CN102832868B - 一种用于伺服驱动器的能耗制动装置及方法 - Google Patents

一种用于伺服驱动器的能耗制动装置及方法 Download PDF

Info

Publication number
CN102832868B
CN102832868B CN201210319676.8A CN201210319676A CN102832868B CN 102832868 B CN102832868 B CN 102832868B CN 201210319676 A CN201210319676 A CN 201210319676A CN 102832868 B CN102832868 B CN 102832868B
Authority
CN
China
Prior art keywords
braking
resistance
energy
dynamic braking
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210319676.8A
Other languages
English (en)
Other versions
CN102832868A (zh
Inventor
苏智胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI LIRUI ELECTROMECHANICAL CO Ltd
Original Assignee
HUBEI LIRUI ELECTROMECHANICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI LIRUI ELECTROMECHANICAL CO Ltd filed Critical HUBEI LIRUI ELECTROMECHANICAL CO Ltd
Priority to CN201210319676.8A priority Critical patent/CN102832868B/zh
Publication of CN102832868A publication Critical patent/CN102832868A/zh
Application granted granted Critical
Publication of CN102832868B publication Critical patent/CN102832868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

本发明涉及一种用于伺服驱动器的能耗制动装置及方法,包括电流采样模块、转速输出模块、惯量识别模块和制动控制单元;所述电流采样模块用于检测流过制动电阻R的电流信号Ir并输出到所述制动控制单元;所述转速输出模块用于输出伺服电机的运行转速ωs和给定转速ωref;所述惯量识别环节用于获得伺服电机当前的转动惯量Js;所述制动控制单元根据控制算法预先计算得出回馈能量ΔW,并在制动过程中实时通过制动电阻上流过的电流信号Ir计算制动耗能ΔWf,通过反馈控制环节使回馈能量ΔW和制动能量ΔWf相等,从而实现能耗制动的过程。

Description

一种用于伺服驱动器的能耗制动装置及方法
技术领域
本发明涉及一种制动装置,尤其涉及一种用于伺服驱动器的能耗制动装置,以及一种用于伺服驱动器的能耗制动方法,其根据预测出的电机制动时所产生的能量来预先规划电机的制动过程,并且在制动过程中实时采集相关信息来调整制动控制量,从而将母线电压的波动控制在一个较小的范围内,抑制了系统的转矩波动。
背景技术
伺服驱动器在制动过程中电机回馈的能量会使母线电压升高,母线电压升高的幅值ΔU=(2×ΔW/C)^0.5,其中ΔW为回馈的能量,C为并联在母线上电容的容值。此时如不加入能耗制动单元吸收这个回馈的能量,母线电压升的过高就会击穿母线上的电容C和功率器件IPM,对伺服驱动器产生不可恢复的损害。目前国内伺服驱动器的能耗制动单元主要采用滞环控制方法,其包括母线电压检测模块和功率制动模块,如图1所示。当制动过程发生时,由于电机能量回馈导致母线电压升高,能耗制动单元通过检测母线电压,当其达到某个设定的高阈值时控制IGBT导通,接入制动电阻R吸收回馈能量,降低母线电压。当母线电压降低到设定的低阈值时制动单元控制IGBT关断,断开制动电阻R,此时母线电压又将升高,如此反复使母线电压稳定在设定范围内。
传统的能耗制动单元实现起来只需在电路上增加少量的器件,由制动电阻R和IGBT构成的功率制动模块,分压电阻构成的母线电压检测模块,结构简单,成本低。而且,工作时检测母线电压到达阈值开通制动电阻,低于阈值时关断制动电阻,控制算法也易于实现。但是由于这种控制方式是检测母线电压达到上阈值或下阈值后在动作,采用的是滞环控制,这样在制动过程中母线电压就会在设定的上下阈值中间波动。母线电压的波动,无疑对母线上的电容C寿命造成了影响,同时也引起了转矩脉动,降低了伺服驱动器的使用寿命和工作性能。
发明内容
未解决上述技术问题,本发明提供了一种用于伺服驱动器的能耗制动装置,其特征在于:包括电流采样模块、转速输出模块、惯量识别模块和制动控制单元;
所述电流采样模块包括检测电阻Rs、电阻R1、电阻R2、电阻R3和运放OP1,其中检测电阻Rs与制动电阻R和IGBT器件相串联,用于检测流过制动电阻R的电流信号Ir,电阻R1、R2、R3和运放OP1构成同相放大电路,将电流信号Ir放大采样后输出到所述制动控制单元;
所述转速输出模块用于输出伺服电机的运行转速ωs和给定转速ωref;
所述惯量识别环节用于获得伺服电机当前的转动惯量Js;
所述制动控制单元根据控制算法预先计算得出回馈能量ΔW,并在制动过程中实时通过制动电阻上流过的电流信号Ir计算制动耗能ΔWf,通过反馈控制环节使回馈能量ΔW和制动能量ΔWf相等,从而实现能耗制动的过程。
在上述技术方案中,所述回馈能量ΔW的计算方法为:
根据当前转速和目标转速计算回馈能量的一个取值ΔW1,ΔW1=0.5×Js×(ωs^2-ωref^2);
根据伺服控制器内部的矢量控制算法中的电压和电流变量计算回馈能量的另一个取值ΔW2,ΔW2=Uref×Iref×Tr,式中Uref和Iref为伺服控制器内部的矢量控制算法中的电压和电流变量,Tr为Uref矢量作用的时间;
将ΔW1和ΔW2加权处理后得到回馈能量ΔW,ΔW=K1×ΔW1+K2×ΔW2,式中K1和K2为加权系数,K1>0,K2>0,K1+K2=1。
在上述技术方案中,所述制动控制单元启动能耗制动的导通时间由ΔT=ΔW×(Ra/(U^2))确定,其中Ra=R+Rs,式中R为制动电阻阻值,Rs为采样电阻阻值,U为工作电压。
在上述技术方案中,所述制动控制单元中还设置有启动能耗制动的最小导通时间ΔTmin,其中当计算得到的启动能耗制动的导通时间ΔT小于或等于最小导通时间ΔTmin时,不启动能耗制动。
在上述技术方案中,所述制动控制单元通过控制IGBT器件的开关来启动或者关闭能耗制动。
在上述技术方案中,所述制动控制单元的控制算法采用PID控制算法,其公式为
MV n = K P ( e n + T s T I Σ i = 0 n e n + T D e n - e n - 1 T S ) + MV 0
其中,Kp为比例增益,与调节比例度p互为倒数;TI为积分时间常数,决定积分作用的强弱;TD为微分时间常数,决定微分作用的强弱;TS为数字控制系统采样周期;en为第n次采样的偏差,MVn为控制输出,MV0为初始控制输出。
本发明还提供了一种用于伺服驱动器的能耗制动方法,其特征在于包括如下步骤;
电流采样步骤,检测流过制动电阻R的电流信号Ir,将电流信号Ir放大采样后输出到制动控制单元;
转速采集步骤,向制动控制单元输出伺服电机的运行转速ωs和给定转速ωref;
惯量采集步骤,向制动控制单元输出伺服电机当前的转动惯量Js;
能耗制动控制步骤,所述制动控制单元根据控制算法预先计算得出回馈能量ΔW,并在制动过程中实时通过制动电阻上流过的电流信号Ir计算制动耗能ΔWf,通过反馈控制环节使回馈能量ΔW和制动能量ΔWf相等,从而实现能耗制动的过程。
在上述技术方案中,所述回馈能量ΔW的计算方法为:
根据当前转速和目标转速计算回馈能量的一个取值ΔW1,ΔW1=0.5×Js×(ωs^2-ωref^2);
根据伺服控制器内部的矢量控制算法中的电压和电流变量计算回馈能量的另一个取值ΔW2,ΔW2=Uref×Iref×Tr,式中Uref和Iref为伺服控制器内部的矢量控制算法中的电压和电流变量,Tr为Uref矢量作用的时间;
将ΔW1和ΔW2加权处理后得到回馈能量ΔW,ΔW=K1×ΔW1+K2×ΔW2,式中K1和K2为加权系数,K1>0,K2>0,K1+K2=1。
在上述技术方案中,所述制动控制单元启动能耗制动的导通时间由ΔT=ΔW×(Ra/(U^2))确定,其中Ra=R+Rs,式中R为制动电阻阻值,Rs为采样电阻阻值,U为工作电压;所述制动控制单元中还设置有启动能耗制动的最小导通时间ΔTmin,其中当计算得到的启动能耗制动的导通时间ΔT小于或等于最小导通时间ΔTmin时,不启动能耗制动。
在上述技术方案中,所述制动控制单元的控制算法采用PID控制算法,其公式为 MV n = K P ( e n + T s T I Σ i = 0 n e n + T D e n - e n - 1 T S ) + MV 0
其中,Kp为比例增益,与调节比例度p互为倒数;TI为积分时间常数,决定积分作用的强弱;TD为微分时间常数,决定微分作用的强弱;TS为数字控制系统采样周期;en为第n次采样的偏差,MVn为控制输出,MV0为初始控制输出。
本发明取得了以下技术效果:
本发明的能耗制动单元的开关不是以母线电压来控制,而是根据电流判断,能够有效减小母线电压波动,提高伺服驱动器的使用寿命和工作性能。
本发明中的转速输出模块直接利用伺服控制器中原有的模块实现,无需增加任何电路,其中运行转速ωs来自于编码器的输出,而给定转速ωref来自于伺服控制器的命令给定。同样,惯量识别模块也由伺服控制器的处理器计算给出。
本发明的能耗制动单元和传统的能耗制动单元相比,在硬件上只增加了少许器件实现电流采样,转速采集和惯量识别利用了伺服驱动器本身的资源实现,结构也比较简单易于实现;而在软件上改变了控制对象,通过控制回馈能量ΔW和制动能量ΔWf相等实现能耗制动,更好的稳定了母线电压,减小了对电容C的影响,抑制了转矩脉动,大大提高了伺服控制器的稳定性及工作性能。
附图说明
图1为现有技术中能耗制动单元的电路框图;
图2为本发明的能耗制动单元的电路框图;
图3为本发明的PID控制算法框图;
图4为本发明的能耗制动环节实现流程图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及具体实施方式对本发明作进一步的详细描述。
本发明的能耗制动单元的电路框图如图2所示,在传统的能耗制动单元中加入了电流采样、转速输出和惯量识别模块,其中转速输出包括运行转速ωs和给定转速ωref,配合相应控制算法预先计算得出回馈能量的一个取值ΔW1,同时在转速变化过程中对矢量控制调节模块实时采样并计算每个单位时间间隔的Iref和Uref,由Iref和Uref也可以计算出回馈能量的另一个取值ΔW2,将回馈能量ΔW1和ΔW2加权处理后得到回馈能量ΔW,并将其作为后续控制的给定值。在制动过程中实时采集制动电阻上流过的电流Ir计算制动耗能ΔWf,进行反馈控制实现能耗制动的过程。该能耗制动单元采用不同于传统的以母线电压为控制对象的方法,而是直接以能量为控制对象,构造反馈环节通过控制算法使回馈能量ΔW和制动能量ΔWf相等,这种控制方法从根本上抑制了制动过程中母线电压升高的情况,稳定了母线电压,减小了转矩脉动。
图2中,电流采样模块由电阻Rs、电阻R1、电阻R2、电阻R3和运放OP1组成。检测电阻Rs、制动电阻R和IGBT串联在电路中,当IGBT导通时,检测电阻Rs将流过制动电阻R的电流信号Ir转换为电压信号(Ir×Rs),由于检测电阻Rs的阻值为毫欧级别,导致该电压信号的幅值偏小,需对其放大滤波后在输出到能耗制动单元。这里电阻R1、R2、R3和运放OP1构成同相放大电路,其中电阻R1为匹配电阻,(R2+R3)/R2的比值决定了电路的放大倍数,经过放大处理后输出电流采样信号Is到能耗制动单元。
其中,回馈能量ΔW1的计算方式如下所述:伺服电机运行时判断运行转速ωs和给定转速ωref的大小,如果运行转速ωs小于给定转速ωref,说明是加速过程,此时不需能耗制动;如果运行转速ωs等于给定转速ωref,说明是稳态过程,此时也不需能耗制动;但如果运行转速ωs大于给定转速ωref,说明是减速过程,此时电机将产生减速制动,制动能量会回馈到母线上。在制动过程中,由于当前转速(即运行转速ωs)和目标转速(即给定转速ωref)已知,并且由惯量识别环节可得到当前转动惯量Js,则需要能耗制动环节消耗的能量就由ΔW1=0.5×Js×(ωs^2-ωref^2)可计算得出。
其中,回馈能量ΔW2的计算方式如下所述:ΔW2=Uref×Iref×Tr,式中Uref和Iref为伺服控制器内部的矢量控制算法中的电压和电流变量,Tr为Uref矢量作用的时间。回馈能量ΔW2的获得无需额外的电路就可以实现,且在一定条件下ΔW2的精度要比由转动惯量和转速计算得出的ΔW1要高,实时性要强,所以同时将ΔW1和ΔW2加权处理后得到回馈能量ΔW的做法提高了系统的准确性和响应。
制动能量ΔW的计算方式为:ΔW=K1×ΔW1+K2×ΔW2,其中K1,K2>0;且K1+K2=1;其数值根据适用系统的不同来进行具体选择。若不将此能量ΔW消耗掉将导致母线电压升高ΔU,其中ΔU=(2×ΔW/C)^0.5,C为并联在母线上电容的容值。
其中,能耗制动启动判据的确定方法如下所述:得出需消耗的能量ΔW后,制动单元需要的导通时间由ΔT=ΔW×(Ra/(U^2))可计算得出,其中Ra=R+Rs,式中R为制动电阻,Rs为采样电阻,U为工作电压,因Rs<<R故实际计算时取Ra=R。由于实际的IGBT器件的性能和理想的开关不同,实际的IGBT器件在开通和关断时需要一定的开关时间,并且太过频繁的接入或断开制动电阻R也会影响系统的稳态特性,故需设定能耗制动单元开通的最小时间阈值ΔTmin,并将导通时间ΔT和最小导通阈值ΔTmin的关系作为能耗制动启动的依据。在导通时间ΔT小于或等于最小导通阈值ΔTmin时,能耗制动单元不会进行制动,制动产生的能量累积到下一个运算周期;只有在导通时间ΔT大于最小导通阈值ΔTmin时,能耗制动单元才进入能耗制动算法,控制IGBT通断,进行能耗制动。
其中,能耗制动算法如下所述:启动能耗制动过程后,需要能耗制动消耗的回馈能量ΔW已知。并且根据式Ir=(Is×R2)/((R2+R3)×Rs),可由电流采样Is计算出制动电阻R上的电流Ir,若制动电阻导通时间为ΔTc,则其消耗的能量ΔWr=R×Ir^2×ΔTc。以回馈能量ΔW作为给定,制动电阻消耗的能量ΔWr作为反馈,两者的差值进入PID控制器运算处理,得出的输出量控制IGBT开关接入或断开制动电阻。PID控制是比例P加积分I加微分D的三种作用控制,理论分析和模拟控制系统的实践表明:比例作用P对偏差反应及时,对静差有很强抑制作用;微分作用D可以加快系统的动作速度,减小超调,改善系统的动态特性;积分作用I则可以消除静差,提高系统的控制精度(静态)。将三种作用的强度适当配合,可以对相当广泛的控制对象进行有效控制。这里采用PID控制可以使制动电阻耗能ΔWr很好的跟踪回馈能量ΔW。
该能耗制动算法直接以能量为控制对象,只要回馈能量ΔW和制动电阻消耗能量ΔWr不等,就利用PID算法控制输出,导通制动电阻消耗能量,直至ΔW和ΔWr相等,从根本上抑制了回馈能量导致母线电压升高的情况,其控制算法框图如图3所示。
图3所示的控制算法框图中,PID控制算法的算式为:
MV n = K P ( e n + T s T I Σ i = 0 n e n + T D e n - e n - 1 T S ) + MV 0
其中,Kp为比例增益,与调节比例度p互为倒数;TI为积分时间常数,决定积分作用的强弱;TD为微分时间常数,决定微分作用的强弱;TS为数字控制系统采样周期;en为第n次采样的偏差,MVn为控制输出,MV0为初始控制输出。
由此,本发明中的转速输出模块直接利用伺服控制器中原有的模块实现,无需增加任何电路,其中运行转速ωs来自于编码器的输出,而给定转速ωref来自于伺服控制器的命令给定。同样,惯量识别模块也由伺服控制器的处理器计算给出。
该能耗制动环节的实现流程如图4所示,制动控制单元首先读入运行转速ωs和给定转速ωref的大小,通过比较运行转速ωs和给定转速ωref来判断处于减速过程还是加速或匀速过程,如果是加速或匀速过程,则返回不需进行能耗制动;如果是减速过程,此时电机将产生减速制动,此时分别计算回馈能量取值ΔW1和ΔW2,并加权处理得到所需要消耗的回馈能量ΔW,根据回馈能量ΔW的大小计算需要制动单元开通的导体时间ΔT,当导体时间ΔT大于最小导通时间阈值ΔTmin时启动能耗制动,否则返回不需进行能耗制动。
本发明的能耗制动单元和传统的能耗制动单元相比,在硬件上只增加了少许器件实现电流采样,转速采集和惯量识别利用了伺服驱动器本身的资源实现,结构也比较简单易于实现;而在软件上改变了控制对象,通过控制回馈能量ΔW和制动能量ΔWf相等实现能耗制动,更好的稳定了母线电压,减小了对电容C的影响,抑制了转矩脉动,大大提高了伺服控制器的稳定性及工作性能。

Claims (8)

1.一种用于伺服驱动器的能耗制动装置,其特征在于:包括电流采样模块、转速输出模块、惯量识别模块和制动控制单元;
所述电流采样模块包括检测电阻Rs、电阻R1、电阻R2、电阻R3和运放OP1,其中检测电阻Rs与制动电阻R和IGBT器件相串联,用于检测流过制动电阻R的电流信号Ir,电阻R1、R2、R3和运放OP1构成同相放大电路,将电流信号Ir放大采样后输出到所述制动控制单元;
所述转速输出模块用于输出伺服电机的运行转速ωs和给定转速ωref;
所述惯量识别环节用于获得伺服电机当前的转动惯量Js;
所述制动控制单元根据控制算法预先计算得出回馈能量△W,并在制动过程中实时通过制动电阻上流过的电流信号Ir计算制动耗能△Wf,通过反馈控制环节使回馈能量△W和制动能量△Wf相等,从而实现能耗制动的过程;
所述回馈能量△W的计算方法为:
根据当前转速和目标转速计算回馈能量的一个取值△W1,△W1=0.5×Js×(ωs^2–ωref^2);
根据伺服控制器内部的矢量控制算法中的电压和电流变量计算回馈能量的另一个取值△W2,△W2=Uref×Iref×Tr,式中Uref和Iref为伺服控制器内部的矢量控制算法中的电压和电流变量值,Tr为Uref矢量作用的时间;
将△W1和△W2加权处理后得到回馈能量△W,△W=K1×△W1+K2×△W2,式中K1和K2为加权系数,K1>0,K2>0,K1+K2=1。
2.根据权利要求1所述的用于伺服驱动器的能耗制动装置,其特征在于:所述制动控制单元启动能耗制动的导通时间由△T=△W×(Ra/(U^2))确定,其中Ra=R+Rs,式中R为制动电阻阻值,Rs为采样电阻阻值,U为工作电压。
3.根据权利要求2所述的用于伺服驱动器的能耗制动装置,其特征在于:所述制动控制单元中还设置有启动能耗制动的最小导通时间△Tmin,其中当计算得到的启动能耗制动的导通时间△T小于或等于最小导通时间△Tmin时,不启动能耗制动。
4.根据权利要求1-3中任意一项所述的用于伺服驱动器的能耗制动装置,其特征在于:所述制动控制单元通过控制IGBT器件的开关来启动或者关闭能耗制动。
5.根据权利要求4所述的用于伺服驱动器的能耗制动装置,其特征在于:所述制动控制单元的控制算法采用PID控制算法,其公式为
M V n = K P ( e n + T S T I Σ i = 0 n e n + T D e n - e n - 1 T S ) + M V 0
其中,Kp为比例增益,与调节比例度p互为倒数;TI为积分时间常数,决定积分作用的强弱;TD为微分时间常数,决定微分作用的强弱;TS为数字控制系统采样周期;en为第n次采样的偏差,MVn为控制输出,MV0为初始控制输出。
6.一种用于伺服驱动器的能耗制动方法,其特征在于包括如下步骤;
电流采样步骤,检测流过制动电阻R的电流信号Ir,将电流信号Ir放大采样后输出到制动控制单元;
转速采集步骤,向制动控制单元输出伺服电机的运行转速ωs和给定转速ωref;
惯量采集步骤,向制动控制单元输出伺服电机当前的转动惯量Js;
能耗制动控制步骤,所述制动控制单元根据控制算法预先计算得出回馈能量△W,并在制动过程中实时通过制动电阻上流过的电流信号Ir计算制动耗能△Wf,通过反馈控制环节使回馈能量△W和制动能量△Wf相等,从而实现能耗制动的过程;
所述回馈能量△W的计算方法为:
根据当前转速和目标转速计算回馈能量的一个取值△W1,△W1=0.5×Js×(ωs^2–ωref^2);
根据伺服控制器内部的矢量控制算法中的电压和电流变量计算回馈能量的另一个取值△W2,△W2=Uref×Iref×Tr,式中Uref和Iref为伺服控制器内部的矢量控制算法中的电压和电流变量值,Tr为Uref矢量作用的时间;
将△W1和△W2加权处理后得到回馈能量△W,△W=K1×△W1+K2×△W2,式中K1和K2为加权系数,K1>0,K2>0,K1+K2=1。
7.根据权利要求6所述的用于伺服驱动器的能耗制动方法,其特征在于:所述制动控制单元启动能耗制动的导通时间由△T=△W×(Ra/(U^2))确定,其中Ra=R+Rs,式中R为制动电阻阻值,Rs为采样电阻阻值,U为工作电压;所述制动控制单元中还设置有启动能耗制动的最小导通时间△Tmin,其中当计算得到的启动能耗制动的导通时间△T小于或等于最小导通时间△Tmin时,不启动能耗制动。
8.根据权利要求6-7中任意一项所述的用于伺服驱动器的能耗制动方法,其特征在于:所述制动控制单元的控制算法采用PID控制算法,其公式为
M V n = K P ( e n + T S T I Σ i = 0 n e n + T D e n - e n - 1 T S ) + M V 0
其中,Kp为比例增益,与调节比例度p互为倒数;TI为积分时间常数,决定积分作用的强弱;TD为微分时间常数,决定微分作用的强弱;TS为数字控制系统采样周期;en为第n次采样的偏差,MVn为控制输出,MV0为初始控制输出。
CN201210319676.8A 2012-08-21 2012-08-21 一种用于伺服驱动器的能耗制动装置及方法 Active CN102832868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210319676.8A CN102832868B (zh) 2012-08-21 2012-08-21 一种用于伺服驱动器的能耗制动装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210319676.8A CN102832868B (zh) 2012-08-21 2012-08-21 一种用于伺服驱动器的能耗制动装置及方法

Publications (2)

Publication Number Publication Date
CN102832868A CN102832868A (zh) 2012-12-19
CN102832868B true CN102832868B (zh) 2015-02-18

Family

ID=47335865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210319676.8A Active CN102832868B (zh) 2012-08-21 2012-08-21 一种用于伺服驱动器的能耗制动装置及方法

Country Status (1)

Country Link
CN (1) CN102832868B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001226B (zh) * 2012-12-28 2014-12-03 上海三一重机有限公司 一种用于电驱动矿车电制动时控制母线电压稳定的方法
CN104158152B (zh) * 2014-08-15 2017-03-08 成都乐创自动化技术股份有限公司 一种电机驱动器防护电路及防护方法
CN104617635A (zh) * 2015-02-27 2015-05-13 北京精密机电控制设备研究所 一种高可靠大功率的机电伺服电源
CN108462142B (zh) * 2018-03-01 2019-06-21 英孚康(浙江)工业技术有限公司 一种伺服驱动器能耗制动热过载保护方法
CN109931218A (zh) * 2019-03-05 2019-06-25 埃斯倍风电科技(青岛)有限公司 一种偏航控制系统及其偏航控制方法
CN111610437B (zh) * 2020-04-07 2022-03-25 武汉迈信电气技术有限公司 动态制动电路、基于该电路的状态检测和故障处理方法
CN112152537B (zh) * 2020-09-23 2022-05-17 中国人民解放军63833部队 一种高压大功率电励磁同步电机混合制动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289786A (ja) * 1996-04-23 1997-11-04 Shinko Electric Co Ltd モータ駆動回路
CN1567694A (zh) * 2003-06-30 2005-01-19 乐金电子(天津)电器有限公司 洗衣机的电机控制方法
JP2006020372A (ja) * 2004-06-30 2006-01-19 Meidensha Corp バッテリ車の制御装置
CN101388631A (zh) * 2008-09-27 2009-03-18 北京航空航天大学 一种磁悬浮反作用飞轮电机控制系统
CN201222712Y (zh) * 2008-06-27 2009-04-15 武汉钢铁(集团)公司 能耗制动器
CN101473523A (zh) * 2006-06-29 2009-07-01 三菱电机株式会社 再生制动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289786A (ja) * 1996-04-23 1997-11-04 Shinko Electric Co Ltd モータ駆動回路
CN1567694A (zh) * 2003-06-30 2005-01-19 乐金电子(天津)电器有限公司 洗衣机的电机控制方法
JP2006020372A (ja) * 2004-06-30 2006-01-19 Meidensha Corp バッテリ車の制御装置
CN101473523A (zh) * 2006-06-29 2009-07-01 三菱电机株式会社 再生制动装置
CN201222712Y (zh) * 2008-06-27 2009-04-15 武汉钢铁(集团)公司 能耗制动器
CN101388631A (zh) * 2008-09-27 2009-03-18 北京航空航天大学 一种磁悬浮反作用飞轮电机控制系统

Also Published As

Publication number Publication date
CN102832868A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN102832868B (zh) 一种用于伺服驱动器的能耗制动装置及方法
CN1784824B (zh) 永久磁铁式同步电动机的控制装置
CN102497153B (zh) 永磁同步电机功率角恒定自适应控制方法
CN103441724B (zh) 适用于变频交流发电机的电压调节方法
CN204907921U (zh) 电子烟
CN103401487A (zh) 适合开关磁阻电机四象限运行的无位置传感器控制方法
CN103116281B (zh) 轴向混合磁轴承无模型自适应控制系统及其控制方法
CN106160447A (zh) 一种适用于SiC基桥臂功率电路的死区时间优化控制方法
CN106253769A (zh) 直流风扇电机控制电路及应用其的控制方法
CN104951900A (zh) 一种励磁调节器及其电力系统稳定器的性能评估装置
CN205039725U (zh) 一种无位置检测开关磁阻电机驱动器
CN110429895A (zh) 混合动力车用开关磁阻bsg优化线性控制器的构造方法
CN103986400B (zh) 基于二维模糊控制的模型参考自适应系统参数自整定方法
CN106452263A (zh) 一种不平衡电网下dfig基于拓展有功功率的滑模变结构直接功率控制方法
CN205383099U (zh) 散热风扇的故障检测装置及散热装置
CN101394147B (zh) 直流电机速度控制装置和方法
CN101015115A (zh) 发动机控制器
CN104167968A (zh) 一种异步电机矢量控制方法
CN113824359A (zh) 一种双凸极电机提前角自寻优控制方法及系统
CN108512476A (zh) 一种基于新型龙贝格观测器的感应电机转速估算方法
CN210623172U (zh) 隧道通风控制系统
CN201450012U (zh) 应用于光伏电池最大功率跟踪的分段自适应爬山系统
CN111769780B (zh) 一种电机控制器的控制方法、装置及汽车
CN106253770A (zh) 直流电机的控制方法和装置
CN103954845A (zh) 一种基于电阻的中低速磁浮列车悬浮电磁铁电感参数在线检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant