发明方法而言,使用包含组分(A)、(B)和任选组分(C)的表面活性剂混合物。除水之外,所述配制剂还可任选包含水溶混性或至少水分散性的有机物质或其他物质。合适的添加剂尤其用于在储存或运输至油田过程中稳定所述表面活性剂溶液。然而,这类其他溶剂的量通常应不超过50重量%,优选20重量%。在本发明的特别有利的实施方案中,仅将水用于所述配制剂。水溶混性溶剂的实例尤其包括醇如甲醇、乙醇、丙醇、丁醇、仲丁醇、戊醇、丁基乙二醇、丁基二甘醇或丁基三甘醇。
本发明所用的混合物可优选用于油藏的表面活性剂驱。尤其适于微乳液驱(在Winsor III范围内驱油或在存在双连续微乳液相范围内驱油)。微乳液驱油技术已在开头部分详细描述。
除了所述表面活性剂,所述配制剂也可包含其他组分,例如C4-C8醇和/或碱性盐(所谓的“碱性表面活性剂驱油”)。这类添加剂例如可用于降低地层中的滞留。基于所用表面活性剂总量的醇的比例通常至少为1:1—然而,也可使用显著过量的醇。碱性盐的量通常可为0.025-5重量%。
所述表面活性剂混合物优选包含选自NaOH和Na2CO3的碱性盐。
其中使用所述方法的油藏通常具有至少为10°C,例如10-150°C的温度,优选具有至少15°C至120°C的温度。
所有表面活性剂一起的总浓度基于所述含水表面活性剂配制剂总量优选为0.05-5重量%,更优选为0.1-2.5重量%。本领域技术人员根据所需性能,尤其是根据所述矿物油层中的条件作出适当的选择。此时,对本领域技术人员显而易见的是所述表面活性剂的浓度在注入地层之后可由于该配制剂可与地层水混合,或者表面活性剂也可吸收在地层的固体表面上而发生变化。本发明所用混合物的巨大优势在于所述表面活性剂导致特别好的界面张力降低效果。
所述表面活性剂混合物优选包含0.05-5重量%的总表面活性剂浓度,0.01-5重量%的总聚羧酸化物浓度和0.025-5重量%的总碱性盐浓度。
当然可以且可取地首先制备仅现场稀释至用于注入地层中的所需浓度的浓缩物。该浓缩物中的表面活性剂总浓度通常为10-45重量%。
本发明所用的混合物可优选用于其地层水包含超过25ppm碱土金属离子的油藏的表面活性剂驱油。
下文实施例旨在详细阐述本发明:
表面活性剂的合成
通用方法1:通过KOH催化烷氧基化
在2L高压釜中,将待烷氧基化的醇(1.0当量)与包含50重量%KOH的KOH水溶液混合。KOH的量占待制备产物的0.3重量%。在搅拌下将所述混合在100°C和20毫巴下脱水2小时。在此之后,用N2吹扫3次,建立约1.3巴N2的进料压力,并将温度升高至120-130°C。以使得温度保持在125-135°C(在氧化乙烯的情况下)或130-140°C(在氧化丙烯的情况下)的方式计量加入氧化烯。在此之后,在125-135°C下再搅拌5小时,用N2吹扫,冷却至70°C并倾空所述反应釜。借助乙酸中和所述碱性粗产物。或者,中和也可用商品硅酸镁进行,随后将其滤除。借助在CDCl3中的1H NMR谱、凝胶渗透色谱法和OH值测定表征浅色产物,并测定产率。
通用方法2:借助氯磺酸硫酸化
在1L圆底烧瓶中,将待硫酸化的烷基烷氧基化物(1.0当量)溶于1.5倍量的二氯甲烷(基于重量%)中并冷却至5-10°C。其后,以使得温度不超过10°C的方式滴加氯磺酸(1.1当量)。使该混合物回暖至室温并在该温度下在N2流中搅拌4小时,然后在最高为15°C下,将上述反应混合物滴加至一半体积的NaOH水溶液中。计算NaOH的量以获得基于所用氯磺酸为稍微过量。所得pH值为约pH 9-10。在最高为50°C下,在旋转蒸发器上于温和真空下移除二氯甲烷。
1H NMR表征所述产物,并测定所述溶液的含水量(约70%)。
Figure BDA00002100666100121
测试方法描述
a)溶解性
在室温下,将烷基烷氧基硫酸化物溶于含盐注入水或来自油藏的采出水(总浓度为500-3000ppm)中,并添加NaOH(1000-15000ppm)和EDTA(乙二胺四乙酸四钠盐)或聚羧酸化物。任选添加丁基二甘醇(BDG)。随后将所述混合物升至油藏温度。在24小时后,视觉评价该试样并仅在存在澄清溶液的情况下进一步应用。所述油藏的注入水具有11250ppm TDS的盐度(总溶解的盐)。油藏温度为32°C。
b)界面张力
此外,通过旋滴法在脱气原油(API约14)和初始含盐注入水上在32°C的油藏温度下直接测定界面张力。为此,使用在a)中制备的表面活性剂溶液。在油藏温度下,向该澄清溶液中引入油滴并在2小时后读取界面张力。
c)相分离
在吸液管中,将5ml原油(API 14)与5ml盐度为13510ppm TDS(总溶解的盐)的水在上述组分存在下在32°C下混合,并观察相分离。
测试结果
测定注入水中的所述配制剂的溶解性。结果可参见表1。
界面张力通过旋滴法在脱气原油(API约14)和初始含盐注入水上在32°C的油藏温度下测定,所述含盐初始注入水具有11250ppm TDS(总溶解的盐)且包含28ppm碱土金属离子。为此,将所述初始注入水与1000ppm表面活性剂、500ppm BDG、300-700ppm螯合剂和3500ppm NaOH混合。在32°C下,向该澄清溶液中引入油滴并在2小时后读取界面张力。结果可参见表2。
最后,在存在上述配制剂下在32°C下,观察5ml油与5ml盐度为13510ppm TDS(总溶解的盐)且包含30ppm碱土金属离子的水的相分离。
表1:在32°C下,在注入水中的溶解性
Figure BDA00002100666100131
从表1清楚看出,在包含30ppm Ca2+和Mg2+的盐水情况下,如果添加NaOH,则需添加络合剂。从C1至C3可以看出,很明显浑浊可归因于氢氧化镁或氢氧化钙沉淀。当添加络合剂时,获得澄清溶液。
表2:在32°C下,在原油和注入水上测量
Figure BDA00002100666100141
表2显示了作为所用配制剂函数的界面张力。从C4和C5可以看出,界面张力不随EDTA含量变化。其高于0.01mN/m。变化至不同表面活性剂体系(C6)或不同盐度(C11)使得界面张力仍保持为0.01mN/m或更高。令人感兴趣的是,通过使用所述聚羧酸化物,与表面活性剂体系、NaOH含量或盐度无关,均可获得显著更低的界面张力。其为3-7×10-3mN/m。
相分离显示出其他差异。在EDTA的情况下,需要700ppm以获得澄清的水相,而在所述聚羧酸化物的情况下(对应于表2中C11和12所述的配制剂的测试)仅需300ppm。

Claims (11)

1.表面活性剂混合物用于通过Winsor III型微乳液驱油三次开采矿物油的用途,其中将表面活性剂混合物经由至少一个注水井注入矿物油藏中,并经由至少一个采出井从所述油藏中取出原油,其中用于将油水之间的界面张力降至<0.1mN/m的所述表面活性剂混合物包含至少一种如下组分:
(a)一种或多种包含至少50mol%丙烯酸单元和/或甲基丙烯酸单元和/或马来酸单元和/或衣康酸单元或其盐的聚羧酸化物,和
(b)一种或多种阴离子和/或非离子表面活性剂。
2.根据权利要求1的表面活性剂混合物的用途,其中所述至少一种聚羧酸化物为具有通过GPC相对于聚丙烯酸酯标样测得的为500-100000g/mol的摩尔质量的聚羧酸化物。
3.根据权利要求1或2的表面活性剂混合物的用途,其中所述聚羧酸化物为包含至少80%丙烯酸或其钠盐作为重复单元的聚丙烯酸化物。
4.根据权利要求1-3中任一项的表面活性剂混合物的用途,其中所述表面活性剂包含一种或多种选自烷基烷氧基化物和烷基芳基烷氧基化物的非离子表面活性剂。
5.根据权利要求1-4中任一项的表面活性剂混合物的用途,其中所述表面活性剂混合物包含一种或多种选自烷基烷氧基硫酸盐和/或烷基烷氧基磺酸盐的阴离子表面活性剂。
6.根据权利要求1-5中任一项的表面活性剂混合物的用途,其中所述表面活性剂混合物包含选自NaOH和Na2CO3的碱性盐。
7.根据权利要求1-6中任一项的表面活性剂混合物的用途,其中所述表面活性剂混合物具有0.05-5重量%的总表面活性剂浓度。
8.根据权利要求1-7中任一项的表面活性剂混合物的用途,其中所述表面活性剂混合物包含0.05-5重量%的总表面活性剂浓度,0.01-5重量%的总聚羧酸化物浓度和0.025-5重量%的总碱性盐浓度。
9.根据权利要求1-7中任一项的表面活性剂混合物的用途,其中在包含超过25ppm碱土金属离子的地层水存在下使用所述表面活性剂混合物。
10.根据权利要求1-9中任一项的表面活性剂混合物的用途,其中获得将油水之间的界面张力降至0.01-0.0001mN/m的值的效果。
11.一种通过Winsor III型微乳液驱油三次开采矿物油的方法,包括如下步骤:
(a)将如权利要求1-10中任一项所述的表面活性剂混合物经由至少一个注水井注入矿物油藏中,和
(b)经由至少一个采出井从所述油藏中取出原油。
CN201180012500.1A 2010-03-10 2011-03-04 聚羧酸化物表面活性剂混合物在微乳液驱油中的用途 Expired - Fee Related CN102858908B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10002491 2010-03-10
EP10002491.8 2010-03-10
PCT/EP2011/053319 WO2011110501A1 (de) 2010-03-10 2011-03-04 Verwendung von Tensidmischungen von Polycarboxylaten zum Mikroemulsionsfluten

Publications (2)

Publication Number Publication Date
CN102858908A true CN102858908A (zh) 2013-01-02
CN102858908B CN102858908B (zh) 2015-11-25

Family

ID=43928004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180012500.1A Expired - Fee Related CN102858908B (zh) 2010-03-10 2011-03-04 聚羧酸化物表面活性剂混合物在微乳液驱油中的用途

Country Status (9)

Country Link
US (1) US8684080B2 (zh)
EP (1) EP2545138A1 (zh)
CN (1) CN102858908B (zh)
AU (1) AU2011226213A1 (zh)
BR (1) BR112012021938A2 (zh)
CA (1) CA2790913A1 (zh)
EA (1) EA023089B1 (zh)
MX (1) MX2012010040A (zh)
WO (1) WO2011110501A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103881676A (zh) * 2014-03-13 2014-06-25 中国石油大学(北京) 一种油外相乳状液驱油剂及其制备方法和应用
CN111051467A (zh) * 2017-05-19 2020-04-21 罗地亚经营管理公司 除去用于采油的压裂液的添加剂

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222013B1 (en) 2008-11-13 2015-12-29 Cesi Chemical, Inc. Water-in-oil microemulsions for oilfield applications
US8607865B2 (en) 2010-03-10 2013-12-17 Basf Se Process for extracting mineral oil using surfactants based on butylene oxide-containing alkyl alkoxylates
CA2793499C (en) 2010-04-16 2014-12-30 Board Of Regents, The University Of Texas System Guerbet alcohol alkoxylate surfactants and their use in enhanced oil recovery applications
US8573299B2 (en) * 2010-10-21 2013-11-05 Chevron U.S.A. Inc. Non-ionic alkali polymer solutions for enhanced oil recovery in a subterranean formation
JP6063879B2 (ja) 2011-03-18 2017-01-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 集積回路デバイス、光デバイス、マイクロマシン及び線幅50nm以下のパターニングされた材料層を有する機械的精密デバイスの製造方法
US9475979B2 (en) 2011-10-24 2016-10-25 Basf Se Process for producing mineral oil using surfactants based on a mixture of C20 Guerbet-, C22 Guerbet-, C24 Guerbet-containing hydrocarbyl alkoxylates
JP5961274B2 (ja) * 2011-10-24 2016-08-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se C28ゲルベとc30ゲルベとc32ゲルベを含有するヒドロカルビルアルコキシレート混合物系の界面活性剤を用いる鉱油の製造方法
EP2771427B1 (de) 2011-10-24 2016-07-06 Basf Se Verfahren zur erdölförderung unter verwendung von tensiden auf basis eines gemisches von c20-guerbet-, c22-guerbet-, c24-guerbet-haltigen kohlenwasserstoff-alkoxylaten
US9475977B2 (en) 2011-10-24 2016-10-25 Basf Se Process for producing mineral oil using surfactants based on a mixture of C28 Guerbet, C30 Guerbet, C32 Guerbet-containing hydrocarbyl alkoxylates
EA201490776A1 (ru) 2011-10-24 2014-10-30 Басф Се Способ добычи нефти с применением поверхностно-активных соединений на основе с28-гуэрбет-, с30-гуэрбет-, с-32-гуэрбет- содержащих углеводород-алкоксилатов
US9475978B2 (en) 2011-10-24 2016-10-25 Basf Se Process for producing mineral oil using surfactants based on a mixture of C24 guerbet-, C26 guerbet-, C28-guerbet containing hydrocarbyl alkoxylates
US9428432B2 (en) 2011-11-24 2016-08-30 BASF Wintershall Holding GmbH Derivatives of tris(2-hydroxyphenyl)methanes, preparation thereof and use thereof for mineral oil production
US9701888B2 (en) * 2012-03-27 2017-07-11 Ecolab Usa Inc. Microemulsion flowback aid composition and method of using same
US9353261B2 (en) 2012-03-27 2016-05-31 Nalco Company Demulsifier composition and method of using same
DK2838970T3 (en) 2012-04-15 2017-03-20 Flotek Chemistry Llc Density formulations for foam filling
US11407930B2 (en) 2012-05-08 2022-08-09 Flotek Chemistry, Llc Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
US9200192B2 (en) 2012-05-08 2015-12-01 Cesi Chemical, Inc. Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
US9868893B2 (en) 2013-03-14 2018-01-16 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9068108B2 (en) 2013-03-14 2015-06-30 Cesi Chemical, Inc. Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US9321955B2 (en) 2013-06-14 2016-04-26 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US10590332B2 (en) 2013-03-14 2020-03-17 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US9884988B2 (en) 2013-03-14 2018-02-06 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10053619B2 (en) 2013-03-14 2018-08-21 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US11180690B2 (en) 2013-03-14 2021-11-23 Flotek Chemistry, Llc Diluted microemulsions with low surface tensions
US10941106B2 (en) 2013-03-14 2021-03-09 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US9428683B2 (en) 2013-03-14 2016-08-30 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US10577531B2 (en) 2013-03-14 2020-03-03 Flotek Chemistry, Llc Polymers and emulsions for use in oil and/or gas wells
US10000693B2 (en) 2013-03-14 2018-06-19 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10421707B2 (en) 2013-03-14 2019-09-24 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US11254856B2 (en) 2013-03-14 2022-02-22 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9464223B2 (en) 2013-03-14 2016-10-11 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10717919B2 (en) 2013-03-14 2020-07-21 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10287483B2 (en) 2013-03-14 2019-05-14 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol
WO2015083113A1 (en) * 2013-12-05 2015-06-11 Basf Se Method and use for the tertiary mineral oil production by means of metal-organic framework materials
US9890624B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with a polymeric material
US9890625B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with an obstruction material
US9505970B2 (en) 2014-05-14 2016-11-29 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10294757B2 (en) 2014-07-28 2019-05-21 Flotek Chemistry, Llc Methods and compositions related to gelled layers in oil and/or gas wells
RU2715771C2 (ru) 2015-02-27 2020-03-03 ЭКОЛАБ ЮЭсЭй ИНК. Композиции для улучшения нефтеотдачи
US10876038B2 (en) * 2015-03-10 2020-12-29 Board Of Regents, The University Of Texas System Short hydrophobe anionic surfactants
US10808165B2 (en) 2016-05-13 2020-10-20 Championx Usa Inc. Corrosion inhibitor compositions and methods of using same
EP3475386B1 (en) 2016-06-28 2021-03-31 Ecolab USA Inc. Composition, method and use for enhanced oil recovery
US10934472B2 (en) 2017-08-18 2021-03-02 Flotek Chemistry, Llc Compositions comprising non-halogenated solvents for use in oil and/or gas wells and related methods
CN111373014B (zh) * 2017-09-21 2023-10-27 巴斯夫欧洲公司 用于强化采油的鲁棒性的烷基醚硫酸盐混合物
US11053433B2 (en) 2017-12-01 2021-07-06 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US11104843B2 (en) 2019-10-10 2021-08-31 Flotek Chemistry, Llc Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency
US11512243B2 (en) 2020-10-23 2022-11-29 Flotek Chemistry, Llc Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258428A (en) * 1992-09-04 1993-11-02 Sridhar Gopalkrishnan Additive composition for oil well cementing formulations
WO2008134332A1 (en) * 2007-04-25 2008-11-06 Baker Hughes Incorporated In situ microemulsions used as spacer fluids
US20090159288A1 (en) * 2007-09-25 2009-06-25 Schlumberger Technology Corporation Chemically enhanced thermal recovery of heavy oil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842492A (en) * 1954-03-03 1958-07-08 Roehm & Haas Gmbh Process for increasing the yield of oil upon the flooding with water of oil deposits
US3039529A (en) * 1959-05-19 1962-06-19 Dow Chemical Co Secondary recovery of petroleum
US3811504A (en) 1973-02-09 1974-05-21 Texaco Inc Surfactant oil recovery process usable in formations containing water having high concentrations of polyvalent ions such as calcium and magnesium
US4049054A (en) * 1974-12-09 1977-09-20 Phillips Petroleum Company Stable mixtures of polymers and surfactants for surfactant flooding
US4266610A (en) * 1978-11-28 1981-05-12 Phillips Petroleum Company Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations
US4951921A (en) * 1983-01-28 1990-08-28 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US4638865A (en) * 1985-05-30 1987-01-27 The Standard Oil Company Bioresistant water-soluble alkyl substituted acrylamide polymers and enhanced oil recovery method employing same
US4825950A (en) * 1986-11-05 1989-05-02 The Standard Oil Company Method of enhanced oil recovery using a stabilized polymer combination in chemical flood
MXPA05014149A (es) * 2003-06-25 2006-02-24 Rhone Poulenc Chimie Polimeros inhibidores de incrustacion marcados, composiciones que comprenden los mismos y metodos para impedir o controlar la formacion de incrustacion.
DE102005026716A1 (de) 2005-06-09 2006-12-28 Basf Ag Tensidmischungen für die tertiäre Erdölförderung
CA2719153C (en) 2008-04-10 2016-06-21 Basf Se Novel surfactants for tertiary mineral oil extraction based on branched alcohols
US7985718B2 (en) 2008-04-21 2011-07-26 Basf Se Use of surfactant mixtures for tertiary mineral oil extraction
US8362180B2 (en) 2009-05-20 2013-01-29 Basf Se Hydrophobically associating copolymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258428A (en) * 1992-09-04 1993-11-02 Sridhar Gopalkrishnan Additive composition for oil well cementing formulations
WO2008134332A1 (en) * 2007-04-25 2008-11-06 Baker Hughes Incorporated In situ microemulsions used as spacer fluids
US20090159288A1 (en) * 2007-09-25 2009-06-25 Schlumberger Technology Corporation Chemically enhanced thermal recovery of heavy oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103881676A (zh) * 2014-03-13 2014-06-25 中国石油大学(北京) 一种油外相乳状液驱油剂及其制备方法和应用
CN111051467A (zh) * 2017-05-19 2020-04-21 罗地亚经营管理公司 除去用于采油的压裂液的添加剂
CN111051467B (zh) * 2017-05-19 2022-05-27 罗地亚经营管理公司 除去用于采油的压裂液的添加剂

Also Published As

Publication number Publication date
AU2011226213A2 (en) 2012-10-18
EA023089B1 (ru) 2016-04-29
CN102858908B (zh) 2015-11-25
BR112012021938A2 (pt) 2016-05-31
EP2545138A1 (de) 2013-01-16
EA201290887A1 (ru) 2013-04-30
US8684080B2 (en) 2014-04-01
CA2790913A1 (en) 2011-09-15
US20110220353A1 (en) 2011-09-15
WO2011110501A1 (de) 2011-09-15
AU2011226213A1 (en) 2012-10-11
MX2012010040A (es) 2012-09-21

Similar Documents

Publication Publication Date Title
CN102858908B (zh) 聚羧酸化物表面活性剂混合物在微乳液驱油中的用途
CN102791825B (zh) 使用基于含c16c18烷基丙氧基表面活性剂的表面活性剂开采矿物油的方法
CN102791824B (zh) 使用基于含氧化丁烯的烷基烷氧基化物的表面活性剂开采矿物油的方法
CN102686696B (zh) 使用表面活性剂混合物的三次矿物油开采方法
CN102869746A (zh) 使用基于含C32 Guerbet、C34 Guerbet、C36 Guerbet烷基烷氧基化物的混合物的表面活性剂开采矿物油的方法
US9505973B2 (en) Process for producing mineral oil using surfactants based on C16C18-containing alkyl propoxy surfactants
US9751905B2 (en) Process for extracting mineral oil using surfactants based on butylene oxide-containing alkyl alkoxylates
CA2852651A1 (en) Process for producing mineral oil using surfactants based on a mixture of c24 guerbet-, c26 guerbet-, c28 guerbet-containing hydrocarbyl alkoxylates
CN102575150A (zh) 使用表面活性剂混合物开采矿物油的方法
CN103998566A (zh) 使用基于含c20格尔伯特-、c22格尔伯特-、c24格尔伯特-烃烷氧基化物的混合物的表面活性剂开采矿物油的方法
US10155900B2 (en) Process for producing mineral oil using surfactants based on a mixture of C24 guerbet, C26 guerbet, C28 guerbet-containing hydrocarbyl alkoxylates
CN102834170A (zh) 使用具有链长为6-10个碳原子的疏水嵌段的阳离子表面活性剂开采矿物油的方法
CN102712840A (zh) 使用表面活性剂混合物的三次矿物油开采方法
US9475979B2 (en) Process for producing mineral oil using surfactants based on a mixture of C20 Guerbet-, C22 Guerbet-, C24 Guerbet-containing hydrocarbyl alkoxylates
US9475977B2 (en) Process for producing mineral oil using surfactants based on a mixture of C28 Guerbet, C30 Guerbet, C32 Guerbet-containing hydrocarbyl alkoxylates
CN103998565A (zh) 使用基于含c28格尔伯特、c30格尔伯特、c32格尔伯特的烃基烷氧基化物的混合物的表面活性剂开采矿物油的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170304