CN102830051A - Rock mass fracture occurrence recognizing system in oscillation testing system - Google Patents
Rock mass fracture occurrence recognizing system in oscillation testing system Download PDFInfo
- Publication number
- CN102830051A CN102830051A CN2012101891875A CN201210189187A CN102830051A CN 102830051 A CN102830051 A CN 102830051A CN 2012101891875 A CN2012101891875 A CN 2012101891875A CN 201210189187 A CN201210189187 A CN 201210189187A CN 102830051 A CN102830051 A CN 102830051A
- Authority
- CN
- China
- Prior art keywords
- pda
- orientation
- cable
- data acquisition
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 25
- 238000012360 testing method Methods 0.000 title claims abstract description 18
- 230000010355 oscillation Effects 0.000 title claims abstract description 15
- 230000035699 permeability Effects 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims description 16
- 238000005553 drilling Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- 238000002788 crimping Methods 0.000 claims description 3
- 206010017076 Fracture Diseases 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了提供了一种振荡试验系统中的岩体裂隙产状识别系统,包括:井下钻孔图像识别定向系统、电缆计数绞车系统、PDA数据采集系统;所述井下钻孔图像识别定向系统、电缆计数绞车系统的输出/入端分别与PDA数据采集系统的输入/出端对应相接;本发明所述系统能够通过井下钻孔图像识别定向系统和电缆计数绞车系统获得裂隙图像和位置深度数据,从而得到裂隙岩体裂隙产状,为裂隙岩体中开展振荡试验确定渗透系数张量提供可靠的基本地质信息。
The invention discloses a system for identifying the occurrence of rock mass fissures in an oscillation test system, which includes: an downhole borehole image recognition and orientation system, a cable counting drawworks system, and a PDA data acquisition system; the downhole borehole image recognition and orientation system 1. The output/input ends of the cable counting winch system are respectively connected to the input/output ends of the PDA data acquisition system; the system of the present invention can obtain the crack image and position depth through the downhole borehole image recognition orientation system and the cable counting winch system Data, so as to obtain the fracture occurrence of fractured rock mass, and provide reliable basic geological information for carrying out oscillation tests in fractured rock mass to determine the permeability coefficient tensor.
Description
技术领域 technical field
本发明涉及水文地质领域的振荡试验系统,特别是涉及一种识别岩体裂隙产状的识别系统。The invention relates to an oscillation test system in the field of hydrogeology, in particular to an identification system for identifying the occurrence of rock mass fissures.
背景技术 Background technique
岩体的渗透性是许多工程建设和学科领域科学研究都涉及到的重要问题,尤其是非均质各向异性裂隙岩体的渗透性是大坝坝基、边坡、隧洞等工程设计、施工、运行中必须掌握的重要参数。同时,研究工程结构、地基和地下水的相互作用,以及应力场、温度场、渗流场和化学场的耦合作用,也都必须定量确定岩体的渗透性。The permeability of rock mass is an important issue involved in many engineering constructions and scientific research in disciplines, especially the permeability of heterogeneous anisotropic fractured rock mass is an important issue in the design, construction and operation of dam foundations, slopes, tunnels and other projects. important parameters that must be mastered. At the same time, to study the interaction of engineering structures, foundations and groundwater, as well as the coupling effects of stress field, temperature field, seepage field and chemical field, it is also necessary to quantitatively determine the permeability of rock mass.
为准确通过试验手段确定各向异性裂隙岩体渗透系数张量,其中准确获得钻孔中裂隙发育情况,掌握裂隙的产状、隙宽等几何特征至关重要。目前,对钻孔中裂隙几何特征的确定存在较大误差,且确定困难,从而大大降低了计算出的各向异性裂隙岩体渗透系数张量的可靠性。In order to accurately determine the permeability coefficient tensor of anisotropic fractured rock mass through experimental means, it is very important to accurately obtain the development of fractures in boreholes, and to grasp the geometric characteristics of fractures such as their occurrence and width. At present, there are large errors and difficulties in determining the geometric characteristics of fractures in boreholes, which greatly reduces the reliability of the calculated permeability coefficient tensor of anisotropic fractured rock mass.
发明内容 Contents of the invention
发明目的:本发明的目的是为了解决现有技术中的问题,提供一种不仅能够实时采集钻孔中裂隙图像,而且能够确定采集裂隙图像方位并自动计算裂隙产状的岩体裂隙产状识别系统,同时能够与振荡试验系统中的压力和温度传感器集成工作,直接为裂隙岩体中开展振荡试验确定渗透系数张量快速、准确的提供基本的地质信息。Purpose of the invention: the purpose of the present invention is to solve the problems in the prior art, to provide a kind of rock mass crack occurrence recognition that can not only collect the crack image in the borehole in real time, but also can determine the orientation of the crack image and automatically calculate the crack occurrence At the same time, it can be integrated with the pressure and temperature sensors in the vibration test system to directly provide basic geological information for the determination of the permeability coefficient tensor by the vibration test in the fractured rock mass quickly and accurately.
技术方案:为了实现以上目的,本发明提供了一种振荡试验系统中的岩体裂隙产状识别系统,包括:井下钻孔图像识别定向系统、电缆计数绞车系统和PDA数据采集系统;所述井下钻孔图像识别定向系统、电缆计数绞车系统分别与PDA数据采集系统的对应相接;Technical solution: In order to achieve the above objectives, the present invention provides a system for identifying the occurrence of rock mass fissures in an oscillation test system, including: an underground borehole image recognition and orientation system, a cable counting winch system and a PDA data acquisition system; the underground The drilling image recognition and orientation system, the cable counting winch system are respectively connected with the corresponding PDA data acquisition system;
所述井下钻孔图像识别定向系统在钻孔中发现裂隙并能确定裂隙的方位,并将裂隙的方位数据传送至PDA数据采集系统中;The downhole borehole image recognition and orientation system finds cracks in the borehole and can determine the orientation of the cracks, and transmits the orientation data of the cracks to the PDA data acquisition system;
所述电缆计数绞车系统为计算裂隙产状提供裂隙的位置深度数据,并将裂隙的位置深度数据传送至PDA数据采集系统中;The cable counting winch system provides the position and depth data of the crack for calculating the crack occurrence, and transmits the position and depth data of the crack to the PDA data acquisition system;
所述PDA数据采集系统计算出裂隙产状,为裂隙岩体中开展振荡试验确定渗透系数张量快速、准确的提供基本的地质信息。The PDA data acquisition system calculates the occurrence of fissures, and quickly and accurately provides basic geological information for carrying out oscillation tests in fissure rock mass to determine the permeability coefficient tensor.
所述井下钻孔图像识别定向系统包括:带云台的摄像头、电子指南针和数据处理传输模块;所述带云台的摄像头和电子指南针分别与图像识别定向系统数据处理传输模块对应相接;图像识别定向系统数据处理传输模块与PDA数据采集系统对应相接;The downhole drilling image recognition and orientation system includes: a camera with a cloud platform, an electronic compass and a data processing and transmission module; the camera and the electronic compass with a cloud platform are respectively connected to the data processing and transmission module of the image recognition and orientation system; The data processing and transmission module of the identification and orientation system is connected with the PDA data acquisition system correspondingly;
所述电缆计数绞车系统包括:数据传输接口、底座、低速电机、支架、光敏三极管、发光二极管、透光孔、电缆、压线盘、光电码盘;The cable counting winch system includes: a data transmission interface, a base, a low-speed motor, a bracket, a photosensitive transistor, a light-emitting diode, a light hole, a cable, a pressure plate, and a photoelectric code plate;
所述电缆计数绞车系统固定于底座上,电缆上端与PDA数据采集系统相连,然后穿过压线盘和光电码盘之间,由低速电机带动电缆往下运动,电缆下端与井下钻孔图像识别定向系统相连;在光电码盘上面有八个透光孔,在光电码盘的左侧的固定支架有发光二极管,在光电码盘的右侧的固定支架上面有光敏三极管,发光二极管和光敏三极管在同一个轴心上面,光敏三极管与数据传输接口相连。The cable counting winch system is fixed on the base, and the upper end of the cable is connected with the PDA data acquisition system, and then passes between the crimping plate and the photoelectric code plate, and the low-speed motor drives the cable to move downward, and the lower end of the cable is identified with the downhole drilling image The orientation system is connected; there are eight light-transmitting holes on the photoelectric code disc, there are light-emitting diodes on the fixed bracket on the left side of the photoelectric code disc, and there are photosensitive transistors, light-emitting diodes and photosensitive triodes on the fixed bracket on the right side of the photoelectric code disc On the same axis, the phototransistor is connected with the data transmission interface.
所述PDA数据采集系统包括:主机、PDA采集系统数据输入/出端口;所述主机的数据输入/出端口与PDA采集系统数据输出/入端口相接。The PDA data acquisition system includes: a host computer and a data input/output port of the PDA acquisition system; the data input/output port of the host computer is connected with the data output/input port of the PDA acquisition system.
本发明的工作原理如下:本发明所述一种振荡试验系统中的岩体裂隙产状识别系统首先进行井下钻孔,然后将井下钻孔图像识别定向系统深入钻孔中,通过带云台控制的摄像头发现岩体中的裂隙,然后利用电缆计数绞车系统中的光脉冲深度计数器测得裂隙的所在位置深度,再利用几何中三点确定一个面的基本原理,在发现裂隙的位置利用带云台控制的摄像头选择裂隙上的三个不同位置的点,通过电子指南针确定点位,同时通过电缆计数绞车确定点的位置深度,将数据传输给PDA数据采集系统,PDA数据采集系统计算出裂隙产状,为裂隙岩体中开展振荡试验确定渗透系数张量快速、准确的提供基本的地质信息。The working principle of the present invention is as follows: the rock mass fissure occurrence recognition system in an oscillation test system of the present invention first performs downhole drilling, and then the downhole drilling image recognition and orientation system goes deep into the borehole, and is controlled by a cloud platform. The camera finds the cracks in the rock mass, and then uses the optical pulse depth counter in the cable counting winch system to measure the depth of the cracks, and then uses the basic principle of three points in geometry to determine a surface, and uses the belt cloud at the position where the cracks are found. The camera controlled by the station selects three points in different positions on the crack, determines the point position through the electronic compass, and at the same time determines the position and depth of the point through the cable counting winch, and transmits the data to the PDA data acquisition system. The PDA data acquisition system calculates the crack production It can quickly and accurately provide basic geological information for determining the permeability coefficient tensor through oscillation tests in fractured rock mass.
有益效果:本发明与现有技术相比具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:
本发明能够与振荡试验系统中的压力和温度传感器集成工作,准确、快速的识别出岩体裂隙产状,直接为裂隙岩体中开展振荡试验确定渗透系数张量提供可靠的基本地质信息。The invention can work integrated with the pressure and temperature sensors in the oscillation test system, accurately and quickly identify the occurrence of rock mass fissures, and directly provide reliable basic geological information for determining the permeability coefficient tensor by carrying out oscillation tests in the fractured rock mass.
附图说明 Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2为本发明井下钻孔图像识别定向系统确定裂隙产状原理示意图。Fig. 2 is a schematic diagram of the principle of determining the occurrence of fractures by the downhole borehole image recognition and orientation system of the present invention.
图3为本发明中的电缆计数绞车系统部分结构示意图。Fig. 3 is a partial structural diagram of the cable counting winch system in the present invention.
图4为本发明中的电缆计数绞车系统部分结构示意图。Fig. 4 is a partial structural diagram of the cable counting winch system in the present invention.
图5为电子指南针的工作原理电路图。Figure 5 is a circuit diagram of the working principle of the electronic compass.
图6为摄像头的工作原理电路图。Figure 6 is a circuit diagram of the working principle of the camera.
图7为微型云台步进电机工作原理电路图。Figure 7 is a circuit diagram of the working principle of the stepping motor of the miniature pan-tilt.
具体实施方式: Detailed ways:
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with accompanying drawing and specific embodiment, further illustrate the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after reading the present invention, those skilled in the art will understand various aspects of the present invention All modifications of the valence form fall within the scope defined by the appended claims of the present application.
实施例Example
如图1所示的一种振荡试验系统中的岩体裂隙产状识别系统,包括:井下钻孔图像识别定向系统1、电缆计数绞车系统2和PDA数据采集系统3;所述井下钻孔图像识别定向系统、电缆计数绞车系统分别与PDA数据采集系统的对应相接;所述井下钻孔图像识别定向系统1在钻孔中发现裂隙4并能确定裂隙的方位,并将裂隙的方位数据传送至PDA数据采集系统中;所述电缆计数绞车系统2为计算裂隙产状提供裂隙的位置深度数据,并将裂隙的位置深度数据传送至PDA数据采集系统中;所述PDA数据采集系统3计算出裂隙产状,为裂隙岩体中开展振荡试验确定渗透系数张量快速、准确的提供基本的地质信息。A rock mass fissure occurrence recognition system in an oscillation test system as shown in Figure 1, comprising: downhole borehole image
本实施例中所述井下钻孔图像识别定向系统包括:带云台的摄像头、电子指南针和数据处理传输模块;所述带云台的摄像头和电子指南针分别与图像识别定向系统数据处理传输模块对应相接;图像识别定向系统数据处理传输模块与PDA数据采集系统对应相接。The downhole drilling image recognition and orientation system described in this embodiment includes: a camera with a cloud platform, an electronic compass and a data processing transmission module; the camera with a cloud platform and an electronic compass are respectively corresponding to the data processing and transmission module of the image recognition and orientation system Connecting; the data processing and transmission module of the image recognition and orientation system is correspondingly connected with the PDA data acquisition system.
本实施例中所述电缆计数绞车系统包括:数据传输接口8、底座9、低速电机10、支架11、光敏三极管12、发光二极管13、透光孔14、电缆15、压线盘16、光电码盘17(如图3、图4所示);所述电缆15上端与PDA数据采集系统3相连,然后穿过压线盘16和光电码盘17之间,由低速电机10带动电缆15往下运动,电缆15下端与井下钻孔图像识别定向系统1相连;在光电码盘17上面有八个透光孔14,在光电码盘17的左侧的固定支架有发光二极管13,发光二极管13始终处于通电发光状态,在光电码盘17的右侧的固定支架上面有光敏三极管12,发光二极管13和光敏三极管12在同一个轴心上面,光敏三极管12与数据传输接口8相连;当光电码盘17随着低速电机10旋转时,发光二极管13发出的光亮会随着八个透光孔14顺序把光信号辐射在光敏三极管12上面,光敏三极管12中具有光敏特性的PN极受到光辐射时,形成光电流,由此产生的光电流由基极进入发射极,从而在集电极回路中得到一个放大了相当于β倍的信号电流。放大了的信号电流通过数据传输接口8接到PDA采集系统的数据输出接口,PDA数据采集系统根据光电码盘17每转一圈就可得到八个脉冲,根据总脉冲数、光电码盘的直径和电缆线直径计算得到深度数据。The cable counting winch system described in this embodiment includes: a
本实施例中所述带云台的摄像头优选采用有前置光源的微型摄像头,带云台的摄像头可工作范围为水平向0-360度,垂直向0-90度;电子指南针对带云台的摄像头上的云台进行控制,在方位不明的情况下采用一键复位,保证带云台的摄像头和所在地的正北保持一致,并将带云台的摄像头在钻孔内的方向角在显示屏上能够明确显示。The camera with the cloud platform described in the present embodiment preferably adopts the micro-camera that front light source is arranged, and the working range of the camera with the cloud platform is horizontally to 0-360 degree, vertically 0-90 degree; The pan/tilt on the camera is controlled, and one-key reset is adopted when the orientation is unknown to ensure that the camera with the pan/tilt is consistent with the true north of the location, and the direction angle of the camera with the pan/tilt in the borehole is displayed on the display clearly displayed on the screen.
本实施例中,所述井下钻孔图像识别定向系统是利用摄像头在钻孔中发现裂隙后,通过指南针确定某条裂隙上三个点的方位,再通过电缆计数绞车系统分别确定三个点的深度,根据三点确定一个面的几何原理自动计算裂隙的产状(倾向、倾角),具体计算方法如下:In this embodiment, the downhole borehole image recognition and orientation system uses a camera to find a crack in the borehole, then uses a compass to determine the orientation of three points on a certain crack, and then uses the cable counting winch system to determine the three points respectively. Depth, according to the geometric principle of determining a surface by three points, the occurrence (inclination, inclination) of the crack is automatically calculated. The specific calculation method is as follows:
已知钻孔半径为r,则5坐标为(r cos α1,r sin α1,c1),6坐标为(r cos α2,r sin α2,c2),7坐标为(r cos α3,r sin α3,c3),那么
x1=r cos α1-r cos α2;y1=r sin α1-r sin α2;z1=c1-c2;+x2=r cos α1-r cos α3“y2=r sin α1-r sin α3;z2=c1-c3.+x 1 =r cos α 1 -r cos α 2 ; y 1 =r sin α 1 -r sin α 2 ; z 1 =c 1 -c 2 ; +x 2 =r cos α 1 -r cos α 3 "y 2 =r sin α 1 -r sin α 3 ; z 2 =c 1 -c 3 .+
其中,
式中”α1,α2,α3分别为5,6,7的方位角1 c1,c2,c3分别为5,6,7的深度,c0为与c1,c2,c3不等的任意深度值;α为裂隙面的倾角;β为裂隙面的倾向。+In the formula "α 1 , α 2 , α 3 are the azimuth angles of 5, 6, 7 respectively 1 c 1 , c 2 , c 3 are the depths of 5, 6, 7 respectively, c 0 is the depth with c 1 , c 2 , Any depth value ranging from c to 3 ; α is the inclination angle of the fracture surface; β is the inclination of the fracture surface.+
本发明的目的是这样实现的,井下设备进入钻孔后,由于电缆或操作人员对电缆的扭动,使得摄像头所对的方向未知,通过电子指南针对云台的控制,可将摄像头所对的方向调整到所在地的正北方向,然后通过电子指南针对云台输出控制信号,可以在PDA数据采集系统的主机的显示屏上观察到钻孔内水平360度的全景地质构造信息,同时光脉冲深度计数器将摄像头在钻孔内的深度信息通过控制线缆传到PDA数据采集系统中并显示,在某深度观察到有裂隙存在时,抓拍并保存裂隙地质信息(深度、方位和宽度),由PDA数据采集系统计算出这条裂隙的产状。The purpose of the present invention is achieved in this way. After the downhole equipment enters the borehole, the direction of the camera is unknown due to the twisting of the cable or the operator. Adjust the direction to the true north of the location, and then output control signals to the PTZ through the electronic guide, and you can observe the horizontal 360-degree panoramic geological structure information in the borehole on the display screen of the host computer of the PDA data acquisition system, and at the same time, the optical pulse depth The counter transmits the depth information of the camera in the borehole to the PDA data acquisition system through the control cable and displays it. When a fracture is observed at a certain depth, it captures and saves the geological information of the fracture (depth, orientation and width), and is controlled by the PDA. The data acquisition system calculates the occurrence of this crack.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210189187.5A CN102830051B (en) | 2012-06-08 | 2012-06-08 | Rock mass fracture occurrence recognizing system in oscillation testing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210189187.5A CN102830051B (en) | 2012-06-08 | 2012-06-08 | Rock mass fracture occurrence recognizing system in oscillation testing system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102830051A true CN102830051A (en) | 2012-12-19 |
CN102830051B CN102830051B (en) | 2014-10-08 |
Family
ID=47333264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210189187.5A Expired - Fee Related CN102830051B (en) | 2012-06-08 | 2012-06-08 | Rock mass fracture occurrence recognizing system in oscillation testing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102830051B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983228A (en) * | 2014-06-04 | 2014-08-13 | 长江工程地球物理勘测武汉有限公司 | Method for measuring borehole fracture attitude by use of electronic rock core |
CN109374497A (en) * | 2018-10-29 | 2019-02-22 | 河海大学 | A test method for rock microscopic pore structure |
CN109882156A (en) * | 2019-04-01 | 2019-06-14 | 四川大学 | A method and device for collecting drilling information based on DIC technology |
CN110243254A (en) * | 2019-05-09 | 2019-09-17 | 湖州华科建设工程质量检测有限公司 | A kind of construction project crack detection system |
CN110318807A (en) * | 2019-06-24 | 2019-10-11 | 太原理工大学 | Determine the endoscope orientation system and its application method of crack attitude in drilling |
CN111830030A (en) * | 2020-03-27 | 2020-10-27 | 中国恩菲工程技术有限公司 | Investigation system and method for joint fracture of mine rock mass |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88200393U (en) * | 1988-01-21 | 1988-11-23 | 航天部第五○二研究所 | Sensor for measuring length |
CN2248335Y (en) * | 1995-01-05 | 1997-02-26 | 韩志岭 | Electronic curve length measuring apparatus |
CN1710425A (en) * | 2005-06-01 | 2005-12-21 | 于海湧 | Wall-rock crack scanning detector |
CN2904512Y (en) * | 2006-03-27 | 2007-05-23 | 天地科技股份有限公司 | Test hole electronic sighting device for mine |
EP2113794A1 (en) * | 2008-04-29 | 2009-11-04 | ExxonMobil Upstream Research Company | Method for Reservoir Fracture and Cross Beds Detection Using Tri-axial/Multi-component Resistivity Anisotropy Measurements |
CN102200415A (en) * | 2011-05-19 | 2011-09-28 | 中南大学 | Deep-hole blasting construction technology in fractured rocks |
-
2012
- 2012-06-08 CN CN201210189187.5A patent/CN102830051B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88200393U (en) * | 1988-01-21 | 1988-11-23 | 航天部第五○二研究所 | Sensor for measuring length |
CN2248335Y (en) * | 1995-01-05 | 1997-02-26 | 韩志岭 | Electronic curve length measuring apparatus |
CN1710425A (en) * | 2005-06-01 | 2005-12-21 | 于海湧 | Wall-rock crack scanning detector |
CN2904512Y (en) * | 2006-03-27 | 2007-05-23 | 天地科技股份有限公司 | Test hole electronic sighting device for mine |
EP2113794A1 (en) * | 2008-04-29 | 2009-11-04 | ExxonMobil Upstream Research Company | Method for Reservoir Fracture and Cross Beds Detection Using Tri-axial/Multi-component Resistivity Anisotropy Measurements |
CN102200415A (en) * | 2011-05-19 | 2011-09-28 | 中南大学 | Deep-hole blasting construction technology in fractured rocks |
Non-Patent Citations (3)
Title |
---|
周志芳 等: "岩土渗透性参数现场快速测试系统开发", 《岩石力学与工程学报》 * |
周志芳: "裂隙地下水反分析中若干问题探讨", 《水文地质工程地质》 * |
周玉新 等: "裂隙岩体地下水运动随机有限元分析方法", 《金属矿山》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983228A (en) * | 2014-06-04 | 2014-08-13 | 长江工程地球物理勘测武汉有限公司 | Method for measuring borehole fracture attitude by use of electronic rock core |
CN109374497A (en) * | 2018-10-29 | 2019-02-22 | 河海大学 | A test method for rock microscopic pore structure |
CN109882156A (en) * | 2019-04-01 | 2019-06-14 | 四川大学 | A method and device for collecting drilling information based on DIC technology |
CN110243254A (en) * | 2019-05-09 | 2019-09-17 | 湖州华科建设工程质量检测有限公司 | A kind of construction project crack detection system |
CN110318807A (en) * | 2019-06-24 | 2019-10-11 | 太原理工大学 | Determine the endoscope orientation system and its application method of crack attitude in drilling |
CN111830030A (en) * | 2020-03-27 | 2020-10-27 | 中国恩菲工程技术有限公司 | Investigation system and method for joint fracture of mine rock mass |
Also Published As
Publication number | Publication date |
---|---|
CN102830051B (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102830051B (en) | Rock mass fracture occurrence recognizing system in oscillation testing system | |
CN103711484B (en) | borehole imaging device | |
WO2020181930A1 (en) | Underwater detector, and device and method for measuring flow velocity and flow direction of groundwater | |
CN105804721B (en) | Karst cave detection system and using method thereof | |
CN104793264B (en) | Geological state applied to rig reflects and forward probe system and method in real time | |
CN106154350B (en) | Based on shooting in hole and the engineering comprehensive gaging hole System and method for of single-hole sound-wave | |
CN106401651B (en) | A kind of full lane overall process tunneling boring areal deformation monitoring device and method | |
CN103018788B (en) | Profound tunnel unfavorable geology and Mechanical property forward probe device and method | |
AU2020409772B2 (en) | Forecasting system and method for fault fracture zone of tbm tunnel based on rock mineral analysis | |
CN106871836B (en) | A kind of slope displacement automatic monitoring device and its application method | |
CN101799558B (en) | Electromagnetic surveying system while drilling of adjacent-well parallel intervals | |
CN203669861U (en) | Drill hole imaging device | |
CN104088625B (en) | Coal mine down-hole drilling wireless drilling track and hole depth measurement device and method | |
CN104007464B (en) | A kind of TSP big gun hole measures and powder charge integrated apparatus and method | |
US20150167447A1 (en) | Downhole Imaging Systems and Methods | |
CN105841626B (en) | A kind of underworkings deformation monitoring device and method | |
CN103670386B (en) | Laser measurement method and device for multi-point displacement of rock formation | |
WO2020199243A1 (en) | Drill hole information acquisition method and device based on dic technology | |
CN104101896A (en) | Pile bottom cave sonar detection device and method | |
CN205591910U (en) | Solution cavity detection system | |
CN105444738A (en) | Method for measuring horizontal displacement of stratum through movable inclinometer and movable inclinometer | |
CN208239637U (en) | A kind of detection device for vertical shaft or deep hole | |
CN102830050B (en) | A kind of shaking test system determining hydraulic conductivity tensor of fractured rock mass | |
CN106679733B (en) | An automatic device for in-situ information collection of rock mass structural planes | |
CN205743880U (en) | The imaging system of crevice space occurrence in boring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141008 Termination date: 20170608 |
|
CF01 | Termination of patent right due to non-payment of annual fee |