CN102856507B - 发光结构、包括发光结构的显示装置及其制造方法 - Google Patents

发光结构、包括发光结构的显示装置及其制造方法 Download PDF

Info

Publication number
CN102856507B
CN102856507B CN201210061071.3A CN201210061071A CN102856507B CN 102856507 B CN102856507 B CN 102856507B CN 201210061071 A CN201210061071 A CN 201210061071A CN 102856507 B CN102856507 B CN 102856507B
Authority
CN
China
Prior art keywords
sub
layer
pixel area
organic luminous
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210061071.3A
Other languages
English (en)
Other versions
CN102856507A (zh
Inventor
李圣秀
宋沃根
金世�
金世一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Publication of CN102856507A publication Critical patent/CN102856507A/zh
Application granted granted Critical
Publication of CN102856507B publication Critical patent/CN102856507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明公开了一种发光结构、包括发光结构的显示装置及其制造方法。该发光结构包括第一空穴注入层、第一有机发光层、电荷产生层、第二空穴注入层、第二有机发光层、电子传输层以及阻挡元件。发光结构具有第一子像素区、第二子像素区以及第三子像素区。第一有机发光层可位于所述第一空穴注入层上。电荷产生层可位于所述第一有机发光层上。第二空穴注入层可位于所述电荷产生层上。第二有机发光层可位于所述第二空穴注入层上。电子传输层可位于所述第二有机发光层上。阻挡元件可位于所述第一至第三子像素区至少之一处。

Description

发光结构、包括发光结构的显示装置及其制造方法
相关申请的交叉引用
本申请要求2011年6月29日提交的第10-2011-0063644号韩国专利申请的优先权,其公开内容通过引用而整体合并于此。
技术领域
本发明的示例实施例涉及发光结构、包括发光结构的显示装置以及制造包括发光结构的显示装置的方法。
背景技术
有机发光显示(OLED)装置利用由其中的有机层产生的光来显示诸如图像和字符之类的信息。关于有机发光显示装置,光可通过在阳极和阴极之间的有机层处发生的来自阳极的空穴和来自阴极的电子的结合而产生。在诸如液晶显示(LCD)装置、等离子体显示(PDP)装置和场发射显示(FED)装置之类的各种显示装置中,有机发光显示装置具有诸如视角宽、响应时间快、厚度薄以及功耗低等的特点,从而有机发光显示装置广泛应用于各种电气和电子设备中,例如电视机、监视器、移动通讯装置、MP3播放器、便携式显示装置等等。近年来,有机发光显示装置已经被视为最有前景的下一代显示装置之一。
在常规的有机发光显示装置中,由电极提供的电子和空穴可在有机层处被重新结合以产生激子,从而具有特定波长的光可由激子的能量产生以显示图像。虽然有机发光显示装置可具有单层结构、多层结构或颜色转换结构,不过多层结构被广泛应用于有机发光显示装置中。多层结构可包括分别发射红光、绿光和蓝光的有机层,因此红光、绿光和蓝光可被结合以产生白光。然而,常规的有机发光显示器可能具有例如有机层的相对低的功能稳定性和光的低的色纯度的一些缺点。即使可将彩色滤光片布置在有机层上方来改善光的色纯度,制造工艺也可能复杂且用于显示装置的制造成本也可能增加。进一步,常规的有机发光显示装置可能由于彩色滤光片而具有低的发光效率。
发明内容
本发明的示例实施例致力于一种具有改善的色纯度、增强的颜色再现性以及增加的亮度的发光结构。
本发明的示例实施例致力于一种能够显示具有改善的色纯度和增强的亮度的高分辨率图像的显示装置。
本发明的示例实施例致力于一种制造能够显示具有改善的色纯度和增加的亮度的高分辨率图像的显示装置的方法。
根据示例实施例,发光结构包括第一空穴注入层、第一有机发光层、电荷产生层、第二空穴注入层、第二有机发光层、电子传输层以及阻挡元件。发光结构可被划分为第一子像素区、第二子像素区以及第三子像素区。第一有机发光层可位于所述第一空穴注入层上。电荷产生层可位于所述第一有机发光层上。第二空穴注入层可位于所述电荷产生层上。第二有机发光层可位于所述第二空穴注入层上。电子传输层可位于所述第二有机发光层上。阻挡元件可位于所述第一子像素区、第二子像素区和第三子像素区至少之一个。
在示例实施例中,所述第一子像素区中的第一光学谐振距离、所述第二子像素区中的第二光学谐振距离和所述第三子像素区中的第三光学谐振距离可以彼此不同。
在示例实施例中,发光结构可包括在所述第一子像素区、第二子像素区和第三子像素区至少之一处的光程控制绝缘层。
在示例实施例中,所述光程控制绝缘层可位于所述第一空穴注入层的下方。
在示例实施例中,所述光程控制绝缘层可在邻近的子像素区中具有不同的厚度。
在示例实施例中,所述光程控制绝缘层可包括与所述第一空穴注入层的材料相同的材料。
在示例实施例中,所述第一光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的红光的光学谐振,所述第二光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的绿光的光学谐振,并且所述第三光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的蓝光的光学谐振。
在示例实施例中,所述第一有机发光层可包括蓝光发射膜,并且所述第二有机发光层可包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜。
在示例实施例中,所述阻挡元件在所述第一子像素区处可位于所述第二空穴注入层和所述第一有机发光层之间,所述阻挡元件可适于阻止电子在所述第一子像素区从所述第二空穴注入层到所述第一有机发光层的迁移。
在示例实施例中,所述阻挡元件在第一子像素区处可位于所述电荷产生层和所述第一有机发光层之间,所述阻挡元件适于在所述第一子像素区处阻止在所述第一有机发光层产生的激子的迁移。
在示例实施例中,所述第一有机发光层可包括绿光发射膜和红光发射膜或用于发射绿光和红光的单个发光膜,并且所述第二有机发光层可包括蓝光发射膜。
在示例实施例中,所述阻挡元件在所述第一子像素区处可位于所述第二空穴注入层和所述第二有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处电子到所述第二有机发光层的迁移。
在示例实施例中,所述阻挡元件在第一子像素区处可位于所述电子传输层和所述第二有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处由所述第二有机发光层产生的激子的迁移。
在示例实施例中,所述阻挡元件可包括电子阻挡层或激子猝熄层。
在示例实施例中,所述阻挡元件可包括从以下各项所组成的组中选择的至少一个:富勒烯、包括取代三芳基胺的聚合物、咔唑类聚合物、
1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环己烷(TAPC)、
1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环戊烷、
4,4′-(9H-芴-9-亚基)双[N,N-双(4-甲基苯基)-苯胺、
1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-苯基环己烷、
1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-甲基环己烷、
1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-3-苯基丙烷、
双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基戊基)甲烷、
双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基苯基)乙烷、
4-(4-二乙氨基苯基)三苯基甲烷、4,4′-双(4-二乙氨基苯基)二苯基甲烷、N,N-双[2,5-二甲基-4-[(3-甲基苯基)苯基氨基]苯基]-2,5-二甲基-N′-(3-甲基苯基)-N′-苯基-1,4-苯二胺、
4-(9H-咔唑-9-基)-N,N-双[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA)、
4-(3-苯基-9H-咔唑-9-基)-N,N-双[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺、
9,9′-(2,2′-二甲基[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CDBP)、
9,9′-[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CBP)、
9,9′-(1,3-亚苯基)双-9H-咔唑(mCP)、9,9′-(1,4-亚苯基)双-9H-咔唑、
9,9′,9″-(1,3,5-苯三基)三-9H-咔唑、
9,9′-(1,4-亚苯基)双[N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺、
9,9′-(1,4-亚苯基)双[N,N-二苯基-9H-咔唑-3-胺、
9-[4-(9H-咔唑-9-基)苯基]-N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-苯基-9H-咔唑,等等。
根据示例实施例,显示装置包括基板、第一电极、发光结构以及第二电极。基板可包括第一子像素区、第二子像素区以及第三子像素区。第一电极可位于所述基板上。发光结构可位于所述第一电极上。所述发光结构可包括在第一子像素区、第二子像素区和第三子像素区至少之一处的阻挡元件。第二电极可位于所述发光结构上。在第一子像素区处所述第一电极和第二电极之间的第一光学谐振距离、在第二子像素区处所述第一电极和第二电极之间的第二光学谐振距离以及在第三子像素区处所述第一电极和第二电极之间的第三光学谐振距离可彼此不同。
在示例实施例中,所述发光结构可包括第一空穴注入层、第一有机发光层、电荷产生层、第二空穴注入层、第二有机发光层以及电子传输层。第一空穴注入层可位于所述第一电极上。第一有机发光层可位于所述第一空穴注入层上。电荷产生层可位于所述第一有机发光层上。第二空穴注入层可位于所述电荷产生层上。第二有机发光层可位于所述第二空穴注入层上。电子传输层可位于所述第二有机发光层上。
在示例实施例中,所述发光结构可进一步包括在所述第一电极上的光程控制绝缘层。所述光程控制绝缘层在邻近的子像素区中可具有不同的厚度。
在示例实施例中,所述第一光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的红光的光学谐振,所述第二光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的绿光的光学谐振,并且所述第三光学谐振距离可被调节以产生由所述第一有机发光层或第二有机发光层发射的蓝光的光学谐振。
在示例实施例中,所述第一有机发光层可包括蓝光发射膜。所述第二有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜。
在示例实施例中,所述阻挡元件在所述第一子像素区处可位于所述第一空穴注入层和所述第一有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处电子从所述第一空穴注入层到所述第一有机发光层的迁移。
在示例实施例中,所述阻挡元件在第一子像素区处可位于所述电荷产生层和所述第一有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处由所述第一有机发光层产生的激子的迁移。
在示例实施例中,所述第一有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜。所述第二有机发光层可包括蓝光发射膜。
在示例实施例中,所述阻挡元件在所述第一子像素区处可位于所述第二空穴注入层和所述第二有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处电子到所述第二有机发光层的迁移。
在示例实施例中,所述阻挡元件在第一子像素区处可位于所述电子传输层和所述第二有机发光层之间,并且所述阻挡元件可适于阻止在所述第一子像素区处由所述第二有机发光层产生的激子的迁移。
根据示例实施例,提供一种制造显示装置的方法。在该方法中,可在基板上形成第一电极。所述基板可具有第一子像素区、第二子像素区以及第三子像素区。可在所述第一电极上形成发光结构。所述发光结构可包括光程控制绝缘层和阻挡元件。可在所述发光结构上形成第二电极。在第一子像素区处所述第一电极和第二电极之间的第一光学谐振距离、在第二子像素区处所述第一电极和第二电极之间的第二光学谐振距离以及在第三子像素区处所述第一电极和第二电极之间的第三光学谐振距离可彼此不同。
在示例实施例中,可在所述第一子像素区、第二子像素区和第三子像素区至少之一处形成所述光程控制绝缘层。
在示例实施例中,形成所述光程控制绝缘层可包括通过激光诱导热成像工艺在所述第一电极上形成所述光程控制绝缘层。
在示例实施例中,形成所述光程控制绝缘层可进一步包括在所述基板上层压供体基板;将激光束照射到所述供体基板的至少一个区域,所述供体基板的所述至少一个区域对应于第一子像素区、第二子像素区和第三子像素区至少之一;和从所述基板去除所述供体基板。
在示例实施例中,形成所述发光结构可进一步包括在所述光程控制绝缘层上形成第一有机发光层;在所述第一有机发光层上形成电荷产生层;并且在所述电荷产生层上形成第二有机发光层。
在示例实施例中,所述阻挡元件在所述第一子像素区、第二子像素区和第三子像素区至少之一处可位于所述光程控制层和所述第一有机发光层之间。
在示例实施例中,可通过激光诱导热成像工艺形成所述阻挡元件。
在示例实施例中,形成所述阻挡元件可进一步包括在所述基板上层压供体基板;将激光束照射到所述供体基板的至少一个区域,所述供体基板的所述至少一个区域对应于第一子像素区、第二子像素区和第三子像素区至少之一;和从所述基板去除所述供体基板。
在示例实施例中,所述阻挡元件在所述第一子像素区、第二子像素区和第三子像素区的至少一个处可位于所述第一有机发光层和所述电荷产生层之间。
在示例实施例中,所述阻挡元件在所述第一子像素区、第二子像素区和第三子像素区的至少一个处可位于所述第二有机发光层和所述第二电极之间。
根据示例实施例,每个子像素区可具有彼此基本上不同的光学谐振,从而具有不同波长的光可从每个子像素区发射。因此,显示装置的色纯度、亮度和色域可得到改善,并且显示装置的驱动电压可被降低,从而延长显示装置的寿命。进一步,蓝光发射层可与红光发射层和/或绿光发射层分离,从而颜色稳定性可得到改善,并且蓝光发射层的寿命可得到延长。显示装置在不具有彩色滤光片的情况下可显示具有高色纯度和高亮度的高分辨率图像。在显示装置的制造工艺中,诸如彩色滤光片之类的额外层可不需被形成,因而制造工艺的成本可被降低,并且制造工艺可被简化。进一步,彩色滤光片可不布置在发光层上,从而可以防止由于彩色滤光片所导致的亮度的降低。
附图说明
从以下结合附图进行的描述中可更加详细地理解示例实施例,在附图中:
图1为图示根据示例实施例的具有发光结构的显示装置的截面图;
图2为示出取决于电子阻挡层的厚度的红光和蓝光的光学谐振的峰值波长的曲线图;
图3为图示根据一些示例实施例的具有发光结构的显示装置的截面图;
图4为图示根据一些示例实施例的具有发光结构的显示装置的截面图;
图5为图示根据一些示例实施例的具有发光结构的显示装置的截面图;
图6为图示根据一些示例实施例的具有发光结构的显示装置的截面图;和
图7至图14为图示制造根据示例实施例的具有发光结构的显示装置的方法的截面图。
具体实施方式
将参照其中示出了一些示例实施例的附图在下文中更充分地描述各种示例实施例。然而,本发明可以采用许多不同的形式来具体实现,而不应当被解释为限于这里所列举的示例实施例。更确切地说,提供这些示例实施例是为了使本描述全面和完整,并且将向本领域技术人员充分地传达本发明的范围。在附图中,为清楚起见,层和区域的尺寸和相对尺寸可被放大。
应该理解的是,当一元件或层被提及位于另一元件或层“上”、“连接至”或“耦接至”另一元件或层时,其可以直接位于另一元件或层上、连接至或耦接至另一元件或层,或者也可以存在一个以上的中间元件或层。当一元件被提及“直接”位于另一元件或层“上”、“直接连接至”或“直接耦接至”另一元件或层时,可以不存在中间元件或层。相同的附图标记始终表示相同的元件。如这里所使用的那样,术语“和/或”包括一个以上相关联的列出项的任意和所有组合。
应该理解的是,虽然术语第一、第二、第三、第四等在这里可以用于描述各种元件、部件、区域、层和/或段,但这些元件、部件、区域、层和/或段不应受这些术语限制。这些术语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,下面讨论的第一元件、部件、区域、层或段在不背离本发明的教导下可被称作第二元件、部件、区域、层或段。
为了方便说明,这里可使用例如“在...之下”、“在...下面”、“下层”、“在...上方”、“上部”等的空间相对的术语,以描述图中所示的一个元件或特征与另一元件(多个元件)或特征(多个特征)的关系。应当理解的是,空间相对的术语旨在包含使用或操作中的装置的除了附图所绘的方位之外的不同方位。例如,如果附图中的装置被翻转,则被描述为在其它元件或特征的“下面”或“下方”的元件将位于其它元件或特征的“上方”。因此,示例性术语“在...下面”可包括上面和下面的方位。该装置可另外定位(旋转90度或位于其它方位),由此解释了此处使用的空间相对的描述。
此处使用的术语仅仅用于描述具体的示例实施例,而并不旨在限制本发明。如此处使用的那样,单数形式旨在也包括复数形式,除非上下文另外进行了清楚地指示。应该进一步理解,术语“包括”和/“包含”在本申请文件中使用时指定所列出的特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个以上其它特征、整数、步骤、操作、元件、部件和/或其组的存在或增加。
这里参照作为理想化的示例实施例(和中间结构)的示意性图例的截面图例描述示例实施例。同样地,预期存在例如作为制造技术和/或容差的结果而产生的图例的形状的变化。因此,示例实施例不应解释为限于此处所图示的区域的特定形状,而包括由例如制造所产生的形状上的偏差。例如,被图示为矩形的植入区通常具有圆形或曲线特征和/或注入浓度在其边缘的梯度,而非从植入到非植入区域的二元变化。同样,通过植入形成的掩埋区可在掩埋区和通过其发生植入的表面之间的区域产生一些植入。因此,在附图中所示的区域实质上是示意性的,并且它们的形状并不旨在图示装置的区域的实际形状,且不旨在限制本发明的范围。
除非另有限定,否则此处使用的所有术语(包括科技术语)具有与本发明所属领域的技术人员所普遍理解的相同的含义。将进一步理解的是,例如在常用字典里定义的术语应该被解释为具有与它们在相关技术的上下文中的含义一致的含义,除非此处清楚地限定,否则不将在理想化或过度形式的意义上进行解释。
图1为图示根据示例实施例的具有发光结构的显示装置的截面图。
参照图1,该显示装置可包括基板100、开关结构、第一电极300、发光结构400、第二电极500等等。
在示例实施例中,该显示装置可包括其上设置有发光结构400的显示区和邻近该显示区的非显示区。进一步,该显示装置的显示区可包括第一子像素区(I)、第二子像素区(II)和第三子像素区(III)。在这种情况下,发光结构400也可具有第一子像素区(I)、第二子像素区(II)和第三子像素区(III)。
开关结构可被布置在基板100和第一电极300之间,并且发光结构400可位于第一电极300和第二电极500之间。在这种情况下,开关结构可位于基板100上。
缓冲层110可被布置于基板100上。缓冲层110可防止杂质从基板100被扩散。缓冲层110可改善基板100的平坦性。进一步,缓冲层110可减少在基板100上形成开关结构的工艺中所产生的应力。缓冲层110可包括氧化物、氮化物、氧氮化物等等。例如,缓冲层110可具有单层结构或包括氧化硅(SiOx)、氮化硅(SiNx)和/或氧氮化硅(SiOxNy)的多层结构。
当该显示装置为有源矩阵型时,开关结构可被布置在基板100和第一电极300之间。开关结构可包括开关器件和一个以上的绝缘层。在示例实施例中,开关器件可包括具有含有例如硅的半导体层的薄膜晶体管。在一些示例实施例中,开关器件可包括具有含有半导体氧化物的有源层的氧化物半导体器件。
当开关结构中的开关器件包括薄膜晶体管时,开关器件可包括半导体层210、栅绝缘层220、栅电极231、源电极233、漏电极235等等。
半导体层210可被布置在缓冲层110上。栅绝缘层220可位于缓冲层110上以覆盖半导体层210。半导体层210可包括第一杂质区211、沟道区213和第二杂质区215。在这种情况下,第一杂质区211和第二杂质区215可分别用作薄膜晶体管的漏区和源区。半导体层210可包括多晶硅、掺有杂质的多晶硅、非晶硅、掺有杂质的非晶硅等等。这些可被单独使用或以其组合的形式使用。栅绝缘层220可包括氧化物、有机绝缘材料等等。例如,栅绝缘层220可包括氧化硅、氧化铪(HfOx)、氧化铝(AlOx)、氧化锆(ZrOx)、氧化钛(TiOx)、氧化钽(TaOx)、苯并环丁烯(BCB)基树脂、丙烯基树脂等等。栅绝缘层220可具有单层结构或包括氧化物膜和/或有机绝缘材料膜的多层结构。
栅电极231可位于邻近半导体层210的栅绝缘层220上。例如,栅电极231可被布置在其下方可布置有半导体层210的沟道区213的栅绝缘层220上。栅电极231可包括金属、金属氮化物、导电金属氧化物、透明导电材料等等。例如,栅电极231可包括铝(Al)、含有铝的合金、氮化铝(AlNx)、银(Ag)、含有银的合金、钨(W)、氮化钨(WNx)、铜(Cu)、含有铜的合金、镍(Ni)、铬(Cr)、钼(Mo)、含有钼的合金、钛(Ti)、氮化钛(TiNx)、铂(Pt)、钽(Ta)、钕(Nd)、钪(Sc)、氮化钽(TaNx)、氧化钌锶(SrRuxOy)、氧化锌(ZnOx)、氧化锡铟(ITO)、氧化锡(SnOx)、氧化铟(InOx)、磷化镓(GaOx)、氧化锌铟(IZO)等等。栅电极231可具有单层结构或包括金属膜、金属氮化物膜、导电金属氧化物膜和/或透明导电材料膜的多层结构。
在示例实施例中,连接到栅电极231的栅极线(未示出)可被布置于栅绝缘层220上。栅信号可通过栅极线被施加给栅电极231。栅极线可包括与栅电极231的材料基本相同或基本相似的材料。例如,栅极线可具有单层结构或包括金属膜、金属氮化物膜、导电金属氧化物膜和/或透明导电材料膜的多层结构。
绝缘层间层240可被布置于栅绝缘层220上以覆盖栅电极231。绝缘层间层240可包括氧化物、氮化物、氧氮化物、有机绝缘材料等等。例如,绝缘层间层240可包括氧化硅、氮化硅、氧氮化硅、丙烯基树脂、聚酰亚胺基树脂、硅氧烷基树脂等等。这些可被单独使用或以其组合的形式使用。绝缘层间层240沿栅电极231的轮廓可具有均匀的厚度。在一些示例实施例中,绝缘层间层240可覆盖栅电极231,并且还可具有基本上水平的上表面。
源电极233和漏电极235可穿过绝缘层间层240和栅绝缘层220。源电极233和漏电极235可分别与第二杂质区215和第一杂质区211接触。源电极233和漏电极235中的每一个可包括金属、金属氮化物、导电金属氧化物、透明导电材料等等。例如,源电极233和漏电极235可包括铝、含有铝的合金、氮化铝、银、含有银的合金、钨、氮化钨、铜、含有铜的合金、镍、铬、钼、含有钼的合金、钛、氮化钛、铂、钽、钕、钪、氮化钽、氧化钌锶、氧化锌、氧化锡铟、氧化锡、氧化铟、磷化镓、氧化锌铟等等。这些可被单独使用或以其组合的形式使用。源电极233和漏电极235中的每一个可具有单层结构或包括金属膜、金属氮化物膜、导电金属氧化物膜和/或透明导电材料膜的多层结构。
在示例实施例中,连接到源电极233的数据线(未示出)可被布置在绝缘层间层240上,并且数据信号可通过数据线被施加给源电极233。数据线可包括与源电极233的材料基本相同或基本相似的材料。进一步,数据线可具有单层结构或包括金属膜、金属氮化物膜、导电金属氧化物膜和/或透明导电材料膜的多层结构。栅极线和数据线可基本上彼此垂直,从而显示装置的显示区可由栅极线和数据线限定。
开关结构的绝缘层250可位于绝缘层间层240上以覆盖源电极233和漏电极235。孔可形成通过绝缘层250以部分地暴露漏电极235。绝缘层250可包括例如透明塑料、透明树脂等的透明绝缘材料。例如,绝缘层250可包括苯并环丁烯基树脂、烯烃基树脂、聚酰亚胺基树脂、丙烯基树脂、聚乙烯基树脂、硅氧烷基树脂等等。这些可被单独使用或以其组合的形式使用。在示例实施例中,绝缘层250可具有通过平坦化工艺而获得的基本平坦的上表面。例如,绝缘层250的上部分可通过化学机械抛光(CMP)工艺、回蚀工艺等被平坦化。在一些示例实施例中,绝缘层250可包括具有无需平坦化工艺而自平坦化的特性的材料。
在参照图1描述的显示装置中,包括薄膜晶体管的开关器件可具有其中栅电极231可被布置于半导体层210上的顶栅结构,但开关器件的配置并不限于此。例如,开关器件可具有其中栅电极231可被布置于半导体层210下方的底栅结构,或可包括具有含有半导体氧化物的有源层的氧化物半导体器件。
现在参照图1,第一电极300可被布置于绝缘层250上。在示例实施例中,第一电极300可部分地或完全地填充形成通过绝缘层250的孔,因此第一电极300可与开关器件电接触。例如,第一电极300可与被孔暴露的漏电极235接触。在一些示例实施例中,接触器(未示出)、插头(未示出)或焊盘(未示出)可另外布置在漏电极235上以填充绝缘层250的孔。在这种情况下,第一电极300可通过焊盘、插头或接触器而电连接至漏电极235。
当显示装置为顶发射型时,第一电极300可用作具有合适的反射率的反射电极。在这种情况下,第二电极500可用作具有合适透射率的透明电极或半透明的半透半反(transflective)电极。第一电极300和第二电极500中的材料可根据显示装置的发射型而改变。例如,在显示装置为底发射型的情况下,第一电极300可用作透明电极或半透半反电极,而第二电极500可用作反射电极。这里,术语“反射”可表示物体具有相对于入射光大约70%至大约100%的反射率,并且术语“半透半反”可表示物体具有相对于入射光大约30%至大约70%的反射率。进一步,术语“透明”可表示物体具有相对于入射光大约0%至大约30%的反射率。
在示例实施例中,当第一电极300用作反射电极时,第一电极300可包括金属和/或具有相对高的反射率的合金。例如,第一电极300可包括银(Ag)、铝(Al)、铂(Pt)、金(Au)、铬(Cr)、钨(W)、钼(Mo)、钛(Ti)、钯(Pa)、它们的合金等等。这些可被单独使用或以其组合的形式使用。第一电极300中合金的示例可包括ACA(Ag-Cu-Au)合金、APC(Ag-Pd-Cu)合金等等。在示例实施例中,第一电极300可具有单层结构或包括金属膜和/或合金膜的多层结构。
当第二电极500用作半透半反电极时,第二电极500可包括单一金属膜。在这种情况下,第二电极500可具有设置的或预定的反射率或者设置的或预定的透射率。当第二电极500具有相对较大的厚度时,显示装置可具有相对较低的发光效率,从而第二电极500应该具有相对较薄的厚度。例如,第二电极500可具有低于大约30nm的厚度。第二电极500可包括诸如银(Ag)、铝(Al)、铂(Pt)、金(Au)、铬(Cr)、钨(W)、钼(Mo)、钛(Ti)、钯(Pa)的金属和/或合金、这些金属的合金等等。这些可单独地使用或以其组合的形式使用。
在一些示例实施例中,第二电极500可包括透明导电材料,因此第二电极可用作透明电极。例如,第二电极500可包括氧化铟锌、氧化铟锡、氧化镓锡、氧化锌、氧化镓、氧化锡、氧化铟等等。这些可单独地使用或以其组合的形式使用。第二电极500可具有包括不同反射率的多种透明膜或多种半透半反膜的多层结构。
在示例实施例中,第一电极300可用作用于提供空穴到发光结构400的第一空穴注入层410中的阳极。这里,第二电极500可用作用于供应电子到电子传输层490中的阴极。不过,第一电极300和第二电极500的功能可不限于此,并且第一电极300和第二电极500的作用可根据显示装置的发射类型来改变。在发光结构400中具有空穴传输层、有机发光层和电子传输层的堆叠构造(或配置)可根据第一电极300和第二电极500的功能而改变。
在示例实施例中,显示装置的显示区可具有如图1中所示的第一子像素区(I)、第二子像素区(II)和第三子像素区(III)。
光程控制绝缘层350可被布置于显示区中的第一电极300上,并且保护层280可位于邻近显示区的非显示区中的绝缘层250上。在示例实施例中,保护层280可延伸以部分地覆盖与漏电极235电连接的第一电极300。保护层280可包括氧化物、氮化物、氧氮化物、有机绝缘材料等等。例如,保护层可包括氧化硅、氮化硅、氧氮化物、苯并环丁烯基树脂、烯烃基树脂、聚酰亚胺基树脂、丙烯基树脂、聚乙烯基树脂、硅氧烷基树脂等等。这些可被单独地使用或以其组合的形式使用。在一些示例实施例中,该显示装置可不包括保护层280,由此该显示装置可具有更为简单的构造。
在示例实施例中,光程控制绝缘层350可位于第一子像素区(I)和第二子像素区(II)中的第一电极300上。在一些示例实施例中,光程控制绝缘层350可位于第一子像素区(I)、第二子像素区(II)以及第三子像素区(III)中的第一电极300上。在其它示例实施例中,光程控制绝缘层350可被布置在位于第一子像素区(I)、第二子像素区(II)和第三子像素区(III)的至少一个中的第一电极300上。
光程控制绝缘层350可调节或可保证用于产生由发光结构400发射的光的光学谐振的光学谐振距离。在示例实施例中,光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中可具有基本上不同的各种厚度。例如,光程控制绝缘层350在第一子像素区(I)中的第一部分可具有基本上大于光程控制绝缘层350在第二子像素区(II)中的第二部分的厚度的厚度。在第一、第二和第三子像素区(I、II和III)中第一电极300和第二电极500之间的距离可根据光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中的厚度差而改变。
光程控制绝缘层350可基本上透明。例如,光程控制绝缘层350可具有相对于入射光的大约70%至大约100%的透射率。在示例实施例中,光程控制绝缘层350可包括与第一空穴注入层410的材料基本相同或基本相似的材料。在一些示例实施例中,光程控制绝缘层350可包括透明绝缘材料。例如,光程控制绝缘层350可包括苯并环丁烯基树脂、烯烃基树脂、聚酰亚胺基树脂、丙烯基树脂、聚乙烯基树脂、硅氧烷基树脂等等。这些可被单独地使用或以其组合的形式使用。
一般来说,术语“光学谐振”或“微腔效应”表示当两个反射面或半透半反面之间的光程满足具有设置或预定波长的光的结构干涉的条件时,具有设置或预定波长的光的亮度和/或强度的增加。术语“反射”可表示相对于入射光的大约70%至大约100%的反射率,术语“半透半反”可表示相对于入射光大约30%至大约70%的反射率。这里,光程可基本上等于当光穿过层或电极时层和/或电极的折射率(n)乘以层或电极的厚度(d)所得到的值。在光穿过多个具有不同折射率的层或电极的情况下,多个层或电极的整个光程可基本上等于每层或每个电极的各个光程(n·d)之和(∑n·d)。
当多个层或电极被布置在两个反射或半透半反面之间时,在这两个反射或半透半反面之间的光的光学谐振可由下列等式(1)表示:
2 πm = Σ i ( 2 π 2 n j d j λ + θ j ) - - - ( 1 )
在上面的等式(1)中,nj表示当具有设置或预定波长(λ)的光穿过第j层或电极时介于两个反射或半透半反面之间的多个层或电极中的第j层或电极的折射率。另外,dj表示第j层或电极的厚度,并且m表示任意整数。此外,θj表示当光穿过第j层或电极时或者光从反射或半透半反面被反射时光的相位变化。如果上面的等式(1)相对于光程被修改,则下面的等式(2)可根据上面的等式(1)得到:
L = Σ j n j d j = λ 2 ( m - Σ θ j 2 π ) = λ 2 ( m - Φ 2 π ) - - - ( 2 )
关于上面的等式(2),L表示用于产生具有设置或预定波长(λ)的光的光学谐振的光程。下文,适于具有设置或预定波长的光的光学谐振的光程可称作“光学谐振距离(L)”。进一步,Φ表示光学谐振距离(L)内发生的光的相位变化的和。相位变化的和Φ可处于-π弧度到π弧度的范围内。术语“峰值波长”指在特定的光学谐振距离(L)内发生光学谐振的光的波长。
根据上面的等式(2),用于产生具有设置或预定波长(λ)的光的光学谐振的光学谐振距离(L)可根据整数(m)改变。如果光学谐振距离(L)相对较大,则在一个光学谐振距离(L)内可得到分别对应于不同峰值波长的不同整数(m)(即上面的等式(2)的值)。
为简单起见,在光学谐振距离(L)内发生的光的相位变化的和假设为零,红光的峰值波长假设为大约660nm,并且蓝光的峰值波长假设为大约440nm。对于红光产生光学谐振的光学谐振距离(L)可具有大约330nm(m=1)、大约660nm(m=2)、大约990nm(m=3)、大约1,320nm(m=4)等等的几个值。对于蓝光产生光学谐振的光学谐振距离(L)可具有大约220nm(m=1)、大约440nm(m=2)、大约660nm(m=3)、大约880nm(m=4)等等的几个值。也就是说,多个光学谐振距离(L)可相对于一个峰值波长而得到。不过,光学谐振距离(L)可受显示装置的尺寸限制。
现在参照图1,显示装置的第一子像素区(I)可为主要发射红光的区域,显示装置的第二子像素区(II)可为主要发射绿光的区域,并且显示装置的第三子像素区(III)可为主要发射蓝光的区域。因此,第一子像素区(I)中的第一光学谐振距离可被调节以产生红光的光学谐振,第二子像素区(II)中的第二光学谐振距离可被调节以产生绿光的光学谐振,并且第三子像素区(III)中的第三光学谐振距离可被调节以产生蓝光的光学谐振。
在示例实施例中,第一、第二和第三光学谐振距离可通过控制光程控制绝缘层350的厚度和/或光程控制绝缘层350的折射率而被调节。如果发光结构400在第一、第二和第三子像素区(I、II和III)中的厚度为常数,则第一、第二和第三光学谐振距离可通过控制光程控制绝缘层350的厚度和/或折射率而被调节。
关于上面等式(2),当m为常数时,光学谐振距离可与峰值波长成比例地增加。因此,在发射红光的第一子像素区(I)中的第一光学谐振距离可基本上大于在发射绿光的第二子像素区(II)中的第二光学谐振距离。进一步,在第二子像素区(II)中的第二光学谐振距离可基本上大于在发射蓝光的第三子像素区(III)中的第三光学谐振距离。因此,在第一子像素区(I)中的光程控制绝缘层350可具有基本上大于在第二子像素区(II)或第三子像素区(III)中的厚度的厚度。
在根据示例实施例的显示装置中,第一至第三子像素区(I、II和III)可具有基本上不同的光学谐振距离,从而自第一至第三子像素区(I,II和III)可发射具有不同波长的不同颜色的光。因此,该显示装置可具有改善的光的色纯度、增强的亮度和增加的光的色域,且该显示装置可具有降低的驱动电压以延长显示装置的寿命。
如图1中所示,包括光程控制绝缘层350的发光结构400可被布置于第一电极300上。在示例实施例中,发光结构400可包括第一空穴注入层410、空穴传输层420、第一有机发光层430、阻挡元件440、电荷产生层450、第二空穴注入层460、第二有机发光层480、电子传输层490等等。
在示例实施例中,第一空穴注入层410可被布置于第一电极300上以覆盖光程控制绝缘层350。第一空穴注入层410可促进空穴从第一电极300注入到第一有机发光层430中。例如,第一空穴注入层410可包括CuPc(铜酞菁)、PEDOT(聚-3,4-乙撑-二氧噻吩)、PANI(聚苯胺)、NPD(N,N-二萘-N,N′-二苯基联苯胺)等。不过,第一空穴注入层410中的材料可不限于此。
空穴传输层420可位于第一空穴注入层410上。空穴传输层420可加快来自第一空穴注入层410的空穴的迁移。这里,当空穴传输层420的最高占据分子能量(highest occupied molecular energy(HOMO))基本上低于第一电极300的功函数,且基本上大于第一有机发光层430的最高占据分子能量(HOMO)时,空穴的迁移率得到最优化或提高。例如,空穴传输层420可包括NPD(N,N-二萘-N,N′-二苯基联苯胺)、TPD(N,N′-双(3-甲基苯基)-N,N′-双(苯基)-联苯胺)、s-TAD、MTDATA(4,4′,4″-三(N-3-甲基苯基-N-苯基-氨基)-三苯胺)等。不过,空穴传输层420中的材料可不限于此。
第一有机发光层430可被布置于空穴传输层420上。第一有机发光层430可包括在宿主(host)中分散的蓝色荧光掺杂剂或蓝色磷光掺杂剂。在示例实施例中,第一有机发光层430可基本上发射蓝光,由此可提高其颜色稳定性,并可延长第一有机发光层430的寿命。
电荷产生层450可被布置于第一有机发光层430上。电荷产生层450可用作第一有机发光层430的阳极,并且也可用作第二有机发光层480的阴极。
电荷产生层450可具有单层结构或多层结构。在示例实施例中,电荷产生层450可具有包括金属氧化物膜的单层结构,金属氧化物膜包含氧化钒(VOx)、氧化钨(WOx)等等。在一些示例实施例中,电荷产生层450可具有包括金属氧化物膜和金属膜的双层结构。在这种情况下,金属氧化物膜可包括氧化钒(VOx)、氧化钨(WOx)等。进一步,金属膜可包括铝、银等。
当电压被施加给第一电极300和/或第二电极500时,电荷(例如电子或空穴)可在电荷产生层450中产生,且所产生的电荷(电子或空穴)可从电荷产生层450供应给邻近的第一有机发光层430和/或邻近的第二有机发光层480。因此,电荷的分布在第一、第二和第三子像素区(I、II和III)中可基本上是均匀的,从而红光、绿光和蓝光可基本上均匀地被发射。进一步,包括多个有机发光层的显示装置具有改善的、大于包括单个有机发光层的显示装置的发光效率。
在一些示例实施例中,为了降低驱动电压并提高发光效率,额外的电子传输层(未示出)和/或电子注入层(未示出)可被布置在第一有机发光层430和电荷产生层450之间。
第二空穴注入层460可位于电荷产生层450上。在功能和材料方面,第二空穴注入层460可与第一空穴注入层410基本相同或基本相似。
第二有机发光层480可被布置于第二空穴注入层460上。第二有机发光层480可具有单层结构或多层结构。在示例实施例中,第二有机发光层480可具有包括绿光发射膜和红光发射膜的双层结构。绿光发射膜可包括在宿主中分散的绿色掺杂剂,并且红光发射膜可包括在宿主中分散的红色掺杂剂。在一些示例实施例中,第二有机发光层480具有包括在宿主中分散的绿色掺杂剂和红色掺杂剂的单层结构。
电子传输层490可被布置于第二有机发光层480上。电子传输层490可加快电子到第二有机发光层480的迁移。例如,电子传输层490可包括(三(8-羟基喹啉)铝)、PBD、TAZ、螺-PBD、BAlq、SAlq等等。不过,电子传输层490中的材料可不限于此。
在一些示例实施例中,为了降低驱动电压并提高发光效率,额外的空穴传输层(未示出)可位于第二空穴注入层460和第二有机发光层480之间。进一步,额外的电子注入层(未示出)可被布置在电子传输层490和第二电极500之间。
如图1中所示,阻挡元件440可被布置于第一子像素区(I)中的第一有机发光层430上。在示例实施例中,阻挡元件440可阻止或降低电子的迁移。在这种情况下,阻挡元件440可包括富勒烯、包括取代三芳基胺的聚合物、咔唑类聚合物、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环己烷(TAPC)、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环戊烷、4,4′-(9H-芴-9-亚基)双[N,N-双(4-甲基苯基)-苯胺、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-苯基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-甲基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-3-苯基丙烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基戊基)甲烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基苯基)乙烷、4-(4-二乙氨基苯基)三苯基甲烷、4,4′-双(4-二乙氨基苯基)二苯基甲烷、N,N-双[2,5-二甲基-4-[(3-甲基苯基)苯基氨基]苯基]-2,5-二甲基-N′-(3-甲基苯基)-N′-苯基-1,4-苯二胺、4-(9H-咔唑-9-基)-N,N-双[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA)、4-(3-苯基-9H-咔唑-9-基)-N,N-双[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺、9,9′-(2,2′-二甲基[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CDBP)、9,9′-[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CBP)、9,9′-(1,3-亚苯基)双-9H-咔唑(mCP)、9,9′-(1,4-亚苯基)双-9H-咔唑、9,9′,9″-(1,3,5-苯三基)三-9H-咔唑、9,9′-(1,4-亚苯基)双[N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺、9,9′-(1,4-亚苯基)双[N,N-二苯基-9H-咔唑-3-胺、9-[4-(9H-咔唑-9-基)苯基]-N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-苯基-9H-咔唑,等等。进一步,阻挡元件440可具有大约30nm或以上的厚度以有效地阻止或降低电子的迁移。例如,阻挡元件440可具有在大约30nm和大约150nm之间的厚度。在一些示例实施例中,阻挡元件440可包括具有相对较大的最高占据分子能量(HOMO)的材料且可以是透明的。
在示例实施例中,阻挡元件440可阻止或降低电子在第一子像素区(I)中从电荷产生层450到第一有机发光层430的迁移。因此,由于阻挡元件440的原因,电子可能不被供应给第一子像素区(I)中的第一有机发光层430,从而第一子像素区(I)中的第一有机发光层430可能基本上不发光。
在参照图1描述的显示装置中,光程控制绝缘层350在第一子像素区(I)和第二子像素区(II)中可具有基本上不同的厚度。不过,光程控制绝缘层350可不限于此。例如,光程控制绝缘层350在第一子像素区(I)和第二子像素区(II)中可具有基本均匀的厚度。在这种情况下,第一子像素区和第二子像素区(I和II)的第一和第二光学谐振距离可通过控制阻挡元件440的厚度而被调节。
图2为示出取决于电子阻挡层的厚度的红光和蓝光的光学谐振的峰值波长的曲线图。
参照图2,关于不包括例如电子阻挡层的阻挡元件的显示装置(IV),当光学谐振距离被调节以产生红光的光学谐振时,蓝光的光学谐振并发地(例如同时地)发生。如上所述,用于产生红光的光学谐振(m=2)的光学谐振距离可具有与蓝光(m=3)基本相似的大约660nm的值,从而红光和蓝光的光学谐振在显示装置(IV)中并发地(例如同时)产生,从而降低了显示装置(IV)的光的色纯度。关于包括厚度为大约30nm的电子阻挡层的显示装置(V)、包括厚度为大约50nm的电子阻挡层的显示装置(VI)以及包括厚度为大约100nm的电子阻挡层的显示装置(VII),红光的光学谐振被产生而不导致蓝光的光学谐振。因此,显示装置中光的色纯度可通过应用例如电子阻挡层的阻挡元件而改善。
参照图1和图2,当阻挡元件440被布置在第一子像素区(I)中第一有机发光层430和电荷产生层450之间时,阻挡元件440可阻止电子从电荷产生层450到第一有机发光层430的迁移。也就是说,由于阻挡元件440的原因,激子可能不在第一子像素区(I)中的第一有机发光层430中产生,从而蓝光的发射可被阻挡元件440阻止或降低。因此,基本上仅红光可由第一子像素区(I)中的光学谐振发射,具有高色纯度的光可在第一、第二和第三子像素区(I、II和III)中发射,且显示装置无需彩色滤光片即可保证高的光的色纯度和高亮度。结果,显示装置的构造可得到简化,其制造成本可被降低,且制造工艺可被简化。进一步,彩色滤光片没有使用在有机发光层上方,从而由彩色滤光片所导致的亮度的降低可被防止。
图3为图示根据一些示例实施例的具有发光结构的显示装置的截面图。图3所示的显示装置除了发光结构外可具有与参照图1所描述的显示装置基本相同或基本相似的构造。
参照图3,该显示装置可包括基板100、开关结构、第一电极300、发光结构402、第二电极500等等。该显示装置的显示区可划分为第一、第二和第三子像素区(I、II和III),由此发光结构402可划分为第一、第二和第三子像素区(I、II和III)。
包括开关器件和至少一个以上绝缘层的开关结构可被布置于具有缓冲层110的基板100上。该开关结构可包括半导体层210、栅绝缘层220、栅电极231、绝缘层间层240、源电极233、漏电极235、绝缘层250等等。在这种情况下,半导体层210可包括第一杂质区211、沟道区213以及第二杂质区215。开关结构的构造可与参照图1所述的开关结构的构造基本相同或基本相似。
第一电极300可被布置在显示区中的绝缘层250上,并且保护层280可被布置在邻近显示区的非显示区中的绝缘层250上。第二电极500可位于第一电极300的上方,并且第一电极300和第二电极500位于发光结构402的相对侧。光程控制绝缘层350和发光结构402可被布置在第一电极300和第二电极500之间。
光程控制绝缘层350可被布置在显示区中的第一电极300上。在示例实施例中,光程控制绝缘层350可仅被布置在第一子像素区(I)和第二子像素区(II)中。在一些示例实施例中,光程控制绝缘层350可位于第一子像素区(I)、第二子像素区(II)以及第三子像素区(III)中。光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中具有基本上不同的厚度,因此第一电极300和第二电极500之间的间隙(或距离)在第一、第二和第三子像素区(I、II和III)中可基本上不同,从而产生了具有不同颜色的不同波长的光的光学谐振。
发光结构402的第一空穴注入层410可被布置在第一电极300上以覆盖光程控制绝缘层350。第一空穴注入层410可加快从第一电极300到第一有机发光层430的空穴注入。第一有机发光层430可被布置在第一空穴注入层410上。第一有机发光层430可具有单层结构或双层结构。在示例实施例中,第二有机发光层480可具有包括绿光发射膜和红光发射膜的双层结构。绿光发射膜可包括在宿主中分散的绿色掺杂剂,并且红光发射膜可包括在宿主中分散的红色掺杂剂。在一些示例实施例中,第二有机发光层480可具有包括在宿主中分散的绿色掺杂剂和红色掺杂剂的单层结构。
电荷产生层450可被布置于第一有机发光层430上。电荷产生层450可用作第一有机发光层430的阳极,并且可用作第二有机发光层480的阴极。电荷产生层450可具有单层结构或多层结构。第二空穴注入层460和空穴传输层470可位于电荷产生层450上以加快空穴从电荷产生层450到第二有机发光层480的迁移。
第二有机发光层480可被布置于空穴传输层470上。例如,第二有机发光层480可包括含有在宿主中分散的蓝色掺杂剂的蓝光发射膜。电子传输层490可被布置于第二有机发光层480上以加快电子的迁移。
在示例实施例中,阻挡元件440可包括电子阻挡层。在这种情况下,电子阻挡层可被布置在第一子像素区(I)中的第二有机发光层480和电子传输层490之间。包括电子阻挡层的阻挡元件440可阻止或降低电子从电子传输层490到第二有机发光层480的迁移。因此,由于阻挡元件440的原因,电子可能不被供应给第一子像素区(I)中的第二有机发光层480,从而第一子像素区(I)中的第二有机发光层480可能不发光。
与图1所述的显示装置相比,参照图3的显示装置可包括发光结构402,其中蓝光发射膜可与红光发射膜和绿光发射膜一起改变位置,且阻挡元件440和空穴传输层470的位置也可变化。即使可能存在位置改变,每个光学谐振也可在第一、第二和第三子像素区(I、II和III)中产生,且蓝光的发射可由于第一子像素区(I)中的阻挡元件440被阻止或降低,从而该显示装置无需彩色滤光片即可保证高的光的色纯度、扩大的光的色域以及高亮度。
图4为图示根据一些示例实施例的具有发光结构的显示装置的截面图。图4所示的显示装置除了发光结构外可具有与参照图1所述的显示装置基本相同或基本相似的构造。
参照图4,该显示装置可包括基板100、开关结构、第一电极300、发光结构404、第二电极500等等。该显示装置可包括非显示区和被划分为第一、第二和第三子像素区(I、II和III)的显示区,由此显示区中的发光结构404可划分为第一、第二和第三子像素区(I、II和III)。
缓冲层110可被布置于基板100上,并且开关结构可被布置于缓冲层110上。该开关结构可包括半导体层210(包括第一杂质区211、沟道区213以及第二杂质区215)、栅绝缘层220、栅电极231、绝缘层间层240、源电极233、漏电极235、绝缘层250等等。开关结构的构造已经参照图1进行了详细描述,因此将省略任意进一步的描述。
在示例实施例中,光程控制绝缘层350可被布置于第一电极300上。在示例实施例中,光程控制绝缘层350可仅位于第一子像素区(I)和第二子像素区(II)中。在一些示例实施例中,光程控制绝缘层350可被布置于第一子像素区(I)、第二子像素区(II)以及第三子像素区(III)中。光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中可具有基本上不同的厚度,因此第一电极300和第二电极500之间的间隙在第一、第二和第三子像素区(I、II和III)中可基本上不同,从而产生了不同颜色的不同波长的光的光学谐振。
显示区中的发光结构404可包括第一空穴注入层410、空穴传输层420、第一有机发光层430、额外的电子传输层435、阻挡元件440、电荷产生层450、第二空穴注入层460、第二有机发光层480、电子传输层490等等。发光结构404可具有与参照图1所述的发光结构400的构造基本相同或基本相似的构造。
在示例实施例中,额外的电子传输层435可被布置在第一有机发光层430和电荷产生层450之间。额外的电子传输层435可加快电子从电荷产生层450到第一有机发光层430的迁移,由此可提高发光结构404的发光效率。阻挡元件440可包括电子阻挡层。在这种情况下,电子阻挡层可被布置于第一子像素区(I)中额外的电子传输层435上。阻挡元件440可阻止电子从电荷产生层450到第一子像素区(I)中的第一有机发光层430的迁移。因此,由于阻挡元件440的原因,电子可能不被供应给第一子像素区(I)中的第一有机发光层430,从而第一子像素区(I)中的第一有机发光层430可能不发光。在一些示例实施例中,代替额外的电子传输层435的空穴阻挡层(未示出)可被布置在第一有机发光层430和电荷产生层450之间。该空穴阻挡层可阻止空穴从第一有机发光层430到电荷产生层450的迁移,从而提高了发光结构404的照明效率。
与利用图1所述的显示装置相比,参照图4的显示装置包括发光结构404,其中阻挡元件440可与包括蓝光发射膜的第一有机发光层430分离。即使可能存在位置改变,电子到蓝光发射膜的迁移也可通过阻挡元件440被阻止或降低,从而基本上仅红光可在第一子像素区(I)中被发射。因此,该显示装置无需彩色滤光片即可保证高的光色纯度、扩大的光色域以及高亮度。
图5为图示根据一些示例实施例的具有发光结构的显示装置的截面图。图5所示的显示装置除了发光结构外可具有与参照图1所述的显示装置基本相同或基本相似的构造。
参照图5,该显示装置可包括基板100、开关结构、第一电极300、发光结构406、第二电极500等等。该显示装置和发光结构406可包括第一、第二和第三子像素区(I、II和III)。
开关结构可包括一个以上的绝缘层和开关器件。例如,开关器件可包括半导体层210(具有沟道区213、第一杂质区211以及第二杂质区215)、栅绝缘层220、栅电极231、源电极233、漏电极235等等。进一步,一个以上的绝缘层可包括绝缘层间层240、绝缘层250等等。
在示例实施例中,光程控制绝缘层350可被布置在显示装置的显示区中的第一电极300上。光程控制绝缘层350可被布置于第一子像素区(I)、第二子像素区(II)和/或第三子像素区(III)中。在这种情况下,光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中可具有基本上不同的厚度。因此,第一、第二和第三光学谐振距离可分别提供在第一、第二和第三子像素区(I、II和III)中的第一电极300和第二电极500之间。
在示例实施例中,发光结构406可包括第一空穴注入层410、空穴传输层420、阻挡元件425、第一有机发光层430、电荷产生层450、第二空穴注入层460、第二有机发光层480、电子传输层490等等。包括激子猝熄层(excitonquenching layer(EQL))的阻挡元件425可被布置于发光结构406的第一子像素区中第一有机发光层430和空穴传输层420之间。在这种情况下,阻挡元件425的激子猝熄层可包括富勒烯、包括取代三芳基胺的聚合物、咔唑类聚合物、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环己烷(TAPC)、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环戊烷、4,4′-(9H-芴-9-亚基)双[N,N-双(4-甲基苯基)-苯胺、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-苯基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-甲基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-3-苯基丙烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基戊基)甲烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基苯基)乙烷、4-(4-二乙氨基苯基)三苯基甲烷、4,4′-双(4-二乙氨基苯基)二苯基甲烷、N,N-双[2,5-二甲基-4-[(3-甲基苯基)苯基氨基]苯基]-2,5-二甲基-N′-(3-甲基苯基)-N′-苯基-1,4-苯二胺、4-(9H-咔唑-9-基)-N,N-双[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA)、4-(3-苯基-9H-咔唑-9-基)-N,N-双[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺、9,9′-(2,2′-二甲基[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CDBP)、9,9′-[1,1′-二苯基]-4,4′-二基)双-9H-咔唑(CBP)、9,9′-(1,3-亚苯基)双-9H-咔唑(mCP)、9,9′-(1,4-亚苯基)双-9H-咔唑、9,9′,9″-(1,3,5-苯三基)三-9H-咔唑、9,9′-(1,4-亚苯基)双[N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺、9,9′-(1,4-亚苯基)双[N,N-二苯基-9H-咔唑-3-胺、9-[4-(9H-咔唑-9-基)苯基]-N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-苯基-9H-咔唑,等等。当操作显示装置时,电子和空穴可在第一有机发光层430和空穴传输层420之间互相碰撞从而产生激子。包括激子猝熄层的阻挡元件425可将激子猝熄层附近的高能电子或激子转化成低能电子或激子。因此,可参与发光过程的电子或激子可能不存在,从而第一有机发光层430可能不发光。
与利用图1所述的显示装置相比,参照图5的显示装置在第一子像素区中可包括具有替代电子阻挡层的激子猝熄层的阻挡元件425。即使可能存在位置改变,基本上仅红光也可在第一子像素区(I)中发射,并且蓝光的发射可被阻止或减少。
图6为图示根据一些示例实施例的具有发光结构的显示装置的截面图。除了第一电极300、第二电极500和发射类型之外,图6所示的显示装置可具有与参照图1所述的显示装置基本相同或基本相似的构造。
参照图6,该显示装置可包括基板100、开关结构、第一电极300、发光结构408、第二电极500等等。
开关结构可被布置于具有缓冲层110的基板100上。开关结构可包括开关器件和一个以上的绝缘层。开关器件可包括半导体层210、栅绝缘层220、栅电极231、源电极233、漏电极235等等。一个以上的绝缘层可包括绝缘层间层240、绝缘层250等等。
在示例实施例中,当显示装置为底发射型时,第一电极300可用作相对于入射光具有大约30%至大约70%的反射率的半透半反电极,并且第二电极500可用作相对于入射光具有大约70%至大约100%的反射率的反射电极。
当第一电极300为半透半反电极时,第一电极300可包括金属、合金、导电金属氧化物、掺杂有杂质的透明无机材料等等。例如,第一电极300可具有包括多个透明膜或具有不同发射率的多个半透半反膜的多层结构。在示例实施例中,第一电极300可具有包括第一电极膜、第二电极膜和第三电极膜的三层结构。在这种情况下,第一电极膜和第三电极膜可包括含有氧化锡铟、氧化锌铟、氧化锌等的金属氧化物。第二电极膜可包括镁-银合金、银、银-钯-铜合金等等。即使第二电极膜可包括具有相对高的反射率的金属,第二电极膜仍可以具有相对薄的厚度,从而用作半透半反电极。
当第二电极500为反射电极时,第二电极500可包括铝、铂、银、金、铬、钨、钼、钛、钯以及这些金属的合金(例如Ag-Cu-Au(ACA)合金或Ag-Pd-Cu(APC)合金)等等。这些材料可被单独地使用或以其组合的形式使用。当第二电极500为反射电极时,在发光结构408中产生的光可穿过第一电极300和基板100,从而该显示装置为底发射型。在示例实施例中,光程控制绝缘层350可被布置在第一子像素区(I)、第二子像素区(II)和/或第三子像素区(III)中的第一电极300上。在这种情况下,光程控制绝缘层350在第一、第二和第三子像素区(I、II和III)中可具有基本上不同的厚度。因此,第一、第二和第三光学谐振距离可分别在第一、第二和第三子像素区(I、II和III)中的第一电极300和第二电极500之间形成。
该显示装置的发光结构408可包括第一空穴注入层410、空穴传输层420、第一有机发光层430、阻挡元件440、电荷产生层450、第二空穴注入层460、第二有机发光层480、电子传输层490等等。发光结构408可具有与参照图1所述的发光结构400的构造基本相同或基本相似的构造。
在示例实施例中,阻挡元件440可包括电子阻挡层。电子阻挡层可被布置于第一子像素区(I)中电荷产生层450和第一有机发光层430之间。阻挡元件440可阻止在第一子像素区(I)中电子从电荷产生层450到第一有机发光层430的迁移。由于阻挡元件440的原因,电子可能不被供应给第一子像素区(I)中的第一有机发光层430,从而第一子像素区(I)中的第一有机发光层430不发光。
与图1所述的显示装置相比,参照图6的显示装置可根据第一电极300和第二电极500的材料变化而被变成底发射型。即使可能存在第一电极300和第二电极500的位置变化,第一、第二和第三光学谐振仍可在第一、第二和第三子像素区(I、II和III)中产生,且蓝光的发射可通过第一子像素区(I)中的阻挡元件440被阻止或减少,从而该显示装置无需彩色滤光片即可保证高的光的色纯度、扩大的光的色域以及高亮度。
图7至图14为图示制造根据示例实施例的具有发光结构的显示装置的方法的截面图。通过图7至图14中示出的方法所获得的显示装置可具有与参照图1所描述的显示装置的构造基本相同或基本相似的构造。然而,本领域普通技术人员将理解,根据示例实施例的方法可以被适当且容易地修改以制造参照图3至图6所描述的液晶显示装置之一。
参照图7,缓冲层110可形成在基板100上。基板100可利用透明绝缘材料形成。缓冲层110可利用氧化物、氮化物、氧氮化物、有机绝缘材料等等形成。这些可被单独地使用或以其组合的形式使用。缓冲层110可通过化学气相沉积(CVD)工艺、等离子体增强化学气相沉积(PECVD)工艺、高密度等离子体化学气相沉积(HDP-CVD)工艺、旋涂工艺、热氧化工艺、印刷工艺等形成在基板100上。
开关结构可形成在缓冲层110上。在示例实施例中,在缓冲层110上形成半导体层210之后,栅绝缘层220可在缓冲层110上形成以覆盖半导体层210。半导体层210可使用硅通过化学气相沉积工艺、等离子体增强化学气相沉积工艺、高密度等离子体化学气相沉积工艺、旋涂工艺、热氧化工艺、印刷工艺等形成。栅绝缘层220可利用氧化物、有机绝缘材料等形成。在这种情况下,栅绝缘层220可沿半导体层210的轮廓共形地形成。栅绝缘层220可通过溅射工艺、化学气相沉积工艺、原子层沉积工艺、高密度等离子体化学气相沉积工艺、旋涂工艺、印刷工艺等形成。
栅电极231可形成在栅绝缘层220上,而半导体层210可位于栅绝缘层220的下方。栅电极231可利用金属、金属氮化物、导电金属氧化物、透明导电材料等形成。进一步,栅电极231可通过溅射工艺、化学气相沉积工艺、原子层沉积(ALD)工艺、旋涂工艺、真空蒸发工艺、脉冲式激光沉积(PLD)工艺、印刷工艺等形成。杂质可利用栅绝缘层220作为注入掩膜而掺入半导体层210中,从而第一杂质区211和第二杂质区215可分别形成在半导体层210的侧部。因此,半导体层210的中部可被限定为沟道区213。例如,第一杂质区211和第二杂质区215可通过离子注入工艺形成。在示例实施例中,在形成栅电极231的同时,栅极线(未示出)可形成在栅绝缘层220上。该栅极线可在栅绝缘层220上延伸以接触栅电极231。
绝缘层间层240可形成在栅绝缘层220上以覆盖栅电极231。绝缘层间层240可利用氧化物、氮化物、氧氮化物、有机绝缘材料等形成。绝缘层间层240可通过溅射工艺、化学气相沉积工艺、等离子体增强化学气相沉积工艺、原子层沉积工艺、旋涂工艺、气相沉积工艺、脉冲式激光沉积工艺、印刷工艺等形成。源电极233和漏电极235可分别连接到第一杂质区211和第二杂质区215。在示例实施例中,数据线(未示出)可形成在绝缘层间层240上。该数据线可与源电极233和漏电极235一起形成。数据线可在绝缘层间层240上延伸以接触源电极233。
在图7所示的开关器件中,该开关器件可具有其中栅电极231被布置于半导体层210上方的顶栅结构,不过,本发明的示例实施例的范围不限于该结构。例如,开关器件可具有底栅结构,其包括位于半导体层或包括作为有源层的半导体氧化物层的氧化物半导体器件的下方的栅电极。
现在参照图7,绝缘层250可形成在基板100上以覆盖开关器件,从而包括开关器件和绝缘层250的开关结构可形成于基板100上。绝缘层250可利用诸如透明塑料、透明树脂等的透明绝缘材料形成。进一步,绝缘层250可通过旋涂工艺、印刷工艺、真空蒸发工艺等形成。在示例实施例中,绝缘层250的上部可通过诸如化学机械抛光工艺和/或回蚀工艺之类的平坦化工艺被部分地去除。在一些示例实施例中,绝缘层250可利用具有自平坦化特性的材料制成,从而绝缘层250可具有基本平坦的上部面或表面。
参照图8,绝缘层250可被部分地去除以形成可部分地暴露漏电极235的孔(未示出)。例如,穿过绝缘层250的孔可通过光刻工艺得到。在示例实施例中,在绝缘层250上形成填充绝缘层250的孔的第一导电层(未示出)之后,第一导电层可被图案化以形成第一电极300。因此,第一电极300可直接连接到被孔暴露的漏电极235。第一导电层可通过溅射工艺、印刷工艺、喷涂工艺、化学气相沉积工艺、原子层沉积工艺、真空蒸发工艺、脉冲式激光沉积工艺等形成在绝缘层250上。进一步,第一电极300可利用金属、合金、透明导电材料等形成。在示例实施例中,第一电极300可依据材料而用作反射电极、透明电极、半透半反电极。在一些示例实施例中,在漏电极235上形成接触器(未示出)、焊盘(未示出)或插头(未示出)以填充绝缘层250中的孔之后,第一电极300可形成于绝缘层250上以及接触器、焊盘或插头上。在这种情况下,第一电极300可通过接触器、焊盘或插头电连接到漏电极235。
在示例实施例中,光程控制绝缘层350可通过激光诱导热成像工艺形成在第一电极300上。在这种情况下,光程控制绝缘层350可形成在第二子像素区(II)中(见图13)。
如图9所示,供体基板(donor substrate)600可布置在具有第一电极300的基板100上方。在这种情况下,在利用支撑部件(未示出)将具有第一电极300的基板100固定之后,供体基板600可相对于基板100对准。供体基板600可包括被布置于底基板610上的多层。在示例实施例中,供体基板600可包括布置于底基板610上的光热转换(LTHC)层620和位于光热转换层620上的传输层630。这里,供体基板600的传输层630可用于形成光程控制绝缘层350。例如,传输层630可利用苯并环丁烯基树脂、烯烃基树脂、聚酰亚胺基树脂、丙烯基树脂、聚乙烯基树脂、硅氧烷基树脂等形成。这些可被单独地使用或以其组合的形式使用。
参照图10,传输层630可通过将供体基板600与基板100接触并利用加压部件640对供体基板600加压而层压在第一电极300上。例如,加压部件640可包括辊子、冠状压机(crown press)等。在一些示例实施例中,供体基板600可利用气体而无需额外的加压部件被加压,从而传输层630可层压在第一电极300和绝缘层250上。
参照图11,激光照射设备向第二子像素区(II)中的供体基板600照射激光束(利用箭头指示)。在这种情况下,光热转换层620将激光束的能量转化为热能。因此,在第二子像素区(II)中,由于热能的原因,在传输层630和第一电极300之间的粘结强度可基本上大于传输层630和光热转换层620之间的粘结强度。在根据示例实施例的激光诱导热成像工艺中,相比于利用掩膜的常规薄膜形成工艺,高分辨率的图案可利用相对较低的成本获得。
参照图12,供体基板600从基板100去除以在第二子像素区(II)中形成光程控制绝缘层350。在示例实施例中,供体基板600可通过邻近于供体基板600设置吹风装置(未示出)并向供体基板600的边缘部分吹气而去除。
在示例实施例中,光程控制绝缘层350可通过与参照图10至图12所述的激光诱导热成像工艺基本相同或基本相似的激光诱导热成像工艺而形成在第一子像素区(I)(见图13)中的第一电极300上。在这种情况下,光程控制绝缘层350的厚度可依据供体基板600的传输层630的厚度而变化。因此,光程控制绝缘层350在第一子像素区(I)和第二子像素区(II)可具有基本上不同的厚度。在一些示例实施例中,光程控制绝缘层350可通过与参照图10至图12所述的激光诱导热成像工艺基本相同或基本相似的激光诱导热成像工艺而形成在第三子像素区(III)(见图13)中的第一电极上。
参照图13,保护层280可形成在显示装置的非显示区中的绝缘层250上。这里,保护层280可在显示装置的显示区中的第一电极300的一部分上延伸。保护层280可利用氧化物、氮化物、氧氮化物、有机绝缘材料等形成。进一步,保护层280可通过化学气相沉积工艺、旋涂工艺、等离子体增强化学气相沉积工艺、真空蒸发工艺、印刷工艺等形成。
发光结构400可形成在具有光程控制绝缘层350和保护层280的基板100上。在示例实施例中,发光结构400可通过在光程控制绝缘层350、第一电极300和保护层280上依次形成第一空穴注入层410、空穴传输层420、第一有机发光层430、阻挡元件440、电荷产生层450、第二空穴注入层460、第二有机发光层480以及电子传输层490而形成。在示例实施例中,第一有机发光层430和第二有机发光层480可仅形成在显示区,并且阻挡元件440可形成在第一子像素区(I)中的第一有机发光层430上。包括有机材料的第一空穴注入层410、空穴传输层420、第一有机发光层430、第二空穴注入层460、第二有机发光层480以及电子传输层490可通过真空蒸发工艺、印刷工艺、旋涂工艺、激光诱导热成像工艺等形成。包括金属和/或金属氧化物的电荷产生层450可通过溅射工艺、印刷工艺、喷涂工艺、化学气相沉积工艺等形成。包括电子阻挡层或激子猝熄层的阻挡元件440可通过与参照图10至图12所述的激光诱导热成像工艺基本相同或基本相似的激光诱导热成像工艺而形成在第一有机发光层430上。
参照图14,第二电极500可形成在电子传输层490上。第二电极500可利用金属、合金和/或透明导电材料通过溅射工艺、印刷工艺、喷涂工艺、化学气相沉积工艺、真空蒸发工艺、原子层沉积工艺等形成。
根据示例实施例,具有发光结构的显示装置无需彩色滤光片就可保证改善的光的色纯度,显示装置的制造成本可被降低,并且显示装置的制造工艺可被简化。具有诸如底发射型、顶发射型或双发射型之类的各种发射型的显示装置可应用于诸如电视机、移动通讯设备、监视器、MP3播放器、便携式显示设备等的各种电气和电子设备中。
以上所述作为本发明的示例实施例的举例,并且不应当被解释为本发明的限制。尽管描述了几个示例实施例,但本领域技术人员易于理解,在不实质上背离示例实施例的新颖教导的情况下,许多修改在示例实施例中是可能的。相应地,所有的这种修改旨在包括在权利要求书及其等同物所限定的示例实施例的范围内。在权利要求书中,装置加功能的句子旨在涵盖此处描述的执行所记载功能的结构和结构性等同物以及等同结构。

Claims (28)

1.一种发光结构,具有第一子像素区、第二子像素区和第三子像素区,该发光结构包括:
至少在所述第一子像素区处位于第一电极上的光程控制绝缘层;
在所述第一子像素区和所述第二子像素区处位于所述光程控制绝缘层上、并在所述第三子像素区处位于所述第一电极上的第一空穴注入层;
在所述第一空穴注入层上的第一有机发光层;
在所述第一有机发光层上的电荷产生层;
在所述电荷产生层上的第二空穴注入层;
在所述第二空穴注入层上的第二有机发光层;
在所述第二有机发光层上的电子传输层;以及
在所述第一子像素区处的阻挡元件;
其中所述第一子像素区中的第一光学谐振距离、所述第二子像素区中的第二光学谐振距离和所述第三子像素区中的第三光学谐振距离彼此不同;
其中所述第一光学谐振距离与所述第二光学谐振距离之间的差异由在所述第一子像素区的所述阻挡元件的厚度以及在所述第一子像素区和所述第二子像素区的所述光程控制绝缘层的厚度确定;并且
其中所述阻挡元件包括电子阻挡层或激子猝熄层。
2.根据权利要求1所述的发光结构,其中所述光程控制绝缘层在邻近的子像素区中具有不同的厚度。
3.根据权利要求1所述的发光结构,其中所述光程控制绝缘层包括与所述第一空穴注入层的材料相同的材料。
4.根据权利要求1所述的发光结构,其中所述第一光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的红光的光学谐振,所述第二光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的绿光的光学谐振,并且所述第三光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的蓝光的光学谐振。
5.根据权利要求4所述的发光结构,
其中所述第一有机发光层包括蓝光发射膜,并且
其中所述第二有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜。
6.根据权利要求5所述的发光结构,其中所述阻挡元件在所述第一子像素区处位于所述电荷产生层和所述第一有机发光层之间,所述阻挡元件适于阻止电子在所述第一子像素区从所述电荷产生层到所述第一有机发光层的迁移。
7.根据权利要求5所述的发光结构,其中所述阻挡元件在所述第一子像素区处位于所述第一空穴注入层和所述第一有机发光层之间,所述阻挡元件适于阻止在所述第一子像素区处由所述第一有机发光层产生的激子的迁移。
8.根据权利要求4所述的发光结构,
其中所述第一有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜,并且
其中所述第二有机发光层包括蓝光发射膜。
9.根据权利要求8所述的发光结构,其中所述阻挡元件在所述第一子像素区处位于所述电子传输层和所述第二有机发光层之间,所述阻挡元件适于阻止电子在所述第一子像素区处到所述第二有机发光层的迁移。
10.根据权利要求8所述的发光结构,其中所述阻挡元件在所述第一子像素区处位于所述第二空穴注入层和所述第二有机发光层之间,所述阻挡元件适于阻止在所述第一子像素区处由所述第二有机发光层产生的激子的迁移。
11.根据权利要求1所述的发光结构,所述阻挡元件包括从以下各项所组成的组中选择的至少一个:富勒烯、包括取代三芳基胺的聚合物、咔唑类聚合物、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)环戊烷、4,4′-(9H-芴-9-亚基)双[N,N-双(4-甲基苯基)-苯胺、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-苯基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-4-甲基环己烷、1,1-双(4-(N,N-二-对-甲苯氨基)苯基)-3-苯基丙烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基戊基)甲烷、双[4-(N,N-二乙氨基)-2-甲基苯基](4-甲基苯基)乙烷、4-(4-二乙氨基苯基)三苯基甲烷、4,4′-双(4-二乙氨基苯基)二苯基甲烷、N,N-双[2,5-二甲基-4-[(3-甲基苯基)苯基氨基]苯基]-2,5-二甲基-N′-(3-甲基苯基)-N′-苯基-1,4-苯二胺、4-(9H-咔唑-9-基)-N,N-双[4-(9H-咔唑-9-基)苯基]-苯胺、4-(3-苯基-9H-咔唑-9-基)-N,N-双[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺、9,9′-(2,2′-二甲基[1,1′-二苯基]-4,4′-二基)双-9H-咔唑、9,9′-[1,1′-二苯基]-4,4′-二基)双-9H-咔唑、9,9′-(1,3-亚苯基)双-9H-咔唑、9,9′-(1,4-亚苯基)双-9H-咔唑、9,9′,9″-(1,3,5-苯三基)三-9H-咔唑、9,9′-(1,4-亚苯基)双[N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺、9,9′-(1,4-亚苯基)双[N,N-二苯基-9H-咔唑-3-胺、9-[4-(9H-咔唑-9-基)苯基]-N,N,N′,N′-四苯基-9H-咔唑-3,6-二胺、和9-苯基-9H-咔唑。
12.一种显示装置,包括:
具有第一子像素区、第二子像素区和第三子像素区的基板;
在所述基板上的第一电极;
在所述第一电极上的发光结构,所述发光结构包括在所述第一子像素区处的阻挡元件;以及
在所述发光结构上的第二电极,
其中在所述第一子像素区处所述第一电极和所述第二电极之间的第一光学谐振距离、在所述第二子像素区处所述第一电极和所述第二电极之间的第二光学谐振距离以及在所述第三子像素区处所述第一电极和所述第二电极之间的第三光学谐振距离彼此不同;
其中所述发光结构包括:
至少在所述第一子像素区处位于所述第一电极上的光程控制绝缘层,所述光程控制绝缘层在相邻子像素区中具有不同的厚度;
至少在所述第一子像素区处位于所述光程控制绝缘层上、并在未形成所述光程控制绝缘层处位于所述第一电极上的第一空穴注入层;
在所述第一空穴注入层上的第一有机发光层;
在所述第一有机发光层上的电荷产生层;
在所述电荷产生层上的第二空穴注入层;
在所述第二空穴注入层上的第二有机发光层;以及
在所述第二有机发光层上的电子传输层;
其中所述第一光学谐振距离与所述第二光学谐振距离之间的差异由在所述第一子像素区的所述阻挡元件的厚度以及在所述第一子像素区和所述第二子像素区的所述光程控制绝缘层的厚度确定;
其中所述阻挡元件包括电子阻挡层或激子猝熄层。
13.根据权利要求12所述的显示装置,其中所述第一光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的红光的光学谐振,所述第二光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的绿光的光学谐振,并且所述第三光学谐振距离被调节以产生由所述第一有机发光层或所述第二有机发光层发射的蓝光的光学谐振。
14.根据权利要求13所述的显示装置,
其中所述第一有机发光层包括蓝光发射膜,并且
其中所述第二有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜。
15.根据权利要求14所述的显示装置,其中所述阻挡元件在所述第一子像素区处位于所述电荷产生层和所述第一有机发光层之间,所述阻挡元件适于阻止在所述第一子像素区处电子从所述电荷产生层到所述第一有机发光层的迁移。
16.根据权利要求14所述的显示装置,其中所述阻挡元件在所述第一子像素区处位于所述第一空穴注入层和所述第一有机发光层之间,所述阻挡元件适于阻止在所述第一子像素区处由所述第一有机发光层产生的激子的迁移。
17.根据权利要求13所述的显示装置,
其中所述第一有机发光层包括绿光发射膜和红光发射膜或适于发射绿光和红光的单个发光膜,并且
其中所述第二有机发光层包括蓝光发射膜。
18.根据权利要求17所述的显示装置,其中所述阻挡元件在所述第一子像素区处位于所述电子传输层和所述第二有机发光层之间,所述阻挡元件适于阻止电子在所述第一子像素区处到所述第二有机发光层的迁移。
19.根据权利要求17所述的显示装置,其中所述阻挡元件在所述第一子像素区处位于所述第二空穴注入层和所述第二有机发光层之间,所述阻挡元件适于阻止在所述第一子像素区处由所述第二有机发光层产生的激子的迁移。
20.一种制造显示装置的方法,包括:
在基板上形成第一电极,所述基板具有第一子像素区、第二子像素区和第三子像素区;
在所述第一电极上形成发光结构,所述发光结构包括在所述第一子像素区处的阻挡元件、至少在所述第一子像素区处位于第一电极上的光程控制绝缘层、以及至少在所述第一子像素区处位于所述光程控制绝缘层上并在未形成所述光程控制绝缘层处位于所述第一电极上的第一空穴注入层;和
在所述发光结构上形成第二电极,
其中在所述第一子像素区处所述第一电极和所述第二电极之间的第一光学谐振距离、在所述第二子像素区处所述第一电极和所述第二电极之间的第二光学谐振距离以及在所述第三子像素区处所述第一电极和所述第二电极之间的第三光学谐振距离彼此不同;
其中所述第一光学谐振距离与所述第二光学谐振距离之间的差异由在所述第一子像素区的所述阻挡元件的厚度以及在所述第一子像素区和所述第二子像素区的所述光程控制绝缘层的厚度确定;
其中所述阻挡元件包括电子阻挡层或激子猝熄层。
21.根据权利要求20所述的制造显示装置的方法,其中形成所述光程控制绝缘层包括利用激光诱导热成像工艺在所述第一电极上形成所述光程控制绝缘层。
22.根据权利要求21所述的制造显示装置的方法,其中形成所述光程控制绝缘层进一步包括:
在所述基板上层压供体基板;
将激光束照射到所述供体基板的至少对应于所述第一子像素区的区域;和
从所述基板去除所述供体基板。
23.根据权利要求20所述的制造显示装置的方法,其中形成所述发光结构进一步包括:
在所述光程控制绝缘层上形成第一有机发光层;
在所述第一有机发光层上形成电荷产生层;并且
在所述电荷产生层上形成第二有机发光层。
24.根据权利要求23所述的制造显示装置的方法,其中所述阻挡元件在所述第一子像素区处位于所述光程控制绝缘层和所述第一有机发光层之间。
25.根据权利要求24所述的制造显示装置的方法,其中通过激光诱导热成像工艺形成所述阻挡元件。
26.根据权利要求25所述的制造显示装置的方法,其中形成所述阻挡元件进一步包括:
在所述基板上层压供体基板;
将激光束照射到所述供体基板的对应于所述第一子像素区的区域;和
从所述基板去除所述供体基板。
27.根据权利要求23所述的制造显示装置的方法,其中所述阻挡元件在所述第一子像素区处位于所述第一有机发光层和所述电荷产生层之间。
28.根据权利要求23所述的制造显示装置的方法,其中所述阻挡元件在所述第一子像素区中位于所述第二有机发光层和所述第二电极之间。
CN201210061071.3A 2011-06-29 2012-03-09 发光结构、包括发光结构的显示装置及其制造方法 Active CN102856507B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0063644 2011-06-29
KR1020110063644A KR101884199B1 (ko) 2011-06-29 2011-06-29 발광 구조물, 발광 구조물을 포함하는 표시 장치 및 표시 장치의 제조 방법

Publications (2)

Publication Number Publication Date
CN102856507A CN102856507A (zh) 2013-01-02
CN102856507B true CN102856507B (zh) 2016-12-14

Family

ID=45656542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210061071.3A Active CN102856507B (zh) 2011-06-29 2012-03-09 发光结构、包括发光结构的显示装置及其制造方法

Country Status (6)

Country Link
US (3) US9172058B2 (zh)
EP (1) EP2541602B1 (zh)
JP (1) JP6073056B2 (zh)
KR (1) KR101884199B1 (zh)
CN (1) CN102856507B (zh)
TW (1) TWI605624B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102109166B1 (ko) 2013-01-15 2020-05-12 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 구비하는 표시 기판
KR102081209B1 (ko) 2013-03-26 2020-02-26 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법, 및 그 유기 발광 표시 장치의 제조에 사용되는 도너 기판 및 도너 기판 세트
JP6286941B2 (ja) * 2013-08-27 2018-03-07 セイコーエプソン株式会社 発光装置、発光装置の製造方法、電子機器
CN103824875B (zh) 2013-12-10 2015-07-08 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置
CN103779387B (zh) * 2014-01-06 2018-11-02 京东方科技集团股份有限公司 Oled显示面板及显示装置
CN104851980B (zh) * 2014-02-13 2017-02-08 上海和辉光电有限公司 全彩有机发光二极管结构
TWI745740B (zh) * 2014-05-15 2021-11-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置以及照明設備
US20160093272A1 (en) * 2014-09-29 2016-03-31 Brother Kogyo Kabushiki Kaisha Information processing device and non-transitory storage medium storing instructions executable by the information processing device
KR102299838B1 (ko) 2014-10-31 2021-09-07 엘지디스플레이 주식회사 유기 발광 소자 및 그의 제조 방법
US10441768B2 (en) * 2015-03-18 2019-10-15 University of Pittsburgh—of the Commonwealth System of Higher Education Bioactive components conjugated to substrates of microneedle arrays
CN104733506B (zh) * 2015-04-01 2017-10-24 京东方科技集团股份有限公司 一种电致发光显示器件及显示装置
KR20170001827A (ko) * 2015-06-25 2017-01-05 삼성디스플레이 주식회사 유기 발광 표시 장치
JP2017062884A (ja) * 2015-09-24 2017-03-30 ソニー株式会社 表示装置及び発光装置
KR102406606B1 (ko) * 2015-10-08 2022-06-09 삼성디스플레이 주식회사 유기 발광 소자, 이를 포함하는 유기 발광 표시 장치, 및 이의 제조 방법
WO2017187571A1 (ja) * 2016-04-27 2017-11-02 ギガフォトン株式会社 極端紫外光センサユニット及び極端紫外光生成装置
CN105895819B (zh) * 2016-04-28 2018-07-06 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板
KR102521254B1 (ko) * 2016-06-01 2023-04-17 삼성디스플레이 주식회사 표시 패널 및 이의 제조 방법
US10692994B2 (en) * 2016-12-23 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102354977B1 (ko) 2017-07-03 2022-01-25 삼성디스플레이 주식회사 디스플레이 장치
CN109841643B (zh) * 2017-11-24 2021-12-03 比亚迪半导体股份有限公司 一种白光led芯片结构及制作方法
JP2019192448A (ja) * 2018-04-24 2019-10-31 株式会社ジャパンディスプレイ 表示装置
KR102679757B1 (ko) * 2018-12-13 2024-06-28 엘지디스플레이 주식회사 전계 발광 표시 장치
KR20200078242A (ko) * 2018-12-21 2020-07-01 엘지디스플레이 주식회사 표시장치
KR102690482B1 (ko) * 2018-12-28 2024-07-31 엘지디스플레이 주식회사 발광 표시 장치 및 이의 제조 방법
KR102661468B1 (ko) * 2019-02-15 2024-04-30 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 전자 장치
KR102565182B1 (ko) * 2019-09-30 2023-08-08 엘지디스플레이 주식회사 전계 발광 표시 장치
KR102687966B1 (ko) * 2019-12-30 2024-07-23 엘지디스플레이 주식회사 표시장치
US11646300B2 (en) * 2020-09-01 2023-05-09 Jade Bird Display (shanghai) Limited Double color micro LED display panel
US20220236462A1 (en) * 2021-01-26 2022-07-28 Ron Varghese Planarized patterned optical thin film coatings
CN112786764B (zh) * 2021-02-26 2022-02-22 维沃移动通信有限公司 发光器件、显示组件和发光器件的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412194A (en) * 2002-12-31 2004-07-01 Eastman Kodak Co Using hole-or electron-blocking layers in color OLEDs
CN101308863A (zh) * 2007-05-16 2008-11-19 三星Sdi株式会社 有机发光装置
CN101710608A (zh) * 2009-12-01 2010-05-19 中山大学 一种顶发射有机白光器件
CN102024844A (zh) * 2009-09-15 2011-04-20 三星移动显示器株式会社 有机发光显示设备
CN102034850A (zh) * 2009-09-25 2011-04-27 乐金显示有限公司 有机电致发光设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758694B2 (ja) * 1994-10-13 2006-03-22 三星エスディアイ株式会社 有機薄膜el素子
TW495809B (en) * 2000-02-28 2002-07-21 Semiconductor Energy Lab Thin film forming device, thin film forming method, and self-light emitting device
JP2002208483A (ja) * 2001-01-11 2002-07-26 Sharp Corp 有機エレクトロルミネッセンス素子およびその製造方法
JP4644938B2 (ja) * 2001-01-15 2011-03-09 ソニー株式会社 有機電界発光素子
US7158161B2 (en) * 2002-09-20 2007-01-02 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and an exposure unit and image-forming apparatus both using the element
KR100721554B1 (ko) * 2004-07-22 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
US7271537B2 (en) * 2005-04-15 2007-09-18 Sony Corporation Display device and a method of manufacturing the display device
JP4797438B2 (ja) * 2005-05-17 2011-10-19 ソニー株式会社 有機電界発光素子および表示装置
US7888860B2 (en) 2006-08-25 2011-02-15 Samsung Electronics Co., Ltd. Organic light emitting device
KR20080018557A (ko) 2006-08-25 2008-02-28 삼성전자주식회사 유기 발광 장치
JP5167723B2 (ja) 2007-08-21 2013-03-21 セイコーエプソン株式会社 発光装置
KR101407580B1 (ko) 2007-09-17 2014-06-13 삼성디스플레이 주식회사 백색 유기발광소자 및 그를 포함하는 표시장치와 조명장치
JP2010056016A (ja) 2008-08-29 2010-03-11 Fujifilm Corp カラー表示装置及びその製造方法
JP4775865B2 (ja) * 2009-01-14 2011-09-21 東芝モバイルディスプレイ株式会社 有機el表示装置及びその製造方法
EP2479311B1 (en) * 2009-09-15 2017-04-05 Sharp Kabushiki Kaisha Vapor deposition method
US8466455B2 (en) * 2009-09-17 2013-06-18 Universal Display Corporation Device structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412194A (en) * 2002-12-31 2004-07-01 Eastman Kodak Co Using hole-or electron-blocking layers in color OLEDs
CN101308863A (zh) * 2007-05-16 2008-11-19 三星Sdi株式会社 有机发光装置
CN102024844A (zh) * 2009-09-15 2011-04-20 三星移动显示器株式会社 有机发光显示设备
CN102034850A (zh) * 2009-09-25 2011-04-27 乐金显示有限公司 有机电致发光设备
CN101710608A (zh) * 2009-12-01 2010-05-19 中山大学 一种顶发射有机白光器件

Also Published As

Publication number Publication date
EP2541602B1 (en) 2018-01-24
EP2541602A1 (en) 2013-01-02
CN102856507A (zh) 2013-01-02
JP2013012456A (ja) 2013-01-17
US20160013454A1 (en) 2016-01-14
KR20130007692A (ko) 2013-01-21
TW201301599A (zh) 2013-01-01
US20180241010A1 (en) 2018-08-23
US20130001612A1 (en) 2013-01-03
KR101884199B1 (ko) 2018-08-02
US10312477B2 (en) 2019-06-04
JP6073056B2 (ja) 2017-02-01
US9172058B2 (en) 2015-10-27
US9947903B2 (en) 2018-04-17
TWI605624B (zh) 2017-11-11

Similar Documents

Publication Publication Date Title
CN102856507B (zh) 发光结构、包括发光结构的显示装置及其制造方法
TWI796310B (zh) 發光顯示裝置
US11380734B2 (en) Organic light emitting diode display including capping layer having optical thickness for improving optics
CN110544749B (zh) 显示设备
CN104218062B (zh) 显示单元、制造显示单元的方法以及电子设备
KR102490029B1 (ko) 유기 발광 표시 장치
CN104716159B (zh) 有机发光显示装置及其制造方法
KR101826432B1 (ko) 유기 발광 표시 장치
KR20170132018A (ko) 유기 발광 표시 장치
CN103915577A (zh) 有机发光显示器件及其制造方法
KR20180075958A (ko) 유기 발광 표시 장치
CN107535033A (zh) 有机电致发光装置
CN108029162A (zh) 有机电致发光装置、照明装置和显示装置
KR20170034173A (ko) 유기 발광 표시 장치
CN106549108B (zh) 有机发光显示装置
CN106298843A (zh) 有机发光二极管显示器
CN109494310A (zh) 有机发光二极管和包括其的显示装置
CN107437588A (zh) 有机发光显示设备及其制造方法
KR20160141129A (ko) 유기 발광 표시 장치
EP3226319B1 (en) Organic light emitting display device
KR101888088B1 (ko) 유기발광표시장치 및 그 제조 방법
CN105633113B (zh) 有机发光显示装置及其制造方法
CN108447894A (zh) 有机发光显示装置及其制备方法
KR20190057749A (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR101822071B1 (ko) 유기발광다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant