CN102843056B - 一种单相五电平逆变器 - Google Patents

一种单相五电平逆变器 Download PDF

Info

Publication number
CN102843056B
CN102843056B CN201210330240.9A CN201210330240A CN102843056B CN 102843056 B CN102843056 B CN 102843056B CN 201210330240 A CN201210330240 A CN 201210330240A CN 102843056 B CN102843056 B CN 102843056B
Authority
CN
China
Prior art keywords
switching tube
diode
switch pipe
inductance
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210330240.9A
Other languages
English (en)
Other versions
CN102843056A (zh
Inventor
胡兵
薛丽英
陆鑫
申谭
张彦虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungrow Power Supply Co Ltd
Original Assignee
Sungrow Power Supply Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sungrow Power Supply Co Ltd filed Critical Sungrow Power Supply Co Ltd
Priority to CN201210330240.9A priority Critical patent/CN102843056B/zh
Publication of CN102843056A publication Critical patent/CN102843056A/zh
Application granted granted Critical
Publication of CN102843056B publication Critical patent/CN102843056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明提供一种单相五电平逆变器,包括:第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一二极管、第二二极管、第三二极管和第四二极管;该逆变器结构简单,器件少,成本低,并且高频开关管所承受的电压应力比现有技术中小,高频开关管承受的电压是直流电源电压的一半,这样高频开关管的选择范围较大,成本较低,同时也降低了开关损耗,提高了效率。由于高频开关管的电压应力为直流电源电压的一半,当输入电压较高时,高频开关管也可以承受。因此,该逆变器可以适用于电压较高的场合。并且,该五电平逆变器在不同的工作模态只有一个开关管作为高频开关导通,因此,开关损耗和磁性元件损耗小,效率高。

Description

一种单相五电平逆变器
技术领域
本发明涉及电力电子技术领域,特别涉及一种单相五电平逆变器。
背景技术
目前太阳能发电仍然存在成本过高,效率偏低的缺陷,故研究高效率的并网逆变器拓扑,对于提高太阳能并网发电效率,降低发电成本有重要的意义。
针对传统全桥拓扑效率较低的问题,业内提出了多种技术方案,如中国发明专利CN1967998和CN1967997分别提出了一种三电平双降压式全桥逆变器和一种五电平双降压式全桥逆变器,基本思想均是由独立二极管实现续流,从而使得开关管可以选择导通压降更低的MOSFET,提高逆变器的效率。但是CN1967997提出的五电平双降压式全桥逆变器相对于三电平双降式全桥逆变器并没有降低开关管的开关损耗及磁元件损耗。
综上所述,如何降低开关管的损耗,提高逆变器的工作效率成为本领域技术人员需要解决的技术问题。
发明内容
本发明要解决的技术问题是提供一种单相五电平逆变器,能够降低开关管的损耗,提高逆变器的工作效率。
本发明提供一种单相五电平逆变器,包括:第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一二极管、第二二极管、第三二极管和第四二极管;
第一开关管的第一端连接直流电源的正端,第二端连接第二节点;
第二开关管的第一端连接所述第二节点,第二端连接直流电源的负端;
第三开关管的第一端连接所述第二节点,第二端连接第三二极管的阴极,第三二极管的阳极连接第一节点;所述第一节点的电压为直流电源的电压的1/2;
第四开关管的第一端连接所述第二节点,第二端连接第四二极管的阳极,第四二极管的阴极连接所述第一节点;
第五开关管的第一端连接直流电源的正端,第二端连接第三节点;
第六开关管的第一端连接第四节点,第二端连接直流电源的负端;
第二二极管的阴极连接直流电源的正端,第二二极管的阳极连接第四节点;
第一二极管的阴极连接第三节点,第一二极管的阳极连接直流电源的负端;
第三节点和第二节点是该逆变器的正电压输出端;
第四节点和第二节点是该逆变器的负电压输出端。
优选地,所述开关管为cool MOS管或者IGBT管。
优选地,所述二极管为碳化硅二极管或者快恢复二极管。
优选地,所述第一开关管、第二开关管、第三开关管和第四开关管均为高频开关管;所述第五开关管和第六开关管的开关频率与电网电压的频率相同。
优选地,还包括第一电感、第二电感和电容;
第一电感的一端连接第三节点,另一端通过电容连接第二节点;
第二电感的一端连接第四节点,另一端通过电容连接第二节点;
电容并联在交流负载的两端。
优选地,还包括第一电感、第二电感、隔离变压器和电容;
第一电感的一端连接第三节点,另一端通过隔离变压器的初级绕组连接第二节点;
第二电感的一端连接第四节点,另一端通过隔离变压器的初级绕组连接第二节点;
电容并联在隔离变压器的次级绕组的两端,同时,电容并联在交流负载的两端。
优选地,电网电压的正半周,该五电平逆变器共有三种有功工作模态,分别为:
第一模态:第二开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第二开关管-第五开关管;
第二模态:第四开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第四开关管-第四二极管-第五开关管;
第三模态:第一开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第一开关管-第五开关管;
电网电压的负半周,该五电平逆变器共有三种有功工作模态,分别为:
第七模态:第一开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第一开关管-第二电感-第六开关管-第二电容-第一电容-第一开关管;
第八模态:第三开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第三二极管-第三开关管-第二电感-第六开关管-第三二极管;
第九模态:第二开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第二开关管-第二电感-第六开关管-第二开关管。
优选地,电网电压的正半周,该五电平逆变器共有三种无功工作模态,分别为:
第四模态:第一开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一开关管-第二电感-第二二极管;
第五模态:第三开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一电容-第三二极管-第三开关管-第二电感-第二二极管;
第六模态:第二开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一电容-第二电容-第二开关管-第二电感-第二二极管;
电网电压的负半周,该五电平逆变器共有三种无功工作模态,分别为:
第十模态:第二开关管导通,其余开关管均截止,电流的路径为:第二开关管-第一二极管-第一电感-第二开关管;
第十一模态:第四开关管导通,其余开关管均截止,电流的路径为:第一二极管-第一电感-第四开关管-第四二极管-第一二极管;
第十二模态:第一开关管导通,其余开关管均截止,电流的路径为:第一二极管-第一电感-第一开关管-第一电容-第二电容-第一二极管。
优选地,所述第一开关管、第二开关管、第三开关管和第四开关管的开关频率与电网电压的频率相同;所述第五开关管和第六开关管均为高频开关管;所述逆变器还包括第一电感、第二电感和电容;
第一电感的一端连接第三节点,另一端通过电容连接第二节点;
第二电感的一端连接第四节点,另一端通过电容连接第二节点,电容并联在交流负载的两端。
优选地,该五电平逆变器六个开关管在电网电压一个周期内的有功工作模态时的时序分别为:
所述第一开关管在电网电压正半周的导通时序由正弦调制波和第二三角波进行比较产生,所述正弦调制波小于第二三角波时第一开关管导通,反之截止;所述第一开关管在电网电压负半周的导通时序由所述正弦调制波和第一三角波比较产生,所述正弦调制波的反向波大于第一三角波时第一开关管导通,反之截止;
所述第一三角波、第二三角波具有相同的频率和相同的幅值,且所述第一三角波的波谷等于第二三角波的波峰;第二三角波的波谷为零;
所述第二开关管的导通时序由所述正弦调制波和第二三角波进行比较产生,所述正弦调制波的反向波大于所述第二三角波时第二开关管导通,反之截止;
所述第三开关管的导通时序由所述正弦调制波与第二三角波比较产生,所述正弦调制波大于所述第二三角波时所述第三开关管导通,反之截止;
所述第四开关管的导通时序由所述正弦调制波与第一三角波比较产生,所述正弦调制波大于所述第一三角波时所述第四开关管导通,反之截止;
所述第五开关管在所述正弦调制波的正半周导通,负半周截止;
所述第六开关管在所述正弦调制波的正半周截止,负半周导通。
与现有技术相比,本发明具有以下优点:
本发明提供的单相五电平逆变器结构简单,器件少,成本低,并且高频开关管所承受的电压应力比现有技术中小,高频开关管承受的电压是直流电源电压的一半,这样高频开关管的选择范围较大,成本较低,同时也降低了开关损耗,提高了效率。由于高频开关管的电压应力为直流电源电压的一半,当输入电压较高时,高频开关管也可以承受。因此,该逆变器可以适用于电压较高的场合。并且,该五电平逆变器在不同的工作模态只有一个开关管作为高频开关导通,因此,开关损耗和磁性元件损耗小,效率高。
附图说明
图1是本发明提供的单相五电平逆变器实施例一电路图;
图2是本发明提供的单相五电平逆变器实施例二电路图;
图3a是本发明图1对应的第一种有功工作模态示意图;
图3b是本发明图1对应的第二种有功工作模态示意图;
图3c是本发明图1对应的第三种有功工作模态示意图;
图3d是本发明图1对应的第四种有功工作模态示意图;
图3e是本发明图1对应的第五种有功工作模态示意图;
图3f是本发明图1对应的第六种有功工作模态示意图;
图4a是本发明图1对应的第一种无功工作模态示意图;
图4b是本发明图1对应的第二种无功工作模态示意图;
图4c是本发明图1对应的第三种无功工作模态示意图;
图4d是本发明图1对应的第四种无功工作模态示意图;
图4e是本发明图1对应的第五种无功工作模态示意图;
图4f是本发明图1对应的第六种无功工作模态示意图;
图5是本发明提供的单相五电平逆变器实施例三电路图;
图6是图1对应的时序图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
参见图1,该图为本发明提供的单相五电平逆变器实施例一电路图。
本实施例提供的单相五电平逆变器,包括:第一开关管QH1、第二开关管QH2、第三开关管QH3、第四开关管QH4、第五开关管QL1、第六开关管QL2、第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4;
第一开关管QH1的第一端连接直流电源DC的正端,第二端连接第二节点N;
第二开关管QH2的第一端连接所述第二节点N,第二端连接直流电源DC的负端;
第三开关管QH3的第一端连接所述第二节点N,第二端连接第三二极管D3的阴极,第三二极管D3的阳极连接第一节点O;所述第一节点O的电压为直流电源DC的电压的1/2;
第四开关管QH4的第一端连接所述第二节点N,第二端连接第四二极管D4的阳极,第四二极管D4的阴极连接所述第一节点O;
第五开关管QL1的第一端连接直流电源DC的正端,第二端连接第三节点A;
第六开关管QL2的第一端连接第四节点B,第二端连接直流电源DC的负端;
第二二极管D2的阴极连接直流电源DC的正端,第二二极管D2的阳极连接第四节点B;
第一二极管D1的阴极连接第三节点A,第一二极管D1的阳极连接直流电源DC的负端。
第三节点A和第二节点N是该逆变器的正电压输出端;
第四节点B和第二节点N是该逆变器的负电压输出端。
与现有技术的五电平逆变器相比,本发明实施例提供的单相五电平逆变器结构简单,器件较少,因此,成本也较低。
进一步的,所述第一开关管、第二开关管、第三开关管和第四开关管均为高频开关管;所述第五开关管和第六开关管的开关频率与电网电压的频率相同。
本发明实施例提供的单相五电平逆变器中高频开关管所承受的电压应力比现有技术中小,高频开关管承受的电压是直流电源电压的一半,这样开关管的选择范围较大,成本较低,同时也降低了开关损耗,提高了效率。由于高频开关管的电压应力为直流电源电压的一半,当输入电压较高时,开关管也可以承受。因此,该逆变器可以适用于电压较高的场合。
进一步的,所述开关管为cool MOS管或者IGBT管。
进一步的,所述二极管为碳化硅二极管或者快恢复二极管。
需要说明的是,第一电容C1和第二电容C2的容值相同,因此C1和C2上的电压相等,均等于直流电源DC的1/2电压。
本实施例提供的单相五电平逆变器,还包括可以第一电感L1、第二电感L2和电容Co
第一电感L1的一端连接第三节点A,另一端通过电容Co连接第二节点N;
第二电感L2的一端连接第四节点B,另一端通过电容Co连接第二节点N,电容Co并联在交流负载(图中为电网ug)的两端。
需要说明的是,图1所示的是一种实现方式,本发明实施例还提供了另一种实现方式,参见图2,该图为本发明提供的单相五电平逆变器实施例二电路图。
该实施例提供的逆变器与实施例一的区别是增加了隔离变压器T,增加了隔离变压器T以后的电路结构为:
第一电感L1的一端连接第三节点A,另一端通过隔离变压器T的初级绕组连接第二节点N;
第二电感L2的一端连接第四节点B,另一端通过隔离变压器T的初级绕组连接第二节点N;
电容Co并联在隔离变压器T的次级绕组的两端,同时,电容Co并联在交流负载(图中为电网ug)的两端。
需要说明的是,本发明实施例提供的逆变器,不但可以有功情况下使用,也可以无功情况下使用,下面结合附图对各种工作状态分别进行介绍。
电网电压的正半周,该五电平逆变器共有三种有功工作模态,分别为:第一模态、第二模态和第三模态。下面结合附图分别进行介绍。
需要说明的是,图1和图2对应的工作模态相同,下面仅以图1为例进行介绍。
参见图3a,该图为图1对应的第一种有功工作模态示意图。
第一模态:第二开关管QH2和第五开关管QL1均导通,其余开关管均截止;电流的路径为:第五开关管QL1-第一电感L1-第二开关管QH2-第五开关管QL1。
参见图3b,该图为图1对应的第二种有功工作模态示意图。
第二模态:第四开关管QH4和第五开关管QL1均导通,其余开关管均截止;电流的路径为:第五开关管QL1-第一电感L1-第四开关管QH4-第四二极管D2-第五开关管QL1。
参见图3c,该图为图1对应的第三种有功工作模态示意图。
第三模态:第一开关管QH1和第五开关管QL1均导通,其余开关管均截止;电流的路径为:第五开关管QL1-第一电感L1-第一开关管QH1-第五开关管QL1。
电网电压的负半周,该五电平逆变器共有三种有功工作模态,分别为:第七模态、第八模态和第九模态。下面结合附图分别进行介绍。
参见图3d,该图为图1对应的第四种有功工作模态示意图。
第七模态:第一开关管QH1和第六开关管QL2均导通,其余开关管均截止,电流的路径为:第一开关管QH1-第二电感L2-第六开关管QL2-第二电容C2-第一电容C1-第一开关管QH1;
参见图3e,该图为图1对应的第五种有功工作模态示意图。
第八模态:第三开关管QH3和第六开关管QL2均导通,其余开关管均截止,电流的路径为:第三二极管D3-第三开关管QH3-第二电感L2-第六开关管QL2-第三二极管D3;
参见图3f,该图为图1对应的第六种有功工作模态示意图。
第九模态:第二开关管QH2和第六开关管QL2均导通,其余开关管均截止,电流的路径为:第二开关管QH2-第二电感L2-第六开关管QL2-第二开关管QH2。
电网电压的正半周,该五电平逆变器共有三种无功工作模态,分别为:第四模态、第五模态和第六模态。
参见图4a,该图为本发明图1对应的第一种无功工作模态示意图。
第四模态:第一开关管QH1导通,其余开关管均截止;电流的路径为:第二二极管D2-第一开关管QH1-第二电感L2-第二二极管D2。
参见图4b,该图为本发明图1对应的第二种无功工作模态示意图。
第五模态:第三开关管QH3导通,其余开关管均截止;电流的路径为:第二二极管D2-第一电容C1-第三二极管D3-第三开关管QH3-第二电感L2-第二二极管D2。
参见图4c,该图为本发明图1对应的第三种无功工作模态示意图。
第六模态:第二开关管QH2导通,其余开关管均截止;电流的路径为:第二二极管D2-第一电容C1-第二电容C2-第二开关管QH2-第二电感L2-第二二极管D2。
电网电压的负半周,该五电平逆变器共有三种无功工作模态,分别为:第十模态、第十一模态和第十二模态。
参见图4d,该图为本发明图1对应的第四种无功工作模态示意图。
第十模态:第二开关管QH2导通,其余开关管均截止,电流的路径为:第二开关管QH2-第一二极管D1-第一电感L1-第二开关管QH2。
参见图4e,该图为本发明图1对应的第五种无功工作模态示意图。
第十一模态:第四开关管QH4导通,其余开关管均截止,电流的路径为:第一二极管D1-第一电感L1-第四开关管QH4-第四二极管D4-第一二极管D1。
参见图4f,该图为本发明图1对应的第六种无功工作模态示意图。
第十二模态:第一开关管QH1导通,其余开关管均截止,电流的路径为:第一二极管D1-第一电感L1-第一开关管QH1-第一电容C1-第二电容C2-第一二极管D1。
从以上各种工作模态中可以看出,电网电压正半周时,QL1导通,QL2截止;电网电压负半周时,QL2导通,QL1截止。因此,QL1和QL2是工频开关管。
从以上各种工作模态中可以看出,无论哪种工作模态,本发明实施例提供的五电平逆变器中的高频开关管仅承受一半的母线电压,需要说明的是,此处的母线电压便是直流电源两端的电压。如图3a所示,该种工作模态中有一个高频开关管导通,即QH2,此时导通回路中的电压是C1和C2上的电压之和,C1和C2上的电压之和是直流电源两端的电压,即QH1和QH2分别承受一半的母线电压。如图3b所示,该种工作模态中只有一个高频开关管导通,即QH2,此时导通回路中的电压是C2上的电压,C2上的电压是直流电源两端的电压的一半,即QH2仅承受一半的母线电压。
同理,其他工作模态与图3a和图3b的工作模态类似,高频开关管仅承受母线电压的一半。
并且,该五电平逆变器在不同的工作模态只有一个开关管作为高频开关导通,开关损耗和磁性元件损耗小,效率高。
需要说明的是,本发明还提供了另外一种实施例,实施例一中的六个开关管中有四个高频开关管,两个工频开关管(即与电网电压的频率相同);而下面提供的实施例中有四个工频开关管,两个高频开关管。
参见图5,该图为本发明提供的单相五电平逆变器实施例三电路图。
如图5所示,本实施例与实施例一(图1)的区别是:所述第一开关管QL1、第二开关管QL2、第三开关管QL3和第四开关管QL4的开关频率与电网电压的频率相同;所述第五开关管QH1和第六开关管QH2均为高频开关管。
需要说明的是,图5所示的实施例也可以像图2提供的实施例那样,L1和L2的一端通过隔离变压器连接N。
参见图6,该图为本发明中图1提供的实施例对应的时序图。
该五电平逆变器六个开关管在电网电压一个周期内的有功工作模态时的时序分别为:
所述第一开关管QH1在电网电压正半周的导通时序由正弦调制波Z和第二三角波B进行比较产生,所述正弦调制波Z小于第二三角波B时第一开关管QH1导通,反之截止;所述第一开关管QH1在电网电压负半周的导通时序由所述正弦调制波Z和第一三角波A比较产生,所述正弦调制波Z的反向波大于第一三角波A时第一开关管QH1导通,反之截止;
所述第一三角波A、第二三角波B具有相同的频率和相同的幅值,且所述第一三角波A的波谷等于第二三角波B的波峰;
所述第二开关管QH2的导通时序由所述正弦调制波Z和第二三角波B进行比较产生,所述正弦调制波Z的反向波大于所述第二三角波B时第二开关管QH2导通,反之截止;
所述第三开关管QH3的导通时序由所述正弦调制波Z与第二三角波B比较产生,所述正弦调制波Z大于所述第二三角波B时所述第三开关管QH3导通,反之截止;
所述第四开关管QH4的导通时序由所述正弦调制波Z与第一三角波A比较产生,所述正弦调制波Z大于所述第一三角波A时所述第四开关管QH4导通,反之截止;
所述第五开关管QL1在所述正弦调制波Z的正半周导通,负半周截止;
所述第六开关管QL2在所述正弦调制波Z的正半周截止,负半周导通。
图6中的VAN是图1中的第三节点A和第二节点N之间的电压(A点对N点的电压),即逆变器输出的正电压,VBN是图1中第四节点B和第二节点N之间的电压(B点对N点的电压),即逆变器输出的负电压。并且,从图6中可以看出,在t0-t1时间段内,在电平0和1跳变;在t1-t2时间段内,在电平1和2跳变。在t2-t3时间段内,在电平0和1跳变,在t3-t4时间段内,在电平0和-1跳变;在t4-t5时间段内,在电平-1和-2跳变;在t5-t6时间段内,在电平-1和0跳变。
需要说明的是,本发明实施例中仅给出了图1所示的逆变器中的有功工作模态时的导通时序。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

1.一种单相五电平逆变器,其特征在于,包括:第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一二极管、第二二极管、第三二极管和第四二极管;
第一开关管的第一端连接直流电源的正端,第二端连接第二节点;
第二开关管的第一端连接所述第二节点,第二端连接直流电源的负端;
第三开关管的第一端连接所述第二节点,第二端连接第三二极管的阴极,第三二极管的阳极连接第一节点;所述第一节点的电压为直流电源的电压的1/2;
第四开关管的第一端连接所述第二节点,第二端连接第四二极管的阳极,第四二极管的阴极连接所述第一节点;
第五开关管的第一端连接直流电源的正端,第二端连接第三节点;
第六开关管的第一端连接第四节点,第二端连接直流电源的负端;
第二二极管的阴极连接直流电源的正端,第二二极管的阳极连接第四节点;
第一二极管的阴极连接第三节点,第一二极管的阳极连接直流电源的负端;
第三节点和第二节点是该逆变器的正电压输出端;
第四节点和第二节点是该逆变器的负电压输出端;
电网电压的正半周,该五电平逆变器共有三种有功工作模态,分别为:
第一模态:第二开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第二开关管-第五开关管;
第二模态:第四开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第四开关管-第四二极管-第五开关管;
第三模态:第一开关管和第五开关管均导通,其余开关管均截止;电流的路径为:第五开关管-第一电感-第一开关管-第五开关管;
电网电压的负半周,该五电平逆变器共有三种有功工作模态,分别为:
第七模态:第一开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第一开关管-第二电感-第六开关管-第二电容-第一电容-第一开关管;
第八模态:第三开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第三二极管-第三开关管-第二电感-第六开关管-第三二极管;
第九模态:第二开关管和第六开关管均导通,其余开关管均截止,电流的路径为:第二开关管-第二电感-第六开关管-第二开关管。
2.根据权利要求1所述的单相五电平逆变器,其特征在于,所述开关管为cool MOS管或者IGBT管。
3.根据权利要求1所述的单相五电平逆变器,其特征在于,所述二极管为碳化硅二极管或者快恢复二极管。
4.根据权利要求1所述的单相五电平逆变器,其特征在于,所述第一开关管、第二开关管、第三开关管和第四开关管均为高频开关管;所述第五开关管和第六开关管的开关频率与电网电压的频率相同。
5.根据权利要求4所述的单相五电平逆变器,其特征在于,还包括第一电感、第二电感和电容;
第一电感的一端连接第三节点,另一端通过电容连接第二节点;
第二电感的一端连接第四节点,另一端通过电容连接第二节点;
电容并联在交流负载的两端。
6.根据权利要求4所述的单相五电平逆变器,其特征在于,还包括第一电感、第二电感、隔离变压器和电容;
第一电感的一端连接第三节点,另一端通过隔离变压器的初级绕组连接第二节点;
第二电感的一端连接第四节点,另一端通过隔离变压器的初级绕组连接第二节点;
电容并联在隔离变压器的次级绕组的两端,同时,电容并联在交流负载的两端。
7.根据权利要求5或6所述的单相五电平逆变器,其特征在于,电网电压的正半周,该五电平逆变器共有三种无功工作模态,分别为:
第四模态:第一开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一开关管-第二电感-第二二极管;
第五模态:第三开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一电容-第三二极管-第三开关管-第二电感-第二二极管;
第六模态:第二开关管导通,其余开关管均截止;电流的路径为:第二二极管-第一电容-第二电容-第二开关管-第二电感-第二二极管;
电网电压的负半周,该五电平逆变器共有三种无功工作模态,分别为:
第十模态:第二开关管导通,其余开关管均截止,电流的路径为:第二开关管-第一二极管-第一电感-第二开关管;
第十一模态:第四开关管导通,其余开关管均截止,电流的路径为:第一二极管-第一电感-第四开关管-第四二极管-第一二极管;
第十二模态:第一开关管导通,其余开关管均截止,电流的路径为:第一二极管-第一电感-第一开关管-第一电容-第二电容-第一二极管。
8.根据权利要求1所述的单相五电平逆变器,其特征在于,所述第一开关管、第二开关管、第三开关管和第四开关管的开关频率与电网电压的频率相同;所述第五开关管和第六开关管均为高频开关管;所述逆变器还包括第一电感、第二电感和电容;
第一电感的一端连接第三节点,另一端通过电容连接第二节点;
第二电感的一端连接第四节点,另一端通过电容连接第二节点,电容并联在交流负载的两端。
9.根据权利要求1-6任一项所述的单相五电平逆变器,其特征在于,
该五电平逆变器六个开关管在电网电压一个周期内的有功工作模态时的时序分别为:
所述第一开关管在电网电压正半周的导通时序由正弦调制波和第二三角波进行比较产生,所述正弦调制波小于第二三角波时第一开关管导通,反之截止;所述第一开关管在电网电压负半周的导通时序由所述正弦调制波和第一三角波比较产生,所述正弦调制波的反向波大于第一三角波时第一开关管导通,反之截止;
所述第一三角波、第二三角波具有相同的频率和相同的幅值,且所述第一三角波的波谷等于第二三角波的波峰;第二三角波的波谷为零;
所述第二开关管的导通时序由所述正弦调制波和第二三角波进行比较产生,所述正弦调制波的反向波大于所述第二三角波时第二开关管导通,反之截止;
所述第三开关管的导通时序由所述正弦调制波与第二三角波比较产生,所述正弦调制波大于所述第二三角波时所述第三开关管导通,反之截止;
所述第四开关管的导通时序由所述正弦调制波与第一三角波比较产生,所述正弦调制波大于所述第一三角波时所述第四开关管导通,反之截止;
所述第五开关管在所述正弦调制波的正半周导通,负半周截止;
所述第六开关管在所述正弦调制波的正半周截止,负半周导通。
CN201210330240.9A 2012-09-07 2012-09-07 一种单相五电平逆变器 Active CN102843056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210330240.9A CN102843056B (zh) 2012-09-07 2012-09-07 一种单相五电平逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210330240.9A CN102843056B (zh) 2012-09-07 2012-09-07 一种单相五电平逆变器

Publications (2)

Publication Number Publication Date
CN102843056A CN102843056A (zh) 2012-12-26
CN102843056B true CN102843056B (zh) 2015-06-24

Family

ID=47370173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210330240.9A Active CN102843056B (zh) 2012-09-07 2012-09-07 一种单相五电平逆变器

Country Status (1)

Country Link
CN (1) CN102843056B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219907B (zh) * 2013-03-20 2015-04-22 上海交通大学 五电平逆变器
CN103178736B (zh) * 2013-03-22 2015-07-29 阳光电源股份有限公司 一种五电平逆变器
JP6093479B2 (ja) * 2013-12-04 2017-03-08 サングロー パワー サプライ カンパニー リミテッド 5レベルインバータ
CN103684015B (zh) * 2013-12-30 2016-03-30 阳光电源股份有限公司 一种七电平逆变器
CN106911261A (zh) * 2017-03-24 2017-06-30 江苏固德威电源科技股份有限公司 Z源网络有源中点钳位五电平光伏并网逆变系统
CN108282103A (zh) * 2018-02-11 2018-07-13 许继电气股份有限公司 一种五电平逆变器
CN109067225A (zh) * 2018-09-07 2018-12-21 广东电网有限责任公司 一种单相五电平逆变器及其控制方法
CN112865567B (zh) * 2021-01-28 2022-05-20 三峡大学 一种异构二极管钳位式的三电平整流器
CN112910244B (zh) * 2021-01-28 2022-05-20 三峡大学 一种混合桥臂单相三电平功率因数校正电路
CN112865562B (zh) * 2021-01-28 2022-05-20 三峡大学 一种单相三开关管伪图腾柱式三电平整流器
CN112865566B (zh) * 2021-01-28 2022-05-20 三峡大学 一种三开关管单相三电平整流器
CN112910243B (zh) * 2021-01-28 2022-06-14 三峡大学 一种单相三电平伪图腾柱功率因数校正电路
CN113206601B (zh) * 2021-04-12 2022-06-14 三峡大学 基于单相ii型三电平伪图腾柱的直流充电器
CN113472232A (zh) * 2021-07-12 2021-10-01 北京国科翼达电力节能科技有限公司 一种五电平滞环比较逆变器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980437A (zh) * 2010-10-22 2011-02-23 南京航空航天大学 一种五电平并网逆变器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980437A (zh) * 2010-10-22 2011-02-23 南京航空航天大学 一种五电平并网逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张犁,孙农,邢岩.《高效率五电平双降压式全桥并网逆变器》.《中国电机工程学报》.2012,第32卷(第12期),第28至第32页. *

Also Published As

Publication number Publication date
CN102843056A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
CN102843056B (zh) 一种单相五电平逆变器
CN101917133B (zh) 一种五电平逆变器
CN101980437B (zh) 一种五电平并网逆变器
CN102005954B (zh) 单相非隔离型光伏并网逆变器及控制方法
CN103051233A (zh) 一种非隔离型单相光伏并网逆变器及其开关控制时序
CN102361408A (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN103166495A (zh) 单相不对称全桥非隔离光伏并网逆变器
CN102739101A (zh) 正反激逆变器
CN102624267A (zh) 逆变器及其在三相系统中的应用电路
CN201797441U (zh) 一种带耦合电感的软开关隔离型双向直流-直流变换器
CN102882410B (zh) 一种单相七电平逆变器
CN102969898B (zh) 低压宽输入三电平全桥变换器及其控制方法
CN1937380A (zh) 零电压开关半桥三电平直流变换器
CN105281361A (zh) 一种五电平双降压式并网逆变器
CN102545682B (zh) 一种单相逆变器
CN102843054B (zh) 一种单相五电平逆变器
CN102427312A (zh) 一种单相逆变器
CN102403920B (zh) 三电平半桥光伏并网逆变器
CN102158111A (zh) 单极性组合整流式高频隔离逆变器及其控制电路
CN101951155B (zh) 带耦合电感的软开关隔离型双向直流-直流变换器
CN102710133A (zh) 一种七电平电路、并网逆变器及其调制方法和装置
CN102420538A (zh) 二极管箝位七电平dc-ac变换电路
CN102570878B (zh) 一种单相逆变器
CN104578877A (zh) 一种单级升压逆变器
CN102891602A (zh) 三电平直流变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant