CN102856789B - Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection - Google Patents

Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection Download PDF

Info

Publication number
CN102856789B
CN102856789B CN 201210350017 CN201210350017A CN102856789B CN 102856789 B CN102856789 B CN 102856789B CN 201210350017 CN201210350017 CN 201210350017 CN 201210350017 A CN201210350017 A CN 201210350017A CN 102856789 B CN102856789 B CN 102856789B
Authority
CN
China
Prior art keywords
silicon
annular
layer
type
waveguide
Prior art date
Application number
CN 201210350017
Other languages
Chinese (zh)
Other versions
CN102856789A (en
Inventor
张冶金
王海玲
渠红伟
马绍栋
郑婉华
Original Assignee
中国科学院半导体研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院半导体研究所 filed Critical 中国科学院半导体研究所
Priority to CN 201210350017 priority Critical patent/CN102856789B/en
Publication of CN102856789A publication Critical patent/CN102856789A/en
Application granted granted Critical
Publication of CN102856789B publication Critical patent/CN102856789B/en

Links

Abstract

一种基于微结构硅波导选频的混合硅单模环形腔激光器,包括:一硅衬底;一二氧化硅层制作在硅衬底之上;一硅环状波导层制作在二氧化硅层之上;一键合缓冲层制作在硅波导层上;一N型接触层制作在键合缓冲层之上;一N型电极制作在N型接触层之上的中间;一环状量子阱有源区制作在N型电极的环状部分之内,N型接触层之上;一P型环状接触层制作在环状量子阱有源区之上;一P型环状盖层制作在P型环状接触层之上;一环状P型电极制作在环状P型盖层之上。 Based on the microstructure of the silicon waveguide crossover hybrid silicon single mode ring laser, comprising: a silicon substrate; a silicon dioxide layer is fabricated over a silicon substrate; a cyclic silicon dioxide layer fabricated waveguide layer above; bonding a buffer layer formed on the silicon waveguide layer; a N-type contact layer is produced on the buffer layer, the bonding; a N-type electrode on the intermediate prepared N-type contact layer; quantum well has an annular a source region made in the annular portion of the N-type electrode, over the N-type contact layer; a P-type contact layer prepared on the annular ring-shaped quantum well active region; a P-type cap layer fabricated annular P -type contact layer cyclic; an annular ring-shaped P-type electrode fabricated on P-type cap layer. 本发明该结构在高密度集成,单纵模工作,高效耦合输出。 The structure of the present invention is high-density integration, single longitudinal mode operation, the output coupling efficiency. 更重要的是在工艺加工中省去通常的DFB分布反馈光栅制作及III-V族材料二次外延等工艺步骤,降低复杂性。 More important is omitted conventional distributed feedback DFB grating and produce a Group III-V material for a secondary step epitaxy process, reducing the complexity of the machining process.

Description

基于微结构硅波导选频的混合硅单模环形腔激光器 Hybrid silicon-based microstructure crossover single mode silicon waveguide ring cavity laser

技术领域 FIELD

[0001] 本发明涉及光子光电子器件设计技术领域,尤其涉及一种混合硅基单纵模环形腔微结构激光器,适于光子光电子集成应用。 [0001] The present invention relates to photonic optoelectronic device design, and in particular relates to a hybrid silicon-based micro-cavity single longitudinal mode ring laser structure adapted to photonic integrated optoelectronic applications.

背景技术 Background technique

[0002] 硅基半导体是现代微电子产业的基石,但其发展已接近极限,尤其在互连方面。 [0002] semiconductor silicon is the cornerstone of modern microelectronics industry, but its development has reached the limit, especially in terms of interconnection. 而光电子技术则正处在高速发展阶段,现在的半导体发光器件多利用化合物材料制备,与硅微电子工艺不兼容,因此,将光子技术和微电子技术集合起来,发展娃基光电子科学和技术 Optoelectronic Technology and is in a stage of rapid development is now semiconductor light emitting device prepared using a multi-compound material, it is not compatible with silicon microelectronics processes, therefore, to set up the photonic technologies and microelectronics, optoelectronics group baby development of science and technology

意义重大。 Significant.

[0003] 磷化铟和硅的混合激光是一种目前被认为最有应用前景的适于高密度集成的技术。 [0003] The hybrid laser indium phosphide and silicon is presently considered to be a most promising technology suitable for high density integration. 通常采取带有波导结构的SOI材料与II1-V外延材料通过有机材料粘合,去掉InP衬底,然后再进行激光器的加工,光波是通过倏逝场耦合进入下层的SOI波导的,采用电注入在II1-V材料层完成泵浦。 SOI materials usually taken with II1-V epitaxial material with a waveguide structure by an organic bonding material, an InP substrate is removed, and then the laser processing, light entering through the lower layer of the SOI evanescent field coupling waveguides, by electric injection in the completed pumping II1-V material layer. 这其中键合技术和激光器的单纵模实现非常重要。 Which single longitudinal mode laser bonding techniques and achieve very important. 近几年有人提出基于此混合结构的布拉格分布反馈(DFB),分布反射(DBR),分段光栅等激光器,实现了单波长激射,使之适于密集波分复用系统的传输应用;根特大学的研究人员实现了4波长微碟紧凑型激光器。 In recent years, it was suggested that a hybrid structure of this Bragg distributed feedback (the DFB), distributed Bragg reflector (a DBR), segmented grating laser, to achieve a single lasing wavelength, making it suitable for applications DWDM transmission system; researchers Ghent University realized the compact disc micro-wave laser. 这些激光器还没有商用,主要是因为工艺上还是比较复杂,成本也很高。 These lasers are not commercially viable, primarily because the process is quite complex and costly. 要实现高速光互连,单纵模激光器是核心器件之一。 To achieve high-speed optical interconnection, single longitudinal mode laser is one of the core components. 布拉格分布反馈和分布反射常用的单纵模激光器,这些激光器往往需要全息或电子束等较难或昂贵加工手段,有时还需要二次外延,单片多波长集成很困难。 Distributed feedback and distributed Bragg reflector conventional single longitudinal mode laser, or holographic These lasers often require difficult or expensive electron beam processing methods, sometimes require secondary epitaxial, monolithic integration of multi-wavelength is difficult.

[0004] 本发明公开了一种混合硅-1I1-V族环形腔激光器,适用于硅基光子集成芯片的光源部分。 [0004] The present invention discloses a hybrid silicon -1I1-V group ring laser suitable for a light source portion of the silicon photonic integrated chip. 该半导体激光器包括硅基微结构部分和II1-V族半导体结构部分,其中硅基部分采用娃/ 二氧化娃/娃,即所谓SOI (silicon on insulator)结构,此部分做成环形及波导耦合输出形式,并沿着环形波导加上单周期或多周期微结构狭槽,实现横模和纵模控制。 The semiconductor laser comprises a silicon moiety and microstructure II1-V semiconductor moiety, wherein the silicon part is Wa / Wa dioxide / baby, i.e., a so-called SOI (silicon on insulator) structure, and this portion is made an annular coupling output waveguide form, together with the ring waveguide and along the single or multiple cycle microstructure slot, transverse mode and longitudinal mode to achieve control. II1-V族为InGaAlAs/InP系结构直接键合于SOI上,为增益材料,有源区以上同样为环形结构,且与SOI上的环形相匹配。 II1-V Group of InGaAlAs / InP based on the structure directly bonded to the SOI, the gain material, the same as the active region above the annular structure and the annular matches SOI. 本发明特点在于硅基半导体激光器单模的实现方式,不是采用常规的分布布拉格反馈或反射结构,也不是一般简单的环形结构,而是采用硅基环形结构上刻入周期微结构来实现,容易大规模加工的硅基上周期微结构和倏逝场波导结构来实现光波耦合和单纵模工作,可较普通的环形腔有较高的边模抑制比和较高的功率,并可大幅度降低某一方向的尺寸,满足集成需要。 Implementations of the present invention features a silicon single-mode semiconductor laser, instead of using a conventional distributed Bragg reflection structure or feedback, is not generally simple ring configuration, instead of using periodic microstructures etched into the silicon ring structure to achieve, easy the large-scale processing on the silicon periodic microstructures and evanescent field optical wave waveguide structure to achieve single longitudinal mode coupling and work can be more common annular chamber has a higher side mode suppression ratio and a higher power, and significantly reducing the size of a certain direction, to meet the need for integration. 在硅基环形腔上通过新的增强选模机制来实现单纵模工作,而不用引入电子束或全息曝光等技术,有利于降低成本。 Annular cavity in the silicon single longitudinal mode is achieved by the new enhanced mode selection mechanism without introducing electron beam or holographic exposure techniques, help reduce costs. 目前通过微结构和环形腔双重作用实现硅基混合的单纵模激光器还未见报道。 Mixing silicon currently achieved by the dual role of microstructure and single longitudinal mode laser annular chamber has not been reported.

发明内容 SUMMARY

[0005] 本发明的目的在于,提出一种混合硅-1I1-V族新型微结构环形腔单模激光器,该结构在高密度集成,单纵模工作,高效耦合输出,高边模抑制比高功率输出等方面很有优势。 [0005] The object of the present invention is to propose a hybrid silicon -1I1-V Group novel microstructure annular cavity single mode laser, the structure in high-density integration, single longitudinal mode operation, the output coupling efficiency, high side mode suppression ratio power output and other aspects of great advantage. 更重要的是在工艺加工中省去通常的DFB分布反馈光栅制作及II1-V族材料二次外延等工艺步骤,降低复杂性,采用新型的选频机制,利于高质量光源的集成。 More important is omitted conventional distributed feedback DFB grating and II1-V Group making material for a secondary step epitaxy process, reduce complexity, the use of new frequency selection mechanism, a high quality source of beneficial integrated in the processing technology.

[0006] 为了达到以上目的,本发明提供了一种基于微结构硅波导选频的混合硅单模环形腔激光器,包括: [0006] To achieve the above object, the present invention provides a silicon-based microstructure mixing silicon single mode waveguide ring cavity laser frequency selection, comprising:

[0007] —娃衬底,该娃衬底为单晶娃材料; [0007] - a substrate baby, the baby doll monocrystalline material substrate;

[0008] 一二氧化硅层,该二氧化硅层制作在硅衬底之上; [0008] a silicon dioxide layer, the silicon oxide layer produced on the silicon substrate;

[0009] 一硅环状波导层,该硅环状波导层制作在二氧化硅层之上,该硅环状波导层的平面内开有两条平行的环形空气沟道,该两条环状空气沟道之间为带有周期微结构的环状脊形条;在两条环形空气沟道的一侧切向开有两条直空气沟道,形成耦合输出; [0009] a cyclic silicon waveguiding layer, the silicon layer is produced on the annular waveguide silicon dioxide layer, there are two parallel open annular air channel within the plane of the annular silicon waveguide layer, the two annular having an annular air channel between the ridge stripe is periodic microstructure; two annular air channel on the side of the two straight tangential air channel is opened, a coupling outputs;

[0010] —键合缓冲层,其制作在娃波导层上; [0010] - bonding buffer layer formed on the waveguide layer baby;

[0011] 一N型接触层,其制作在键合缓冲层之上; [0011] a N-type contact layer, which is produced in the bonding layer on the buffer;

[0012] 一N型电极,其制作在N型接触层之上的中间,该N型电极由环状部分和方形焊线部分连接而成,该环状部分内边缘与环形空气沟道的外环外边缘相切; [0012] a N-type electrode, which is made on the N-type contact layer of the intermediate, the N-type electrode are connected by bonding wires annular portion and square portion from the inner edge of the annular portion and an outer annular air channel tangent to the outer edge of the ring;

[0013] 一环状量子阱有源区,该环状量子阱有源区制作在N型电极的环状部分之内,N型接触层之上,形状与环状脊形条相同; [0013] a cyclic quantum well active region, the quantum well active region made annular in the annular portion of the N-type electrode, over the N-type contact layer, the shape of the annular ridge stripe same;

[0014] 一P型环状接触层,其制作在环状量子阱有源区之上; [0014] a P type annular contact layer, which is produced on the annular quantum well active region;

[0015] 一P型环状盖层其制作在P型环状接触层之上; [0015] a cap layer which is made of P-type ring on the P-type annular contact layer;

[0016] 一环状P型电极,其制作在环状P型盖层之上。 [0016] An annular P-type electrode, which is fabricated on an annular P-type cap layer.

[0017] 从上述技术方案可以看出,本发明具有以下有益效果: [0017] As can be seen from the above technical solutions, the present invention has the following advantages:

[0018] 1、本发明提供的这种基于倏逝场耦合及微结构环形腔选频的混合硅单纵模激光器,利用倏逝场实现光波的耦合输出,减少反射能量损失,有利于提高激光器效率。 [0018] 1, which is selected based on the present invention provides evanescent field coupling and the annular chamber microstructure mixed frequency silicon single longitudinal mode laser, realized using evanescent field coupling out light waves, to reduce the loss of reflected energy, lasers help to improve effectiveness.

[0019] 2、本发明提供的这种混合硅微结构环形腔单纵模激光器,通过环形腔和周期微结构实现选频和单纵模输出,可实现更大的边模抑制比和高输出光功率,更具有在光子集成中大规模应用价值。 [0019] 2, the hybrid silicon microstructure of the present invention to provide an annular cavity single longitudinal mode laser to achieve single longitudinal mode frequency selection and output via the annular chamber and the periodic microstructures can be greater the higher side mode suppression ratio and an output optical power, more large-scale application in photonic integrated value. 优势在于环形腔和周期微结构在硅基上利用普通光刻腐蚀工艺就可实现,而不必通过电子束、全息曝光等昂贵复杂工艺技术实现。 The advantage that the annular chamber and periodic microstructures using a general photolithographic etching process on the silicon can be achieved without necessarily achieving by electron beam holographic exposure and other expensive and complicated technology.

附图说明 BRIEF DESCRIPTION

[0020] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明,其中: [0020] The object of the present invention, the technical solution and merits thereof more apparent hereinafter in conjunction with specific embodiments, and with reference to the accompanying drawings, the present invention is further described in detail, in which:

[0021] 图1是本发明三维整体结构示意图; [0021] FIG. 1 is a schematic view of the overall three-dimensional structure of the present invention;

[0022] 图2是图1的分解图示意图; [0022] FIG. 2 is an exploded schematic view of Figure 1;

[0023] 图3是图2中硅环状波导层上的波导结构示意图; [0023] FIG. 3 is a schematic view of the silicon waveguide structure on the annular waveguide layer 2;

[0024] 图4是是硅波导宽度对调整耦合量和增益调整的影响示意图; [0024] FIG. 4 is a schematic view of the silicon waveguide width adjustment affect coupling and gain adjustment;

[0025] 图5是环形波导上微结构周期和槽深度对1550nm波长反馈的影响图。 [0025] FIG. 5 is a doubly periodic impact and the groove depth of the ring waveguide for wavelength of 1550nm feedback.

具体实施方式 Detailed ways

[0026] 硅基激光器是光子芯片中的核心器件,在片上光互连、光交换中都有极其重要的作用。 [0026] The core device is the laser photon silicon chips, interconnection sheet gloss, the optical switching has a very important role.

[0027] 请参阅图1和图2所示,本发明提出一种硅基并具有单模工作特性的集成光源,采用的是硅基和II1-V半导体材料的混合结构,在电注入的情况下,通过倏逝场耦合和硅基上的环形腔和周期微结构而实现单模激射,并将输出光耦合到硅基波导中。 [0027] Please refer to FIGS. 1 and 2, the present invention proposes a silicon-based integrated light source and having a single-mode operating characteristics, and the use of silicon-based hybrid structure II1-V semiconductor material, in the case of electrical injection next, the annular chamber through the single mode lasing and periodic microstructures on silicon and evanescent field coupling, and the output light is coupled into the silicon waveguide. 增益介质采用半导体多量子阱结构,利用共面电极实现电注入,II1-V族盖层和有源多量子阱也是采取环形腔模式,上面可以有微结构。 A semiconductor gain medium using a multi-quantum well structure using coplanar electrodes electrically injection, II1-V group and the cap layer is a multiple quantum well active annular chamber taking mode, the above can have a microstructure. 该激光器适于高密度光子光电子集成的需要。 The optoelectronic photon laser suitable for high density integration.

[0028] 请参阅图1和图2所示,本发明提供基于倏逝场耦合及周期微结构选频混合硅单模激光器,包括硅基微结构环状波导部分和II1-V族半导体增益部分(上面也有环状波导结构),整体立体结构如图1所示。 [0028] Please refer to FIGS. 1 and 2, the present invention provides an evanescent field coupling based and frequency-selective periodic microstructures hybrid silicon single mode laser, the waveguide comprises a silicon microstructure annular portion and II1-V semiconductor gain section (also annular waveguide structure above), the entire three-dimensional structure as shown in FIG. 分层结构示意图和硅环状波导层上的波导结构分别如图2和图3所示。 A schematic view of a layered structure and a waveguide structure on the silicon waveguide layer are annular in Figures 2 and 3.

[0029] 整体结构包括两大部分娃基-SOI (siliconon insulator)部分和II1-V材料部分,具体如下: [0029] The overall structure consists of two parts baby yl -SOI (siliconon insulator) portion and II1-V material portions, as follows:

[0030] 请参阅图2,一硅衬底10为单晶硅材料; [0030] Referring to FIG 2, a silicon substrate 10 of single crystal silicon;

[0031] 一二氧化硅层11,该二氧化硅层11位于硅衬底10之上; [0031] a silicon dioxide layer 11, the silicon oxide layer 11 on the silicon substrate 10;

[0032] 一硅环状波导层12,该环状波导层12其上面有周期微结构121,环状波导层12位于二氧化硅层11之上; [0032] a cyclic silicon waveguide layer 12, the annular waveguide layer 12 has a periodic microstructure structure 121 thereon, the waveguide layer 12 is located above the annular silicon dioxide layer 11;

[0033] 其中硅衬底10,二氧化硅11及硅环状波导层12为硅基材料,也称为SOI材料; [0033] wherein the silicon substrate 10, silicon dioxide 11 and silicon layer 12 is a silicon waveguide cyclic materials, also known as SOI material;

[0034] 娃环状波导层12典型厚度为0.2到I微米,娃衬底10,厚度大于50微米,中间层为二氧化硅11,厚度为I到3微米。 [0034] The typical thickness of 12 baby annular waveguide layer of 0.2 to I micron, baby substrate 10, a thickness greater than 50 microns, the intermediate layer 11 of silicon dioxide, having a thickness of I to 3 microns. 带有周期微结构的脊形条122就做在该SOI材料上(参阅图3),是通过常规半导体光刻、湿法或干法刻蚀工艺在SOI的上层硅材料中刻蚀两个相套环形沟道121,形成宽度W2为I到3微米的脊形条,环形腔整体结构为跑道型,圆区半径R为100-200微米,直线部分L长为100-500微米,周长为几百到几千微米的闭环形波导。 The ridge stripe structure having periodic microstructures 122 do on the SOI material (see FIG. 3), by conventional semiconductor lithography, wet etching or a dry etching process in two phases of the upper SOI silicon material sets of annular channel 121 is formed to a width W2 of 3 micrometers I ridge stripe, the overall configuration of the annular chamber racetrack, circular area of ​​100-200 m radius R, a straight portion length L of 100-500 m and a circumference of closed waveguide hundreds to thousands of micrometers. 导光区为硅材料,下面限制材料为SOI材料的中间层二氧化硅,两侧通过刻蚀2-3微米宽大于300纳米深的沟道形成横向限制,上面与II1-V族材料连在一起。 Light guide region of silicon material, the following material is restricted SOI material intermediate layer of silicon dioxide, is formed on both sides of the lateral confinement in the deep trench 300 by etching the nano 2-3 microns wide, with the upper II1-V group material attached together. 该硅基倏逝场波导上精确分布着周期的微结构,是通过干法刻蚀工艺形成的。 On the silicon waveguide evanescent field precision microstructures distributed cycle, it is formed by a dry etching process. 周期数目从几十到几百不等,根据反馈需要而定。 The number of cycles varies, depending on need based on feedback from tens to hundreds. 周期P为2-10微米,对于周期微结构而言槽宽Wl为I至1.2微米。 Period P is 10 microns, for periodic microstructures width Wl is I to 1.2 microns. 该微结构选出激光器激射波长在1.5微米波段,而可以设计成1.3微米波段。 The microstructure of the selected laser lasing wavelength 1.5 micron band, and may be designed to 1.3 micron band. 通过调整周期和微结构狭槽宽度能够实现波长的选择。 By adjusting the width of the slot period and the microstructure to achieve wavelength selection.

[0035] 在两条环形空气沟道121的一侧切向开有两条直空气沟道123,形成耦合输出。 [0035] In one side of the two annular air channel 121 is opened two tangential straight air channel 123, forming the coupling-out.

[0036] 一键合缓冲层和N型接触层13,位于环状硅波导层12之上,形状相同,宽度可以不同;其中键合缓冲层在N型接触层之下,N型接触层通过横向注入方式形成电极; [0036] bonding a buffer layer and an N-type contact layer 13, located on the cyclic silicon waveguide layer 12, the same shape, width or different; wherein the bonding of the buffer layer beneath the N-type contact layer, N-type contact layer laterally injecting electrode is formed;

[0037] —环状多量子阱有源区14位于键合缓冲层和N型接触层13之上,形成环状脊形条状; [0037] - cyclic multiple quantum well active region 14 is located and bonded to the buffer layer on the N-type contact layer 13, an annular ridge stripe;

[0038] 一环状P型接触层及P型盖层15,其位于环状多量子阱有源区14之上,仍然是环状脊形条状,其中环状P型接触层在上,环状P型盖层在下。 [0038] An annular P-type contact layer and the P-type cap layer 15, which is located cyclic above multiple quantum well active region 14, remains the annular ridge stripe, wherein the annular contact layer on the P-type, the lower annular P type cap layer. 环状P型接触层上面覆盖电极。 An annular P-type contact layer covered with electrodes.

[0039] 所述的基于微结构硅波导选频的混合硅单模环形腔激光器,其中键合缓冲层和N型接触层13,环状多量子阱有源区14,环状P型接触层及环状P型盖层15,均为II1-V族材料。 [0039] Based on the microstructure of the silicon waveguide crossover hybrid silicon single-mode ring laser, 14, an annular P-type contact layer 13, a multiple quantum well active region cyclic bonding buffer layer and the N-type contact layer and an annular P-type cap layer 15, are II1-V group material.

[0040] 所述的基于微结构娃波导选频的混合娃单模环形腔激光器,环状娃波导层12上通过制作两个同心环状空气沟道平面内嵌套形成一个环状硅条,该环状硅条上方为键合缓冲层和N型接触层13,下方为二氧化硅层11,其他部分被空气包围,该环状硅条厚度即为环状硅波导层12厚度,宽度为1-5微米,与上方II1-V族材料形成消逝场耦合波导。 [0040] Based on the frequency selective waveguide microstructure baby doll mixed single mode ring laser, the waveguide layer is nested within the annular channel baby plane annular strip of silicon is formed by making a two concentric annular air 12, the upper annular strip of silicon-bonded to the buffer layer and the N-type contact layer 13, a silicon dioxide layer 11 below the other part is surrounded by air, the annular silicon strip thickness is the thickness of the annular silicon waveguide layer 12, a width 1-5 microns, with the upper II1-V group material forming a waveguide evanescent field coupling. 沿着该硅条分布周期微结构121,周期在2-10微米。 Periodic microstructures distributed along the silicon strips 121, in cycle 10 microns.

[0041] 所述的基于微结构硅波导选频的混合硅单模环形腔激光器,键合缓冲层和N型接触层13上面有横向注入电极、环状P型接触层及环状P型盖层15上覆盖电极均为Ti/Au材料或其他金属薄膜。 [0041] Based on the microstructure of the silicon waveguide crossover hybrid silicon single-mode ring laser, the bonding of the buffer layer and the N-type contact layer 13 above the lateral injection electrode, an annular P-type contact layer and the P type annular cap layer 15 covering the electrodes were Ti / Au or other metal thin film material.

[0042] 所述的基于微结构硅波导选频的混合硅单模环形腔激光器,环状多量子阱有源区14,量子阱数为3-9个,发光波长大于1.1微米,为铟镓砷磷或铟镓铝砷多量子阱系,与铟磷形成晶格匹配或引入一定应变。 [0042] the hybrid silicon-based silicon waveguide crossover microstructures single mode ring laser, cyclic multiple quantum well active region 14, the number of quantum wells 3-9, emission wavelength greater than 1.1 microns, indium gallium arsenide phosphide or indium gallium aluminum arsenide multiple quantum well system, lattice matched to InP is formed or introduced a certain strain.

[0043] 所述的基于微结构娃波导选频的混合娃单模环形腔激光器。 [0043] Based on the single-mode ring laser hybrid baby doll waveguide microstructure frequency selection. 环状娃波导12上分布的周期微结构121,可以有多种周期形式级联,微结构单元可以是“一”字型、“十”字形或圆孔型等等。 Periodic microstructures 121 on the annular distribution baby waveguide 12, there may be various forms of cascade cycle, microstructure units may be a "one" type, "ten" and the like or circular type.

[0044] 如图2顶视图所示,周期结构可做于硅波导上,也可作于II1-V族限制层上。 [0044] The top view shown in Figure 2, to do periodic structure on silicon waveguide can also be made on the confinement layer II1-V group.

[0045] II1-V族半导体材料是利用沉积工艺生长的多层薄膜,由上到下依次为P型上电极接触层/半导体材料盖层/铟镓铝砷多量子阱层/N型下电极接触层/超晶格层/键合层,多量子阱区以下所采用的下限制层结构包括接触层厚度为110纳米左右,两个周期的InGaAlAs/InP超晶格分别为7.5纳米,键合层为InP,厚度为10纳米.该材料通过键合层与SOI的带图形顶层硅通过直接键合贴在一起。 [0045] II1-V semiconductor material is grown a multilayer thin film deposition process is, from top to bottom order of the P-type electrode contact layer / cap layer of semiconductor material / indium gallium aluminum arsenide multiple quantum well layer / N-type lower electrode contact layer / superlattice layer / bonding layer, the lower confinement layer structure of a multiple quantum well region employed comprises the contact layer thickness of about 110 nm, two cycle InGaAlAs / InP superlattice were 7.5 nm, bonding layer is InP, with a thickness of 10 nm. the material affixed together by direct bonding via the bonding layer and the top silicon layer of the SOI with graphic. 去除II1-V衬底后,可用普通光刻与刻蚀技术,在II1-V材料上形成与硅上环形相匹配的圆环。 After removal II1-V substrate, by an ordinary photolithography and etching technique, the silicon is formed on the annular ring to match in II1-V material. 一般而言II1-V族环形波导宽度在10微米左右。 Generally II1-V group ring waveguide width of approximately 10 microns. 整个II1-V族下限制层结构与键合的SOI波导形成消逝场耦合。 The entire II1-V Group evanescent field confinement layer and a bonded SOI structure forming a waveguide. 该材料体系可实现更高的增益。 The material system can achieve higher gain.

[0046] 混合硅基微结构环形腔单纵模激光器在工艺上的具体实施方式如图2所示。 [0046] mixing the silicon microstructure annular cavity single longitudinal mode laser DETAILED DESCRIPTION In the process shown in FIG. 包括在SOI材料上利用普通光刻方式制备跑道型微结构波导;定制II1-V族多量子阱有源区外延片;S0I与II1-V族外延材料低温图形键合;去除II1-V族InP衬底;在II1-V族外延层的N接触层以上形成环形腔,与SOI上的环形腔相匹配;蒸发绝缘层及Ti/Au金属层和形成共面电极,还包括解理和封装等。 Runway preparation comprising micro-structure of the waveguide on the SOI material using normal lithography; II1-V Group customize multiple quantum well active region wafer; II1-V Group SOI and low temperature epitaxial material bonding pattern; removing II1-V Group InP a substrate; forming an annular chamber above the N contact layer II1-V group epitaxial layer, with annular chamber on the SOI match; insulating layer was evaporated and the Ti / Au metal layer and a coplanar electrodes, further comprising a cleavage and packaging . 整个过程,不需要电子束,全息曝光及二次外延等技术。 The whole process, no electron beam, and the second epitaxial holographic exposure techniques. 而且电极制作简单,不需要特殊的N型电极制作。 And electrode fabrication is simple, no special N-type electrode production.

[0047] 分析表明,如图4所示,上层为II1-V族材料区,中间为Si,下层为SiO2,可见当中间Si波导宽度变化时,可以调整光场在上层增益区和中间层传导区的分布,而且Si波导宽度在I微米以上,不用电子束等昂贵工艺。 [0047] The analysis showed that, as shown, the upper 4 II1-V group material region, the intermediate is Si, the lower layer is of SiO2, Si visible when the intermediate waveguide width variation, can adjust the gain region and the upper intermediate layer of conductive optical field distribution area, and the waveguide width in the micrometer or more Si I, without expensive processes like electron beam. 这样就可以通过调整硅基消逝场波导宽度,调整耦合量和增益,实现硅波导光输出。 Thus by adjusting the width of the silicon evanescent field of the waveguide, coupling and gain adjustment, to achieve a silicon waveguide light output.

[0048] 针对微结构环形腔选频,分析表明图5,环形腔上微结构周期,深度等对模式选择均有影响,当周期在9.5微米使可选出1550nm波长,环形腔尺寸为半径200微米,直线部分长度为700微米。 [0048] The frequency selection annular chamber for microstructure analysis indicates that in FIG. 5, the annular chamber periodic microstructure, depth of the mode selection are affected, when the period can be selected so that the 9.5 micron wavelength of 1550nm, a size of a radius of the annular chamber 200 m, a length of straight portion 700 micrometers. 边模抑制比达到40dB左右。 Side mode suppression ratio of around 40dB. 初步验证可以形成单模,好处是微结构尺度在微米量级,普通光刻就可以实现。 Preliminary validation can form a single-mode, the advantage is in the micrometer scale microstructures, ordinary lithography can be achieved.

[0049] 在本发明中,通过调整环周长,微结构周期能够实现波长的调节。 [0049] In the present invention, by adjusting the ring circumference, doubly periodic wavelength adjustment can be achieved. 可以对模式进行控制。 It can be controlled mode.

[0050] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 Specific Example [0050] above, the objectives, technical solutions, and beneficial effects of the present invention will be further described in detail, it should be understood that the above descriptions are merely embodiments of the present invention, but not intended to limit the present invention, within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc., should be included within the scope of the present invention.

Claims (4)

1.一种基于微结构娃波导选频的混合娃单模环形腔激光器,包括: 一硅衬底,该硅衬底为单晶硅材料; 一二氧化硅层,该二氧化硅层制作在硅衬底之上; 一硅环状波导层,该硅环状波导层制作在二氧化硅层之上,该硅环状波导层的平面内开有两条平行的环形空气沟道,该两条环状空气沟道之间为带有周期微结构的环状脊形条;在两条环形空气沟道的一侧切向开有两条直空气沟道,形成耦合输出; 其中环状脊形条的高度与硅环状波导层的厚度相同,宽度为1-5微米,与其上方的II1-V族材料形成消逝场耦合波导,该环状脊形条分布的微结构周期为210微米; 其中环状硅波导层上分布的带有周期微结构的环状脊形条,是周期形式级联,微结构单元是“一”字型、“十”字形或圆孔型; 一键合缓冲层,其制作在硅波导层上; 一N型接触层,其制作在键合缓冲层 1. Based on the mixing microstructure baby doll single mode waveguide ring cavity laser frequency selection, comprising: a silicon substrate, the silicon substrate is a single crystal silicon material; a silicon dioxide layer, the silicon oxide layer produced in over a silicon substrate; a cyclic silicon waveguiding layer, the silicon layer is produced on the annular waveguide silicon dioxide layer, there are two parallel open annular air channel within the plane of the annular silicon waveguide layer, the two Article annular air channel between the annular ridge stripe structure having periodic microstructures; two annular air channel on the side of the two straight tangential air channel is opened, a coupling output; wherein the annular ridge the same thickness as the height of annular silicon strip waveguide layer, a width of 1-5 microns, and its II1-V group material is formed over the waveguide evanescent field coupling, the microstructure of the annular ridge stripe cycle distribution of 210 microns; wherein cyclic silicon distributed over the annular ridge stripe waveguide layer having periodic microstructures is in the form of a cascade cycle, microstructure units "a" type, "ten" shaped or circular type; a buffer layer bonded , which is formed on the silicon waveguide layer; a N-type contact layer, which is produced in the bonding of the buffer layer 之上; 一N型电极,其制作在N型接触层之上的中间,该N型电极由环状部分和方形焊线部分连接而成,该环状部分内边缘与环形空气沟道的外环外边缘相切; 一环状量子阱有源区,该环状量子阱有源区制作在N型电极的环状部分之内,N型接触层之上,形状与环状脊形条相同; 一P型环状接触层,其制作在环状量子阱有源区之上; 一P型环状盖层其制作在P型环状接触层之上; 一环状P型电极,其制作在环状P型盖层之上。 Above; an N-type electrode, which is made on the N-type contact layer of the intermediate, the N-type electrode are connected by bonding wires annular portion and square portion from the inner edge of the annular portion and an outer annular air channel tangent to the outer edge of the ring; a ring-quantum well active region, the quantum well active region made annular in the annular portion of the N-type electrode, over the N-type contact layer, the shape of the annular ridge stripe same ; a P type annular contact layer, which is produced on the annular quantum well active region; a P-type cap layer which is made annular on the P-type contact layer ring; a ring-shaped P-type electrode, which is produced the annular cap layer over the P-type.
2.根据权利要求1所述的基于微结构硅波导选频的混合硅单模环形腔激光器,其中键合缓冲层、N型接触层、环状量子阱有源区、P型环状接触层和P型环状盖层均为II1-V族材料。 The microprocessor-based silicon waveguide structure is selected from a silicon single-mode frequency-mixing ring lasers, wherein the bonding of the buffer layer, N-type contact layer, a cyclic quantum well active region, P-type contact layer of the cyclic claimed in claim 1, and the P-type cap layer are cyclic II1-V group material.
3.根据权利要求1所述的基于微结构硅波导选频的混合硅单模环形腔激光器,其中N型电极、环状P型电极均为Ti/Au材料。 3. The microprocessor-based silicon waveguide structure is selected from a silicon single-mode frequency-mixing ring lasers, where N-type electrode, an annular P-type electrode are both Ti / Au material according to claim 1.
4.根据权利要求1所述的基于微结构硅波导选频的混合硅单模环形腔激光器,其中环状量子阱有源区,量子阱数为1-9个,发光波长大于1.1微米,为铟镓砷磷或铟镓铝砷多量子阱系,与铟磷形成晶格匹配或引入一应变。 The microprocessor-based silicon waveguide structure is selected from a silicon single-mode frequency-mixing ring lasers, wherein the cyclic quantum well active region, the number of quantum wells is 1 to 9, the emission wavelength greater than 1.1 microns to 1, as claimed in claim or indium gallium arsenide phosphide, indium gallium aluminum arsenide multiple quantum well system, lattice matching with InP is formed or introduced strain.
CN 201210350017 2012-09-19 2012-09-19 Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection CN102856789B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210350017 CN102856789B (en) 2012-09-19 2012-09-19 Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210350017 CN102856789B (en) 2012-09-19 2012-09-19 Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection

Publications (2)

Publication Number Publication Date
CN102856789A CN102856789A (en) 2013-01-02
CN102856789B true CN102856789B (en) 2014-01-01

Family

ID=47403107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210350017 CN102856789B (en) 2012-09-19 2012-09-19 Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection

Country Status (1)

Country Link
CN (1) CN102856789B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110605A (en) * 2017-06-23 2018-06-01 青岛海信宽带多媒体技术有限公司 A kind of silicon substrate laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117510A (en) * 2013-01-25 2013-05-22 中国科学院半导体研究所 Hybrid silicon-based whispering gallery mode microcavity laser

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141495A (en) * 2000-11-02 2002-05-17 Takashi Katoda Electronic device and optical device having micro structure manufactured using focused ion beam
CN100375352C (en) * 2005-08-31 2008-03-12 中国科学院半导体研究所 Silicon based photon crystal micro-cavity Raman laser structure
US7486709B2 (en) * 2006-07-26 2009-02-03 Corning Incorporated Semiconductor laser micro-heating element structure
JP2008160157A (en) * 2008-03-21 2008-07-10 Mitsubishi Electric Corp Semiconductor laser device
US8693509B2 (en) * 2010-06-30 2014-04-08 The Regents Of The University Of California Loss modulated silicon evanescent lasers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Haisheng Rong, et al.A continuous-wave Raman silicon laser.《NATURE》.2005,第433卷725-727.
Haisheng Rong, et al.Monolithic integrated raman silicon laser.《OPTICS EXPRESS》.2006,第14卷(第15期),6705-6712.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110605A (en) * 2017-06-23 2018-06-01 青岛海信宽带多媒体技术有限公司 A kind of silicon substrate laser

Also Published As

Publication number Publication date
CN102856789A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
Roelkens et al. III-V/Si photonics by die-to-wafer bonding
CN1263208C (en) Mode control using transversal bandgap structure in vertical cavity surface emitting laser (VCSEL)
US6574398B2 (en) Direct-coupled multimode WDM optical data links with monolithically-integrated multiple-channel VCSEL and photodetector arrays
EP2396861B1 (en) Hybrid vertical-cavity laser
EP0999621B1 (en) Semiconductor device with aligned oxide apertures and contact to an intervening layer
EP1544967B1 (en) Grating-outcoupled microcavity disk resonator
EP2539979B1 (en) Laser light coupling into SOI CMOS photonic integrated circuit
Bakir et al. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers
DE60212344T2 (en) By electrical absorption modulated laser with asymmetrical wave ladder
US6151347A (en) Laser diode and method of fabrication thereof
CN101443915B (en) Quantum dot based optoelectronic device and method of making same
JP5387671B2 (en) Semiconductor laser and integrated device
CN105047735A (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
JP2004521491A (en) Resonant reflector for use with optoelectronic devices
JP3751052B2 (en) Integrated optical control element and a method for manufacturing the same, and an optical integrated circuit element and the optical integrated circuit device including the same
US20020003824A1 (en) Surface-emitting laser devices with integrated beam-shaping optics and power-monitoring detectors
JPH07105573B2 (en) Manufacturing method of an integrated optical device
Studenkov et al. Asymmetric twin-waveguide 1.55-μm wavelength laser with a distributed Bragg reflector
US20050063440A1 (en) Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same
KR20080049705A (en) Surface emitting optical devices
JP2013545318A (en) Surface emitting laser system and manufacturing method thereof
CN1263209C (en) Vertical cavity surface emitting laser and a method of fabrication thereof
US8217410B2 (en) Hybrid vertical cavity light emitting sources
Happ et al. Nanofabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers
CN1879270B (en) Semiconductor laser device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
COR Change of bibliographic data