CN102842590A - Image sensor and manufacturing method thereof - Google Patents
Image sensor and manufacturing method thereof Download PDFInfo
- Publication number
- CN102842590A CN102842590A CN2012102661495A CN201210266149A CN102842590A CN 102842590 A CN102842590 A CN 102842590A CN 2012102661495 A CN2012102661495 A CN 2012102661495A CN 201210266149 A CN201210266149 A CN 201210266149A CN 102842590 A CN102842590 A CN 102842590A
- Authority
- CN
- China
- Prior art keywords
- layer
- image sensor
- covering layer
- covering
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 11
- 238000002834 transmittance Methods 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 4
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000031700 light absorption Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000005286 illumination Methods 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000002310 reflectometry Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
本发明提供了一种图像传感器及其制造方法,能够提高光吸收的效率。所述图像传感器形成于带有绝缘埋层的衬底中,所述衬底包括绝缘埋层和绝缘埋层表面的器件层,所述图像传感器的像素电路和光电二极管形成于器件层中,在所述光电二极管的表面设置有第一覆盖层,并在所述衬底的另一表面与第一覆盖层对应的位置设置有第二覆盖层,所述第二覆盖层为光入射层。本发明的优点在于,通过入射光线的多次反射,使其在感光区内被多次吸收,从而提高了基于图像传感器感光单元的光吸收效率,进一步采用背面照射技术也避免了入射光收到金属布线层的遮挡,提高了图像传感器的量子效率。
The invention provides an image sensor and a manufacturing method thereof, which can improve the efficiency of light absorption. The image sensor is formed in a substrate with an insulating buried layer, the substrate includes the insulating buried layer and a device layer on the surface of the insulating buried layer, the pixel circuit and the photodiode of the image sensor are formed in the device layer, and the A first covering layer is provided on the surface of the photodiode, and a second covering layer is provided on the other surface of the substrate at a position corresponding to the first covering layer, and the second covering layer is a light incident layer. The advantage of the present invention is that, through the multiple reflections of the incident light, it is absorbed multiple times in the photosensitive area, thereby improving the light absorption efficiency of the photosensitive unit based on the image sensor, and further adopting the backside illumination technology also avoids the incident light from being absorbed The shielding of the metal wiring layer improves the quantum efficiency of the image sensor.
Description
技术领域 technical field
本发明涉及图像传感器领域,尤其涉及一种图像传感器及其制造方法。The invention relates to the field of image sensors, in particular to an image sensor and a manufacturing method thereof.
背景技术 Background technique
SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了传统的体硅材料所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势。SOI (Silicon-On-Insulator, silicon on insulating substrate) technology introduces a buried oxide layer between the top silicon and the back substrate. By forming a semiconductor thin film on an insulator, SOI material has advantages that cannot be compared with traditional bulk silicon materials: it can realize the dielectric isolation of components in integrated circuits, and completely eliminate the parasitic latch effect in bulk silicon CMOS circuits; using this Integrated circuits made of this material also have the advantages of small parasitic capacitance, high integration density, fast speed, simple process, small short channel effect, and are especially suitable for low-voltage and low-power circuits.
图像传感器是一种将光学图像转换为电信号的半导体器件,一般由感光像素和CMOS信号处理电路构成。目前常见的CMOS图像传感器是有源像素型图像传感器(APS),其中又分为三管图像传感器(3T,包括复位晶体管、放大晶体管和行选择晶体管)和四管图像传感器(4T,包括转移晶体管、复位晶体管、放大晶体管和行选择晶体管)两大类。An image sensor is a semiconductor device that converts an optical image into an electrical signal, and is generally composed of a photosensitive pixel and a CMOS signal processing circuit. At present, the common CMOS image sensor is active pixel image sensor (APS), which is divided into three-tube image sensor (3T, including reset transistor, amplification transistor and row selection transistor) and four-tube image sensor (4T, including transfer transistor , Reset transistors, amplifier transistors and row selection transistors) two categories.
一种现有的制作于SOI衬底上的CMOS图像传感器像素单元结构如图1所示,采用的是全耗尽结构,包括:衬底100、埋氧层110和器件层130。器件层130包括光电二极管140、复位晶体管150、源极跟随晶体管160和行选晶体管170。此像素结构的感光区主要位于光电二极管140的PN结耗尽区。每个晶体管均包括源极、栅极和漏极等基本结构。上述各个器件的位置关系以及电学连接关系请参考附图1。An existing CMOS image sensor pixel unit structure fabricated on an SOI substrate is shown in FIG. 1 , which adopts a fully depleted structure, including: a
参考附图1,现有像素结构的工作原理是:开始工作时,首先将复位晶体管150栅极加高电平,使其导通,曝光时,光电二极管140作为光电子收集区域,当入射光照射时,产生电子空穴对,在完成曝光之后并通过源极跟随晶体管160和行选晶体管170将积分电压信号读出。于是输出电压的值就反映了光信号的强弱。Referring to Figure 1, the working principle of the existing pixel structure is as follows: when starting to work, the gate of the
上述制作于SOI衬底上的CMOS图像传感器像素电路的缺点在于SOI衬底的器件层130很薄,通常只有数十个微米甚至十几个微米,入射光在光电二极管140中的光程很短,导致光吸收效率以及量子效率低下。尤其是对于波长大于600nm的红色,橙色光,吸收效率极低,成像质量很不理想;此外,由于通常采用正面照射技术,光线照射到感光区之前必须越过一定厚度的金属布线层,使得部分斜入射光被遮挡,降低了此像素结构的量子效率。The disadvantage of the CMOS image sensor pixel circuit fabricated on the SOI substrate is that the
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种图像传感器及其制造方法,能够提高光吸收的效率。The technical problem to be solved by the present invention is to provide an image sensor and its manufacturing method, which can improve the efficiency of light absorption.
为了解决上述问题,本发明提供了一种图像传感器,形成于带有绝缘埋层的衬底中,所述衬底绝缘埋层和绝缘埋层表面的器件层,所述图像传感器的像素电路和光电二极管形成于器件层中,在所述光电二极管的表面设置有第一覆盖层,并在所述衬底的另一表面与第一覆盖层对应的位置设置有第二覆盖层,所述第二覆盖层为光入射层。In order to solve the above problems, the present invention provides an image sensor formed in a substrate with an insulating buried layer, the substrate insulating buried layer and the device layer on the surface of the insulating buried layer, the pixel circuit and the The photodiode is formed in the device layer, a first covering layer is provided on the surface of the photodiode, and a second covering layer is provided on the other surface of the substrate corresponding to the first covering layer, and the first covering layer is provided on the surface of the substrate corresponding to the first covering layer. The second covering layer is the light incident layer.
可选的,所述衬底进一步包括支撑层,所述绝缘层设置在支撑层和器件层之间,所述第二覆盖层进一步是设置在所述支撑层表面;所述支撑层的厚度小于5μm。Optionally, the substrate further includes a support layer, the insulating layer is disposed between the support layer and the device layer, and the second covering layer is further disposed on the surface of the support layer; the thickness of the support layer is less than 5 μm.
可选的,所述第一覆盖层的材料为反射增强材料;所述第二覆盖层为增透膜,或所述第二覆盖层的材料为单面透射材料,光从介质层外到介质层内的透射率大于从介质层内到介质层外的透射率;所述第一覆盖层和第二覆盖层的厚度范围均为1nm至10nm。Optionally, the material of the first covering layer is a reflection-enhancing material; the second covering layer is an anti-reflection film, or the material of the second covering layer is a single-sided transmission material, and the light passes from the outside of the medium layer to the medium The transmittance inside the layer is greater than the transmittance from inside the medium layer to outside the medium layer; the thickness range of the first covering layer and the second covering layer is 1nm to 10nm.
可选的,在所述第二覆盖层的表面进一步设置有光聚焦模块。Optionally, a light focusing module is further arranged on the surface of the second covering layer.
本发明进一步提供了一种图像传感器的制造方法,包括如下步骤:提供一衬底,所述衬底包括支撑层,支撑层表面的绝缘层以及绝缘层表面的器件层;在器件层中制作图像传感器的像素电路和光电二极管;减薄支撑层;在所述光电二极管的表面形成第一覆盖层,并在与之相对的表面形成第二覆盖层;图形化第一覆盖层,形成光电二极管的电学通孔;形成光电二极管与像素电路之间的电学连接。The present invention further provides a method for manufacturing an image sensor, comprising the steps of: providing a substrate, the substrate including a supporting layer, an insulating layer on the surface of the supporting layer, and a device layer on the surface of the insulating layer; making an image in the device layer The pixel circuit and photodiode of the sensor; thinning the supporting layer; forming a first covering layer on the surface of the photodiode, and forming a second covering layer on the surface opposite to it; patterning the first covering layer to form the photodiode Electrical via; forms the electrical connection between the photodiode and the pixel circuitry.
可选的,所述减薄支撑层的步骤中,进一步是将支撑层减薄至一厚度;所述支撑层减薄之后的厚度小于5μm。Optionally, in the step of thinning the support layer, the support layer is further thinned to a thickness; the thickness of the support layer after thinning is less than 5 μm.
可选的,进一步包括在所述第二覆盖层的表面形成光聚焦模块的步骤。Optionally, further comprising a step of forming a light focusing module on the surface of the second covering layer.
本发明的优点在于,通过入射光线的多次反射,使其在感光区内被多次吸收,从而提高了基于图像传感器感光单元的光吸收效率,进一步采用背面照射技术也避免了入射光收到金属布线层的遮挡,提高了图像传感器的量子效率。The advantage of the present invention is that, through the multiple reflections of the incident light, it is absorbed multiple times in the photosensitive area, thereby improving the light absorption efficiency of the photosensitive unit based on the image sensor, and further adopting the backside illumination technology also avoids the incident light from being absorbed The shielding of the metal wiring layer improves the quantum efficiency of the image sensor.
附图说明 Description of drawings
附图1是一种现有的制作于SOI衬底上的CMOS图像传感器感光单元结构。Accompanying drawing 1 is a kind of existing photosensitive unit structure of CMOS image sensor fabricated on SOI substrate.
附图2所示是本发明的具体实施方式所述方法的实施步骤示意图。Accompanying drawing 2 is a schematic diagram of implementation steps of the method described in the specific embodiment of the present invention.
附图3A至步骤3G所示是附图2所示步骤的工艺示意图。Shown in accompanying drawing 3A to step 3G is the technological schematic diagram of the step shown in accompanying drawing 2.
附图4所示是本发明的具体实施方式所采用的法布里珀罗腔的原理图。Figure 4 is a schematic diagram of the Fabry-Perot cavity used in the specific embodiment of the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明提供的图像传感器及其制造方法的具体实施方式做详细说明。Specific implementations of the image sensor and its manufacturing method provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
步骤S20,提供一衬底,所述衬底包括支撑层,支撑层表面的绝缘层以及绝缘层表面的器件层;步骤S21,在器件层中制作图像传感器的像素电路和光电二极管;步骤S22,减薄支撑层至一厚度;步骤S23,在所述光电二极管的表面形成第一覆盖层,并在与之相对的表面形成第二覆盖层;步骤S24,图形化第一覆盖层,形成光电二极管的电学通孔;步骤S25,形成光电二极管与像素电路之间的电学连接;步骤S26,在所述第二覆盖层的表面形成光聚焦模块。Step S20, providing a substrate, said substrate comprising a support layer, an insulating layer on the surface of the support layer, and a device layer on the surface of the insulating layer; Step S21, fabricating a pixel circuit and a photodiode of an image sensor in the device layer; Step S22, Thinning the support layer to a certain thickness; step S23, forming a first covering layer on the surface of the photodiode, and forming a second covering layer on the surface opposite to it; step S24, patterning the first covering layer to form a photodiode electrical through hole; step S25, forming an electrical connection between the photodiode and the pixel circuit; step S26, forming a light focusing module on the surface of the second covering layer.
附图3A至步骤3G所示是附图2所示步骤的工艺示意图。Shown in accompanying drawing 3A to step 3G is the technological schematic diagram of the step shown in accompanying drawing 2.
附图3A所示,参考步骤S20,提供一衬底30,所述衬底30包括支撑层301,支撑层301表面的绝缘层302以及绝缘层302表面的器件层303。所述支撑层301以及器件层303的材料可以是包括单晶硅在内的任意中本领域内常见的衬底材料,并且支撑层301和器件层303的材料可以相同或者不同。所述绝缘层302的材料可以是包括氧化硅、氮化硅以及氮氧化硅在内的任意一种常见的绝缘材料。器件层303的厚度范围通常是50nm到5μm之间;绝缘层302的厚度范围通常是50nm到300nm之间。As shown in FIG. 3A , referring to step S20 , a substrate 30 is provided, and the substrate 30 includes a supporting
附图3B所示,参考步骤S21,在器件层303中制作图像传感器的像素电路和光电二极管310,像素电路具体包括复位晶体管150、源极跟随晶体管160和行选晶体管170以及彼此之间的电学连线。As shown in accompanying drawing 3B, referring to step S21, the pixel circuit and
本具体实施方式中,器件层303的厚度范围为50nm到500nm,光电二极管310为横向PIN结构。所述光电二极管310包括P型掺杂区311,掺杂浓度大于1×1018cm-3;全耗尽区312,采用N型或P型杂质离子注入,且掺杂浓度小于1×1015cm-3,或者不掺杂;N型掺杂区313,其掺杂浓度大于1×1018cm-3。P型掺杂区311、全耗尽区312、N型掺杂区313依次相邻,P型掺杂区311和N型掺杂区313的掺杂浓度比全耗尽区312的掺杂浓度高三个数量级或以上,且保证全耗尽区312被全部耗尽,作为本具体实施方式中图像传感器的有效感光区。全耗尽区312的(垂直于深度方向的)长度为1~8μm。In this specific embodiment, the
光电二极管310的工作原理大致是在全耗尽区312收集的光生空穴会在内建电场的作用下移向P型掺杂区311,而光生电子也会在内建电场的作用下移向N型掺杂区313。于是,若将上述感光区中的P型掺杂区311,便可将收集于P型掺杂区311中的光生空穴泄入地端;N型掺杂区313连接到光电信号处理电路,可将收集于N型掺杂区313中的光生电子读出。The working principle of the
该步骤中,作为可选实施例,当器件层303厚度大于2μm时,光电二极管310可以为PN结感光二极管或光电门结构。In this step, as an optional embodiment, when the thickness of the
附图3C所示,参考步骤S22,减薄支撑层301至一厚度。可以采用研磨减薄或者化学腐蚀的方法减薄支撑衬底301。本步骤中,优选将所述支撑层301的厚度减薄至小于5μm,以增强光从支撑层301的透过率。在其他的实施方式中,也可以将支撑层301完全去除以暴露出绝缘层302,这样的优点在于可以利用绝缘层302的自停止作用,保证腐蚀面的平整度,在这样的实施方式中,应当保证绝缘层302和器件层303具有足够的机械强度。As shown in FIG. 3C , referring to step S22 , the supporting
附图3D所示,参考步骤S23,在所述光电二极管310的表面形成第一覆盖层321,并在与之相对的表面形成第二覆盖层322。所述第一覆盖层321的材料为反射增强材料,反射率大于80%,可以为银膜,厚度范围均1nm至10nm;所述第二覆盖层322的材料为单面透射材料,可以为聚酰亚胺薄膜,或具有不同折射率材料组成的叠层结构,光从衬底30外到衬底30内的透射率(通常大于70%)大于从衬底30内到衬底30外的透射率(通常小于30%),厚度范围均1nm至10nm。As shown in FIG. 3D , referring to step S23 , a first covering
作为可选实施方式,第二覆盖层322还可以为增透膜,具体可以为氮化硅薄膜、氮氧化硅薄膜、HfO2薄膜、SiNxOy:H薄膜等。As an optional implementation manner, the second covering
附图3E所示,参考步骤S24,图形化第一覆盖层321,形成光电二极管310的电学通孔,包括对应于P型掺杂区311的通孔331和对应于N型掺杂区313的通孔333。图形化工艺可以采用本领域内常见的光刻和腐蚀工艺,此处不再赘述。As shown in FIG. 3E , referring to step S24, the
附图3F所示,参考步骤S25,形成光电二极管310与像素电路之间的电学连接,包括P型掺杂区311的接地和N型掺杂区313与复位晶体管150之间的电学连接。形成电学连接的工艺制作方法均为本领域技术人员的公知技术,不作赘述。As shown in FIG. 3F , referring to step S25 , the electrical connection between the
附图3G所示,参考步骤S26,在所述第二覆盖层的表面形成光聚焦模块。在所述第二覆盖层322的表面形成光聚焦模块390。光聚焦模块390包括滤色片391和位于滤色片391上的微透镜392。滤色片391和微透镜392均为CMOS图像传感器的普遍构成部分。其功能和工艺制作方法均为本领域技术人员的公知技术,不作赘述。所要注意的是,红、绿、蓝三种滤色片所能通过的波长范围,必须覆盖上述推导中所导出的三个最大发射波长,即λ=743nm,对应红色滤色片;λ=437nm,对应绿色滤色片;λ=400nm,对应蓝色滤色片。As shown in FIG. 3G , referring to step S26 , a light focusing module is formed on the surface of the second covering layer. A light focusing
附图3G所示即为本具体实施方式所述的图像传感器,形成于带有绝缘埋层302和器件层303的衬底300中,光电二极管310,和像素电路的复位晶体管150、源极跟随晶体管160和行选晶体管170等形成于器件层303中,光电二极管310的表面覆盖有第一覆盖层321,与之相对的表面覆盖有第二覆盖层322。若将支撑层301全部除去,则图像传感器也可以只包括绝缘层302和器件层303。所述光电二极管310包括P型掺杂区311,掺杂浓度大于1×1018cm-3;全耗尽区312,采用N型或P型杂质离子注入,且掺杂浓度小于1×1015cm-3,或者不掺杂;N型掺杂区313,其掺杂浓度大于1×1018cm-3,所述第二覆盖层322为光入射层。Figure 3G shows the image sensor described in this specific embodiment, which is formed in a substrate 300 with an insulating buried
第一覆盖层321、支撑层301、绝缘层302、器件层303以及第二覆盖层322共同构成了一个法布里珀罗腔。附图4所示是法布里珀罗腔的原理图。当某一特定波长的光射入法布里珀罗腔(感光区)后,会有部分光在腔体内反复折射,另一部分光会从腔体表面的薄膜透出腔外。对于一个法布里珀罗腔来说,总的反射光合透射光的比例取决于腔体表面材料性质和腔体的厚度。通过适当选择材料以及腔体厚度,可以让大部分入射光成为在腔体内的反射光,从而被感光区多次吸收。The
本具体实施方式利用了法布里珀罗腔的特点,通过入射光线的多次反射,使其在感光区内被多次吸收,从而提高了基于图像传感器的光吸收效率。This specific embodiment utilizes the characteristics of the Fabry-Perot cavity, and through multiple reflections of the incident light, it is absorbed multiple times in the photosensitive area, thereby improving the light absorption efficiency based on the image sensor.
具体的,若腔体长度为L,入射光波长为λ,入射角为θ,反射膜的反射率(假设两侧的膜反射率相同)为R,腔体为均一折射率材料且折射率为n,则法布里珀罗腔对于该入射光的发射率RE(所有在腔体内的反射光能量占入射光能量的比例)为
若要使腔体的总反射率RE取最大值,可以解出:(k取自然数)。而在图像传感器应用中,入射角θ一般为0,于是即入射光取该波长时,法布里珀罗腔有最大的反射率。To maximize the total reflectivity R E of the cavity, it can be solved as follows: (k is a natural number). In image sensor applications, the incident angle θ is generally 0, so That is, when the incident light takes this wavelength, the Fabry-Perot cavity has the maximum reflectivity.
注意到,本具体实施方式中的法布里珀罗腔的腔体实际有三层(支撑层301、绝缘层302、器件层303,在其他具体实施方式中若支撑层301被全部去除,则应当有两层),而非均一折射率材料。此时
适当地取腔体长度L的值,在k取几个不同的自然数的情况下,本发明中的法布里珀罗腔结构可以对红光、绿光和蓝光三个波段的可见光同时具有最大反射率,从而使入射光在感光区内被多次反射,多次吸收。本实施例中,腔体介质为硅,取L=380nm,当k=3时,λ=743nm,对应红光;当k=5时,λ=437nm,对应绿光;当k=6时,λ=400nm,对应蓝光。Appropriately take the value of the cavity length L, under the condition that k takes several different natural numbers, the Fabry-Perot cavity structure in the present invention can simultaneously have the maximum Reflectivity, so that the incident light is reflected and absorbed multiple times in the photosensitive area. In this embodiment, the cavity medium is silicon, and L=380nm, when k=3, λ=743nm, corresponding to red light; when k=5, λ=437nm, corresponding to green light; when k=6, λ=400nm, corresponding to blue light.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210266149.5A CN102842590B (en) | 2012-07-30 | 2012-07-30 | Image sensor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210266149.5A CN102842590B (en) | 2012-07-30 | 2012-07-30 | Image sensor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102842590A true CN102842590A (en) | 2012-12-26 |
CN102842590B CN102842590B (en) | 2015-01-28 |
Family
ID=47369803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210266149.5A Expired - Fee Related CN102842590B (en) | 2012-07-30 | 2012-07-30 | Image sensor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102842590B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040253759A1 (en) * | 2003-06-12 | 2004-12-16 | Valery Garber | Steady-state non-equilibrium distribution of free carriers and photon energy up-conversion using same |
CN101197387A (en) * | 2006-12-08 | 2008-06-11 | 索尼株式会社 | Solid-state imaging device, manufacturing method thereof, and imaging device |
CN101228631A (en) * | 2005-06-02 | 2008-07-23 | 索尼株式会社 | Solid imaging element and manufacturing method thereof |
CN101667584A (en) * | 2008-09-05 | 2010-03-10 | 法国原子能委员会 | Light reflecting CMOS image sensor |
CN102376724A (en) * | 2010-08-13 | 2012-03-14 | 台湾积体电路制造股份有限公司 | Antireflective layer for backside illuminated image sensor and method of manufacturing same |
-
2012
- 2012-07-30 CN CN201210266149.5A patent/CN102842590B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040253759A1 (en) * | 2003-06-12 | 2004-12-16 | Valery Garber | Steady-state non-equilibrium distribution of free carriers and photon energy up-conversion using same |
CN101228631A (en) * | 2005-06-02 | 2008-07-23 | 索尼株式会社 | Solid imaging element and manufacturing method thereof |
CN101197387A (en) * | 2006-12-08 | 2008-06-11 | 索尼株式会社 | Solid-state imaging device, manufacturing method thereof, and imaging device |
CN101667584A (en) * | 2008-09-05 | 2010-03-10 | 法国原子能委员会 | Light reflecting CMOS image sensor |
CN102376724A (en) * | 2010-08-13 | 2012-03-14 | 台湾积体电路制造股份有限公司 | Antireflective layer for backside illuminated image sensor and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN102842590B (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7709872B2 (en) | Methods for fabricating image sensor devices | |
JP5420656B2 (en) | Backside illuminated image sensor with backside trench | |
US8674283B2 (en) | Image sensor with reduced optical crosstalk | |
US7883916B2 (en) | Optical sensor including stacked photosensitive diodes | |
US20120153127A1 (en) | Image sensor with reduced crosstalk | |
US9691809B2 (en) | Backside illuminated image sensor device having an oxide film and method of forming an oxide film of a backside illuminated image sensor device | |
US20160307940A1 (en) | Dielectric grid bottom profile for light focusing | |
TWI772652B (en) | Shallow trench textured regions and associated methods | |
US20190198536A1 (en) | Image Sensor and Forming Method Thereof | |
CN104425531A (en) | Semiconductor device and manufacturing method thereof | |
CN101834194A (en) | The pixel sensor cell that comprises light shield | |
CN113053929B (en) | Semiconductor structure, image sensor, and method for forming semiconductor structure | |
JPWO2012164809A1 (en) | Solid-state imaging device and manufacturing method thereof | |
CN112992946A (en) | Image sensing element, optical structure and forming method thereof | |
CN111508980A (en) | Light detection device for enhancing collection efficiency | |
CN113380837A (en) | Solid-state image sensor with surface micro-cylinder structure and manufacturing method thereof | |
US20250126911A1 (en) | Methods for forming optical blocking structures for black level correction pixels in an image sensor | |
CN113380844A (en) | Image sensor and forming method thereof | |
CN102842590B (en) | Image sensor and manufacturing method thereof | |
CN110379827A (en) | Imaging sensor and forming method thereof | |
CN102820312B (en) | Imageing sensor photosensitive unit and manufacture method thereof | |
US9721983B2 (en) | Semiconductor device and manufacturing method thereof | |
CN113314625B (en) | Integrated circuit, integrated device and forming method thereof | |
CN110770908A (en) | Image sensor, manufacturing method thereof and electronic equipment | |
CN102569320A (en) | Photosensitive region of image sensor and manufacturing method of photosensitive region as well as image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: SHANGHAI ADVANCED RESEARCH INSTITUTE, CHINESE ACAD Free format text: FORMER OWNER: SHANGHAI ZHONGKE INSTITUTE FOR ADVANCED STUDY Effective date: 20131012 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20131012 Address after: 201210 Shanghai city Pudong New Area Hartcourt Road No. 99 Applicant after: SHANGHAI ADVANCED Research Institute CHINESE ACADEMY OF SCIENCES Address before: 201210 Shanghai city Pudong New Area Hartcourt Road No. 99 Applicant before: SHANGHAI ADVANCED Research Institute CHINESE ACADEMY OF SCIENCES |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150128 Termination date: 20210730 |