CN102828145A - 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法 - Google Patents

一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法 Download PDF

Info

Publication number
CN102828145A
CN102828145A CN201210283342XA CN201210283342A CN102828145A CN 102828145 A CN102828145 A CN 102828145A CN 201210283342X A CN201210283342X A CN 201210283342XA CN 201210283342 A CN201210283342 A CN 201210283342A CN 102828145 A CN102828145 A CN 102828145A
Authority
CN
China
Prior art keywords
stainless steel
carburizing
austenitic stainless
furnace
tetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210283342XA
Other languages
English (en)
Inventor
潘邻
张良界
李朋
杨闽红
朱云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INST OF MATERIAL PROTECTION
Wuhan Research Institute of Materials Protection
Original Assignee
WUHAN INST OF MATERIAL PROTECTION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN INST OF MATERIAL PROTECTION filed Critical WUHAN INST OF MATERIAL PROTECTION
Priority to CN201210283342XA priority Critical patent/CN102828145A/zh
Publication of CN102828145A publication Critical patent/CN102828145A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Abstract

本发明一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法,属于化学热处理领域,清洁、干燥的奥氏体不锈钢件置于装有与奥氏体不锈钢件质量成比例量的聚四氟乙烯活化剂的渗碳炉中,盖严渗碳炉盖;通入保护性氮气,通电加热渗碳炉至550℃,使聚四氟乙烯发生热解,通过聚四氟乙烯的热解产物活化处理炉内奥氏体不锈钢表面的钝化膜,从而在奥氏体不锈钢表面形成有利于碳原子扩散的导通通道;然后,抽空炉内气体,并在460℃~480℃,即低于铬的碳化物形成温度条件下进行渗碳处理,向渗碳炉中通入CO、H2和N2 的混合气体,进行渗碳处理,保温48~72小时,完成渗碳处理,实现了奥氏体不锈钢低温渗碳强化并保持其优良耐蚀性的目的,并且,本方法实施简单、生产效率高。

Description

一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法
技术领域
本发明一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法,属于化学热处理领域。 
背景技术
奥氏体不锈钢大量应用于化工、汽车、食品工业、药品机械、电器元件、海运及海洋构件、装饰及生活用品等领域,典型零件如水泵、齿轮、管道、阀门阀座、器皿、餐具等;在所有工业紧固件中,有一半以上是由不锈钢制成的。但奥氏体不锈钢存在一个非常明显的弱点,即表面强度不高,直接表现为硬度、抗磨损性能、抗疲劳性能低,严重影响奥氏体不锈钢的使用范围,或是大幅度降低零部件的使用寿命,因此,奥氏体不锈钢的表面强化问题,成为制约这类材料应用的瓶颈。 
目前,工业应用的奥氏体不锈钢表面强化方式主要有离子注入、表面沉积、热喷涂以及化学热处理等。这些表面强化技术都不同程度地存在着不足,如,离子注入法存在注入层浅、视觉效应及难以大规模生产等问题,表面沉积(电沉积、化学沉积、气相沉积等)和热喷涂处理存在覆层与基体之间结合力较低的问题,而且,这些方法制备的覆层无法保证完全致密,腐蚀介质一旦穿过表层渗入界面,将会造成严重的电偶腐蚀;常规化学热处理,例如渗碳方法,虽然在奥氏体不锈钢的表面强化方面有其良好的工业应用,但是因渗碳而引起奥氏体不锈钢耐蚀性下降的问题,却大大限制了渗碳方法在奥氏体不锈钢领域的应用。 
因此,自上世纪后期,世界范围的相关领域人员开始探索解决奥氏体不锈钢渗碳处理中存在的表面强度提高伴生的腐蚀性能下降这对矛盾的方法,寻求提高奥氏体不锈钢抗磨损性能和耐腐蚀性能的最佳配合处理方法。 
对普通钢铁材料而言,渗碳处理均在奥氏体区域(铁素体向奥氏体转化的温度为727℃)进行,一般渗碳温度在900℃以上,在化学热处理领域,对于较低温度下进行的渗碳处理,称之为低温渗碳 。 
上世纪七十年代,荷兰学者B.H.Kolster发现奥氏体不锈钢在较低温度下渗入碳原子不仅可以大幅度提高不锈钢的硬度,而且不会造成其耐腐蚀性能的下降。在此之后,欧美等发达国家开始了奥氏体不锈钢低温渗碳技术的研究,其工艺方法包括气体、盐浴、离子等多种方法,而真正实现工业化应用的主要是低温气体渗碳工艺。奥氏体不锈钢低温渗碳技术在实际工业应用中存在两大必须解决的问题:第一,如何高效、简便地去除奥氏体不锈钢表面的钝化膜,有利于大规模工业化生产,同时又不影响后续加工和应用;其次,低温条件下碳原子在奥氏体不锈钢中的扩散系数很小,必须开发实用的催渗技术,加快奥氏体不锈钢低温渗碳过程,从而提高生产效率。目前应用于奥氏体不锈钢的低温渗碳工艺方法主要有两种,一种是以日本大同北产株式会社的在N3F气氛下加热保持后,于680℃以下温度进行渗碳处理;另外一种是以美国Swagelok公司为代表的的在250℃采用HCl预处理,升温到470℃进行渗碳处理。 
日本大同北产株式会社氟法渗碳是在350℃条件下,通过N3F气体缓慢分解产生强氧化性氟,高效清除表面钝化膜,裸露出新鲜的表面后在680℃条件下渗碳。氟法渗碳有两个不足之处,第一,N3F在350℃条件下分解产 生强的氧化性氟是一种剧毒、强腐蚀性气体,对人体造成伤害,因此,对车间、设备要求比较高,其次,奥氏体不锈钢在低于550℃的温度进行渗碳处理,渗入的碳原子固溶于奥氏体基体而不以碳化物形式析出,形成一种扩张奥氏体(expanded austenite)。这种过饱和的C固溶于奥氏体基体,产生点阵畸变,大大提高了它的硬度和磨损抗力。在680℃进行渗碳处理,渗碳过程中可能会产生Cr的碳化物,降低了奥氏体不锈钢的耐蚀性。 
美国Swagelok公司开发的奥氏体不锈钢渗碳工艺是在250℃条件下通入干燥HCl气体,清除不锈钢表面钝化膜,然后在470℃的温度条件下渗碳处理。该工艺的不足之处是,采用HCl气体清除不锈钢表面钝化膜的同时,会对设备造成腐蚀破坏,减少设备的使用寿命,同时排出HCl气体也会造成对人体的伤害。 
如上所述,目前常用的两种奥氏体不锈钢低温渗碳都能高效、简便的去除奥氏体不锈钢表面钝化膜,但是采用N3F气体对奥氏体不锈钢进行前处理,分解产生的强氧化性氟属于剧毒物质,对人体造成极大的危害,限制其应用;采用HCl气体清除不锈钢表面钝化膜,容易对设备造成较大的损坏,同时,对人体也会形成伤害。因此,这两种奥氏体不锈钢渗碳工艺都有一定的局限性,不能满足热处理产业要求高效、低成本、批量、自动化以及环境友好的要求。为此,必须开发新的奥氏体不锈钢低温渗碳的工艺,以适应飞速发展的工业需求。 
发明内容
本发明的目的是提供一种实现奥氏体不锈钢耐蚀和强化的低温气体渗碳方法,不仅能大幅度提高奥氏体不锈钢的表面强度,而且能保持奥氏体不 锈钢良好的耐蚀性能,从而解决奥氏体不锈钢强化处理中普遍存在的耐蚀性下降问题。 
本发明的目的是通过如下技术方案实现的: 
一、本发明低温气体渗碳方法: 
将清洁、干燥的奥氏体不锈钢件置于装有与奥氏体不锈钢件质量成比例量的聚四氟乙烯活化剂的渗碳炉中,盖严渗碳炉盖;通入保护性氮气,通电加热渗碳炉至550℃,使聚四氟乙烯发生热解,通过聚四氟乙烯的热解产物活化处理炉内奥氏体不锈钢表面的钝化膜,从而在奥氏体不锈钢表面形成有利于碳原子扩散的导通通道;然后,抽空炉内气体,并在460℃~480℃,即低于铬的碳化物形成温度条件下进行渗碳处理,向渗碳炉中通入CO、H2和N的混合气体,进行渗碳处理,保温48~72小时,完成渗碳处理。  
上述渗碳炉中聚四氟乙烯活化剂与奥氏体不锈钢件的比例量,按质量计为 (0.1~1):100 。 
上述渗碳处理的CO、 H2和N的混合气体的按质量计百分比为: 
(10% ~40%)CO + 10%H+(80% ~50%)N2
二、实施本发明方法的工艺步骤是: 
1、清洗试样,对试样进行除油、去污处理; 
2、试样称重,将按照试样质量的 0.1% ~1%比例的聚四氟乙烯活化剂放入渗碳炉中,盖严渗碳炉盖; 
3、通入保护性氮气,通电加热渗碳炉至550℃,使聚四氟乙烯发生热解,通过聚四氟乙烯的热解产物活化处理炉内奥氏体不锈钢表面的钝化膜,保温30min; 
4、抽空炉内气体,并在460℃~480℃,即低于铬的碳化物形成温度条件下进行渗碳处理,向渗碳炉中通入CO、H2和N的混合气体,进行渗碳处理,保温48~72小时,完成渗碳处理; 
本发明创造性采用聚四氟乙烯热解的产物活化奥氏体不锈钢表面致密的钝化膜,有效活化了奥氏体不锈钢表面,在其表面形成有利于碳原子扩散的导通通道,并在460℃~480℃,即在低于奥氏体不锈钢中最主要的耐蚀元素铬的碳化物形成温度的条件下,通入(10% ~40%)CO+ 10% H+(80% ~50%)N2的混合气体,进行渗碳处理,其中CO的作用是在渗碳过程中提供活性碳原子,H2的作用是在渗碳的过程中保持渗碳气氛始终处于还原气氛并洁净工件表面, N则在气氛中起到平衡作用;扩散进入基体的碳原子固溶于奥氏体晶格之中而不以碳化物的形式析出,达到不损伤耐蚀性的固溶强化效果,从而解决目前奥氏体不锈钢强化处理中普遍存在的耐蚀性下降问题。处理后,奥氏体不锈钢表面的强化层厚度在15~35μm之间,表面硬度值可达900~1100HV,远远高于未经渗碳处理的奥氏体不锈钢不超过300HV的硬度值,实现了奥氏体不锈钢低温渗碳强化并保持其优良耐蚀性的目的,并且,本发明方法实施简单、生产效率高、成本低,可批量化生产,满足日益发展的工程领域对不锈钢制件的特殊需求。 
附图说明
图1  304奥氏体不锈钢低温渗碳层金相组织 
图2  经48h低温渗碳处理的304奥氏体不锈钢与未经处理的试样的极化曲线对比 
具体实施方式
现结合实施例和附图给出的检测图片和数据进一步说明本发明方法的实施: 
实施例1:按本发明处理方法对304奥氏体不锈钢实施低温渗碳处理 
首先将质量为 20Kg的304奥氏体不锈钢件进行表面除油、烘干,放入渗碳炉中,按照规定比例量称取200g聚四氟乙烯放入渗碳炉底,盖严渗碳炉盖;然后通入保护性氮气,通电加热,直到炉温升到550℃,保温30分钟,聚四氟乙烯在535℃发生分解,分解的产物使得奥氏体不锈钢表面的钝化膜活化;降温到470℃,抽空炉内气体,向渗碳炉中通入35%CO+10%H2+55%N2混合渗碳气体,保温48小时取出试件,完成奥氏体不锈钢的低温渗碳处理。其强化层厚度在20μm左右(见图1),表面硬度约为1050HV;低温渗碳层耐蚀性较好,优于未经处理的奥氏体不锈钢(极化曲线对比见图2)。 
实施例2:按本发明处理方法对316奥氏体不锈钢实施低温渗碳处理 
首先将质量为 15Kg的316奥氏体不锈钢件进行表面除油、烘干,放入渗碳炉中,按照规定比例量称取102g聚四氟乙烯放入渗碳炉底,盖严渗碳炉盖;然后通入保护性氮气,通电加热,直到炉温升到550℃,保温30分钟,聚四氟乙烯在535℃发生分解,分解的产物使得奥氏体不锈钢表面的钝化膜活化;降温到470℃,抽空炉内气体,向渗碳炉中通入38%CO+10%H2+52%N2混合渗碳气体,保温48小时取出试件,完成奥氏体不锈钢的低温耐蚀渗碳处理,其强化层厚度为21μm,表面硬度约为1000HV。 
实施例3:按本发明处理方法对321奥氏体不锈钢实施低温渗碳处理 
首先将质量为 18Kg的321奥氏体不锈钢件进行表面除油、烘干, 放入渗碳炉中,按照规定比例量称取90g聚四氟乙烯放入渗碳炉底,盖严渗碳炉 盖;然后通入保护性氮气,通电加热,直到炉温升到550℃,保温30分钟,聚四氟乙烯在535℃发生分解,分解的产物使得奥氏体不锈钢表面的钝化膜活化;降温到470℃,抽空炉内气体,向渗碳炉中通入25%CO+10%H2+65%N2混合渗碳气体,保温48小时取出试样,完成了奥氏体不锈钢的低温渗碳处理,其强化层厚度约为18μm,表面硬度约为950HV。 

Claims (4)

1.一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法,其特征在于将清洁、干燥的奥氏体不锈钢件置于装有与奥氏体不锈钢件质量成比例量的聚四氟乙烯活化剂的渗碳炉中,盖严渗碳炉盖;通入保护性氮气,通电加热渗碳炉至550℃,使聚四氟乙烯发生热解,通过聚四氟乙烯的热解产物活化处理炉内奥氏体不锈钢表面的钝化膜,从而在奥氏体不锈钢表面形成有利于碳原子扩散的导通通道;然后,抽空炉内气体,并在460℃~480℃,即低于铬的碳化物形成温度条件下进行渗碳处理,向渗碳炉中通入CO、H2和N的混合气体,进行渗碳处理,保温48~72小时,完成渗碳处理。
2.根据权利要求1所述的一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法,其特征在于渗碳炉中聚四氟乙烯活化剂与奥氏体不锈钢件的比例量,按质量计为 (0.1~1):100 。
3.根据权利要求1所述的一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法,其特征在于渗碳处理的CO、 H2和N的混合气体按质量计百分比为:
(10%~40% )CO+ 10% H+(80%~50%)N2
4.实施权利要求1所述的低温气体渗碳方法的工艺步骤,其特征在于是:
① 清洗试样,对试样进行除油、去污处理;
② 试样称重,并将按照试样质量的 0.1% ~1%比例的聚四氟乙烯活化剂放入渗碳炉中,盖严渗碳炉盖;
③ 通入保护性氮气,通电加热渗碳炉至550℃,使聚四氟乙烯发生热解,通过聚四氟乙烯的热解产物活化处理炉内奥氏体不锈钢表面的钝化膜,保温30min;
④、抽空炉内气体,并在460℃~480℃,即低于铬的碳化物形成温度条件下进行渗碳处理,向渗碳炉中通入CO、H2和N的混合气体,进行渗碳处理,保温48~72小时,完成渗碳处理。 
CN201210283342XA 2012-08-09 2012-08-09 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法 Pending CN102828145A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210283342XA CN102828145A (zh) 2012-08-09 2012-08-09 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210283342XA CN102828145A (zh) 2012-08-09 2012-08-09 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法

Publications (1)

Publication Number Publication Date
CN102828145A true CN102828145A (zh) 2012-12-19

Family

ID=47331449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210283342XA Pending CN102828145A (zh) 2012-08-09 2012-08-09 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法

Country Status (1)

Country Link
CN (1) CN102828145A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323355A (zh) * 2013-05-31 2013-09-25 南京工业大学 奥氏体金属低温超饱和气体渗碳表面强化试验装置
CN103849932A (zh) * 2014-03-13 2014-06-11 中国科学院理化技术研究所 一种氟硼酸钡钠紫外双折射晶体及生长方法和用途
CN105483604A (zh) * 2015-12-30 2016-04-13 武汉材料保护研究所 一种提高奥氏体不锈钢低温气体渗碳速度的催渗方法
CN106637047A (zh) * 2016-12-22 2017-05-10 机械科学研究总院青岛分院 一种板状不锈钢件表面钝化膜去除方法
CN106835005A (zh) * 2016-12-21 2017-06-13 机械科学研究总院青岛分院 一种奥氏体不锈钢的低温气体渗碳方法
CN107109615A (zh) * 2014-07-31 2017-08-29 世伟洛克公司 自钝化金属的增强活化
CN108728787A (zh) * 2017-04-19 2018-11-02 武汉华工激光工程有限责任公司 一种奥氏体不锈钢耐蚀强化件表面处理方法
CN109913794A (zh) * 2019-04-12 2019-06-21 兰州理工大学温州泵阀工程研究院 一种奥氏体不锈钢耐蚀强化的方法
CN111575637A (zh) * 2020-05-29 2020-08-25 青岛丰东热处理有限公司 一种奥氏体不锈钢表面低温氮碳共渗的方法
CN114318210A (zh) * 2021-12-10 2022-04-12 东北大学 一种提高奥氏体不锈钢渗碳后耐蚀性及渗层深度的方法
US11649538B2 (en) 2018-06-11 2023-05-16 Swagelok Company Chemical activation of self-passivating metals
US11885027B2 (en) 2020-04-29 2024-01-30 Swagelok Company Activation of self-passivating metals using reagent coatings for low temperature nitrocarburization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121118A (zh) * 1994-04-18 1996-04-24 大同北产株式会社 奥氏体金属的渗碳方法
CN1146498A (zh) * 1995-05-25 1997-04-02 大同北产株式会社 钢的渗氮方法
CN1160774A (zh) * 1996-01-30 1997-10-01 大同北产株式会社 奥氏体不锈钢之渗碳方法及由其制得之奥氏体不锈钢制品
WO2000009776A1 (en) * 1998-08-12 2000-02-24 Swagelok Company Selective case hardening for metal articles
US6093303A (en) * 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
CN1322257A (zh) * 1998-08-12 2001-11-14 斯瓦戈洛克公司 低温下选择性表面硬化法
CN1423709A (zh) * 2000-01-28 2003-06-11 斯瓦戈洛克公司 改进低温表面硬化的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121118A (zh) * 1994-04-18 1996-04-24 大同北产株式会社 奥氏体金属的渗碳方法
CN1146498A (zh) * 1995-05-25 1997-04-02 大同北产株式会社 钢的渗氮方法
CN1160774A (zh) * 1996-01-30 1997-10-01 大同北产株式会社 奥氏体不锈钢之渗碳方法及由其制得之奥氏体不锈钢制品
WO2000009776A1 (en) * 1998-08-12 2000-02-24 Swagelok Company Selective case hardening for metal articles
US6093303A (en) * 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
CN1322257A (zh) * 1998-08-12 2001-11-14 斯瓦戈洛克公司 低温下选择性表面硬化法
CN1423709A (zh) * 2000-01-28 2003-06-11 斯瓦戈洛克公司 改进低温表面硬化的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRANK ERNST, ET AL.: "The carbide M7C3 in low-temperature-carburized austenitic stainless steel", 《ACTA MATERIALIA》, vol. 59, 14 January 2011 (2011-01-14) *
G. M. MICHAL, ET AL.: "Carbon Paraequilibrium in Austenitic Stainless Steel", 《METALLURGICAL AND MATERIALS TRANSACTIONS A》, vol. 37, 30 June 2006 (2006-06-30), XP019695459 *
杨闽红等: "奥氏体不锈钢镀纯铁、氟化处理后低温气体渗碳层的硬度和耐蚀性能", 《材料保护》, vol. 45, no. 7, 31 July 2012 (2012-07-31) *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323355B (zh) * 2013-05-31 2016-08-31 南京工业大学 奥氏体金属低温超饱和气体渗碳表面强化试验装置
CN103323355A (zh) * 2013-05-31 2013-09-25 南京工业大学 奥氏体金属低温超饱和气体渗碳表面强化试验装置
CN103849932A (zh) * 2014-03-13 2014-06-11 中国科学院理化技术研究所 一种氟硼酸钡钠紫外双折射晶体及生长方法和用途
CN107109615B (zh) * 2014-07-31 2020-12-04 世伟洛克公司 自钝化金属的增强活化
CN107109615A (zh) * 2014-07-31 2017-08-29 世伟洛克公司 自钝化金属的增强活化
US10214805B2 (en) 2014-07-31 2019-02-26 Swagelok Company Enhanced activation of self-passivating metals
US11473183B2 (en) 2014-07-31 2022-10-18 Swagelok Company Enhanced activation of self-passivating metals
US10604832B2 (en) 2014-07-31 2020-03-31 Swagelok Company Enhanced activation of self-passivating metals
CN105483604A (zh) * 2015-12-30 2016-04-13 武汉材料保护研究所 一种提高奥氏体不锈钢低温气体渗碳速度的催渗方法
CN105483604B (zh) * 2015-12-30 2018-02-13 武汉材料保护研究所 一种提高奥氏体不锈钢低温气体渗碳速度的催渗方法
CN106835005A (zh) * 2016-12-21 2017-06-13 机械科学研究总院青岛分院 一种奥氏体不锈钢的低温气体渗碳方法
CN106835005B (zh) * 2016-12-21 2019-01-15 机械科学研究总院青岛分院有限公司 一种奥氏体不锈钢的低温气体渗碳方法
CN106637047A (zh) * 2016-12-22 2017-05-10 机械科学研究总院青岛分院 一种板状不锈钢件表面钝化膜去除方法
CN108728787A (zh) * 2017-04-19 2018-11-02 武汉华工激光工程有限责任公司 一种奥氏体不锈钢耐蚀强化件表面处理方法
US11649538B2 (en) 2018-06-11 2023-05-16 Swagelok Company Chemical activation of self-passivating metals
CN109913794B (zh) * 2019-04-12 2020-10-09 兰州理工大学温州泵阀工程研究院 一种奥氏体不锈钢耐蚀强化的方法
CN109913794A (zh) * 2019-04-12 2019-06-21 兰州理工大学温州泵阀工程研究院 一种奥氏体不锈钢耐蚀强化的方法
US11885027B2 (en) 2020-04-29 2024-01-30 Swagelok Company Activation of self-passivating metals using reagent coatings for low temperature nitrocarburization
CN111575637A (zh) * 2020-05-29 2020-08-25 青岛丰东热处理有限公司 一种奥氏体不锈钢表面低温氮碳共渗的方法
CN111575637B (zh) * 2020-05-29 2021-12-14 青岛丰东热处理有限公司 一种奥氏体不锈钢表面低温氮碳共渗的方法
CN114318210A (zh) * 2021-12-10 2022-04-12 东北大学 一种提高奥氏体不锈钢渗碳后耐蚀性及渗层深度的方法
CN114318210B (zh) * 2021-12-10 2023-01-10 东北大学 一种提高奥氏体不锈钢渗碳后耐蚀性及渗层深度的方法

Similar Documents

Publication Publication Date Title
CN102828145A (zh) 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法
US5792282A (en) Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
KR100828276B1 (ko) 침탄 질화 담금질된 마텐자이트 스테인리스 스틸
CN103215536B (zh) 在不锈钢表面形成耐蚀硬化层的低温渗氮方法
CN1140649C (zh) 奥氏体不锈钢之渗碳方法及由其制得之奥氏体不锈钢制品
CN105483604B (zh) 一种提高奥氏体不锈钢低温气体渗碳速度的催渗方法
Casteletti et al. Nitriding of stainless steels
CN101392361A (zh) 马氏体不锈钢氮碳共渗方法及其制品
WO2004031434A1 (ja) 耐摩耗性にすぐれた表面炭窒化ステンレス鋼部品およびその製造方法
Biró Trends of nitriding processes
US11840765B2 (en) Nitriding process for carburizing ferrium steels
JPH09268364A (ja) オーステナイト系ステンレスに対する浸炭処理方法およびそれによって得られたオーステナイト系ステンレス製品
CN101775575A (zh) 一种油套管钢表面低温包埋渗铝工艺
CN114317898B (zh) 一种提高铁素体不锈钢表面耐磨和耐蚀性的方法
CN103276349A (zh) 一种低碳钢表面盐浴稀土钒钛共渗剂及处理工艺
CN106835005B (zh) 一种奥氏体不锈钢的低温气体渗碳方法
Michalski et al. Contemporary industrial application of nitriding and its modifications
JP3064908B2 (ja) 浸炭硬化時計部材もしくは装飾品類およびそれらの製法
Nishimoto et al. Effect of Pre‐deforming on Low Temperature Plasma Nitriding of Austenitic Stainless Steel
CN102676978A (zh) 改善非奥氏体系不锈钢表面机械性质的方法
Kumar et al. Surface hardening of AISI 304, 316, 304L and 316L ss using cyanide free salt bath nitriding process
JP2005036279A (ja) 鋼の表面硬化方法およびそれによって得られた金属製品
CN201448461U (zh) 一种阀门阀芯
CN102676980B (zh) 不锈钢低温渗碳方法
JP2009108411A (ja) ステンレス鋼製の加工品の表面硬化方法及び該方法の実施のための溶融塩

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121219