CN102812346A - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
CN102812346A
CN102812346A CN2011800151345A CN201180015134A CN102812346A CN 102812346 A CN102812346 A CN 102812346A CN 2011800151345 A CN2011800151345 A CN 2011800151345A CN 201180015134 A CN201180015134 A CN 201180015134A CN 102812346 A CN102812346 A CN 102812346A
Authority
CN
China
Prior art keywords
light
spectral filter
analytical equipment
photodetector
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800151345A
Other languages
English (en)
Other versions
CN102812346B (zh
Inventor
上村一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Software Co.,Ltd.
Original Assignee
NEC System Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC System Technologies Ltd filed Critical NEC System Technologies Ltd
Publication of CN102812346A publication Critical patent/CN102812346A/zh
Application granted granted Critical
Publication of CN102812346B publication Critical patent/CN102812346B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3166Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using separate detectors and filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3177Use of spatially separated filters in simultaneous way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

提出了一种分析装置,能够处理多种成分的分析,同时抑制装置尺寸的增大。分析装置(1)配置有发光单元(10)、透射式光谱滤光器(22)、光检测器(23)和分析单元(31)。光谱滤光器(22)配置有:光透射基板;多个凸部,在基板的一个表面上以第一金属材料形成;和金属膜,由折射率比第一金属材料高的第二金属材料形成,覆盖前述表面和凸部。凸部设置为使得位于凸部之间的金属膜用作衍射光栅,且凸部用作波导。针对光谱滤光器的每一部分将衍射光栅的光栅周期、凸部的高度和金属膜的厚度设为不同值,使得光谱滤光器透射的光的波长在每一部分处不同。光检测器(23)设置为使得每一光接收元件(24)接收光谱滤光器的透射光。分析单元(31)从光接收元件(24)的输出信号获取对象(40)的光谱。

Description

分析装置
技术领域
本发明涉及一种分析装置,用于光学地分析对象中包含的成分。
背景技术
常规上已经提出了一种光学分析方法,用以对对象中包含的成分执行非破坏性分析。利用该光学分析方法,首先用光照射对象。接下来,使用光谱滤光器来从已经透过对象的透射光或者已经被对象反射的反射光提取与目标成分相对应的波长的光,并且由光接收元件接收所提取的光。然后基于来自光接收元件的输出信号推导出吸收率,并且根据吸收率进一步计算目标成分的百分比(例如,参见专利文献1和2)。
具体地,专利文献1公开了一种分析装置,该分析装置以水果和蔬菜中包含的葡萄糖为目标成分,执行光学分析。利用专利文献1中公开的分析装置,因为目标成分是葡萄糖,所以从光源照射包含近红外区域中波长的光。至于光谱滤光器,使用利用了衍射光栅的反射式光谱滤光器。这种光谱滤光器形成为使得只将700nm至1000nm范围中波长的光引导至光接收元件。
专利文献2也公开了一种分析装置,该分析装置以水果和蔬菜中包含的葡萄糖为目标成分。然而,与专利文献1中公开的分析装置不同,利用专利文献2中公开的分析装置,使用只透射设定波长的光的多个透射式光谱滤光器。光谱滤光器设置在波束照射范围内的同一平面中。由于这种配置,来自测量对象的光中只有符合光谱滤光器之一的设定波长的光透过光谱滤光器,并且由光接收元件接收。
另外,利用上述光学分析方法,在目标成分不同的情况下,使用光谱滤光器提取的光的波长(选择波长)也将不同。因此,利用专利文献1和专利文献2中公开的分析装置,在目标成分为葡萄糖之外的其他成分的情况下,需要更换光谱滤光器,使得实践中不能用于葡萄糖之外的其他目标成分。
另一方面,专利文献3公开了一种反射式光谱滤光器,使得能够改变选择波长。专利文献3中公开的光谱滤光器配置有:谐振光栅;基板,设置为使得在谐振光栅与基板之间形成间隙;以及用于在谐振光栅和基板之间施加电压的配置。当在这种光谱滤光器中改变在谐振光栅和基板之间施加的电压的幅度时,它们之间的距离改变,导致相对于入射光的反射率也改变。如果使用专利文献3中公开的光谱滤光器,可以改变选择波长,并且可以获得能够处理多种目标成分的分析装置。
文献列表
专利文献
专利文献1:JP 06-213804A
专利文献2:JP 2000-356591A
专利文献3:JP 2005-331581A
发明内容
本发明要解决的问题
然而,因为专利文献3中公开的光谱滤光器是反射式光谱滤光器,在使用这种光谱滤光器构成分析装置的情况下,光路复杂。此外,与其他光谱滤光器要求的空间相比,需要更多空间来安装专利文献3中公开的光谱滤光器。由于这些原因,在分析装置中使用专利文献3中公开的光谱滤光器的情况下,出现分析装置尺寸增大的问题。
本发明的示例性目的是为了解决以上问题,并且提供一种分析装置,能过处理多种成分的分析、同时抑制装置尺寸增大。
解决问题的手段
为了实现上述目的,根据本发明一个方面的分析装置是一种用于分析对象中包含的成分的分析装置,该分析装置包括:发光单元,所述发光单元用光照射所述对象;透射式光谱滤光器;光检测器,具有多个光接收元件;以及分析单元,其中所述光谱滤光器包括:光透射基板,设置在光由所述对象反射之后或者光透过所述对象之后的光路上;多个凸部,在所述基板的一个表面上以金属材料形成;以及金属氧化物膜,使用折射率比所述金属材料高的金属氧化物材料形成,以覆盖所述多个凸部和基板的所述一个表面,所述多个凸部设置为使得位于相邻凸部之间的金属膜用作衍射光栅,并且所述凸部用作波导,将所述衍射光栅的光栅间距(pitch)、所述凸部的高度和所述金属膜的厚度中的至少一项,针对所述光谱滤光器的每一个部分而设置为不同值,使得透过所述光谱滤光器的光的波长针对每一个所述部分而改变,将所述光检测器设置为使得所述多个光接收元件中的每一个接收透过所述光谱滤光器的光,以及所述分析单元从分别由所述多个光接收元件输出的输出信号获取所述对象的光谱。
本发明的效果
由于上述特征,本发明的分析装置能够处理多种成分的分析,同时抑制装置尺寸的增大。
附图说明
图1是示出了本发明实施例1中的分析装置的示意性配置的配置图;
图2是示出了图1所示光谱滤光器的配置的部分放大截面图;
图3是示出了本发明实施例1中的分析装置的操作的流程图;
图4是示出了由本发明实施例1中的分析装置执行的处理的示意图;
图5示出了在本发明实施例1中使用的示例性校准曲线,图5(a)至图5(c)分别示出了不同的校准曲线。
图6是示出了本发明实施例2中的分析装置的示意配置的配置图。
图7是示出了本发明实施例2中的分析装置的操作的流程图。
图8是示出了本发明实施例3中的分析装置的示意配置的配置图。
具体实施方式
实施例1
下文中将参考图1至图5描述本发明实施例1中的分析装置。首先,将使用图1和图2描述本实施例1中的分析装置1的配置。图1是示出了本发明实施例1中的分析装置的示意配置的配置图。图2是示出了图1所示的光谱滤光器的配置的部分放大截面图。
如图1所示,分析装置1是对对象40中包含的成分进行分析的装置。分析装置1配置有以光照射对象40的发光单元10、透射式光谱滤光器22、具有多个光接收元件24的光检测器23和分析单元31。
光谱滤光器22设置在由对象40反射的光的光路上,并且配置为使得透过光谱滤光器22的光的波长针对光谱滤光器22的每一个部分而改变。此外,不同于图1中的示例,可以将光谱滤光器22设置在已经透过对象40的光的光路上。
在本实施例1中,光谱滤光器22和光检测器23一起构成了传感器单元20,该传感器单元检测来自对象40的光。此外,传感器单元20配置有透镜21。使用透镜21以便会聚由对象40反射的光,并且将这种光有效地引导至光谱滤光器22。
注意:尽管在图1中的光谱滤光器22和光检测器23之间存在间隔,但这是为了说明该配置,实践中光谱滤光器22和光检测器23紧密接触,之间没有间隔。
这里,将基于图2描述光谱滤光器22的配置和功能。如图2所示,光谱滤光器22配置有光透射性的基板22a、在基板22a的一个表面上形成的多个凸部22b以及覆盖基板22a的所述一个表面和所述多个凸部22b的金属氧化物膜22c。这些部件中,凸部22b由金属材料形成,金属氧化物膜22c使用折射率比所述金属材料高的金属氧化物材料形成。
此外,所述多个凸部22b设置为使得存在于相邻凸部之间的金属氧化物膜22c用作衍射光栅。具体地,凸部22b每一个均形成为矩形柱的形状,并且进一步设置为矩阵。为了使得金属氧化物膜22c用作衍射光栅,针对透射光波长不同的每一个部分,设置衍射光栅的光栅间距p,以使光栅间距p比需要透过该部分的光的波长要短。
因为由于这种配置,凸部22b用作亚波长光栅并且用作波导,所以从金属氧化物膜22c一侧入射到凸部22b上的光作为倏逝波(evanescentwave)在凸部22b内传播。入射到凸部22b上的光根据光的波长,透过凸部22b和基板22a,或者在透过凸部22b之后被基板22a反射。具体地,如果增加凸部22b的高度h,则透射光的波长趋向于变长。类似地,在将衍射光栅的光栅间距p加宽或者增加基板22a的折射率的情况下,透射光的波长趋向于变长。注意:实践中,难以逐个部分地改变每一个构件的折射率。
因此,在光谱滤光器22中,为了逐个部分地改变透过光谱滤光器22的光波长,将衍射光栅的光栅间距p、凸部22b的高度h和金属氧化物膜22c的厚度t中的至少一个针对每一个部分设置为不同的值。换句话说,将光谱滤光器22形成为使得透射光的波长针对光谱滤光器22的每一个部分而不同。注意:透射光实际上具有窄带波长,并且相对于窄带中的中心波长来设置透射光的波长。此外,衍射光栅的光栅间距p实质上是从一个凸部22b的一侧上的侧面到相邻凸部22b的相同一侧上的侧面的距离,如图2所示。
在本实施例1中,可以适当地设置基板22a、凸部22b和金属氧化物膜22c的材料,使得目标波长的光可以容易地透过。例如,以透射光是红外区域中的光为例,基板22a的材料可以是氧化硅(SiO2)。在这种情况下,基板22a是所谓的石英基板。此外,可以使用金(Au)或者含金(Au)合金用作形成凸部22b的金属材料。另外,可以使用氧化钛(TiO2)用作金属氧化膜22c的材料。
这里,将描述如下示例:在透射光是红外区域中的光的情况下,例如透射光的中心波长设置为1.48μm。形成金属氧化物膜22c的氧化钛的折射率是“1.904”,形成基板22a的氧化硅的折射率是“1.465”,金的反射率是“0.944”。此外,凸部22b的高度h设置为“62μm”。尽管金的折射率和消光系数存在无数值,但是在以上示例中,金的折射率和消光系数分别是“0.50”和“7.1”。在这种示例中,只需要将衍射光栅的光栅间距p和金属氧化物膜22c的厚度t分别设置为“1064.7μm”和“134μm”。
此外,如图1所示,光检测器23设置为使得每一个光接收元件24接收透过光谱滤光器22的光。因此,由于上述光谱滤光器22的功能,因为在滤波构件1的每一个部分中已经透过光谱滤光器22的光由不同的光接收元件24接收,所以每一个光接收元件24的输出信号将表示相应部分的设定波长的光强度。因此,分析单元31能够从光接收元件24的输出信号获取对象40的光谱。
在图1的示例中,使用固态成像装置作为光检测器23,所述固态成像装置具有半导体基板,在所述半导体基板上按矩阵形式形成多个光电二极管。此外,在图1中为了说明的目的,按照截面图示出了光检测器23。注意:在截面图中省略了阴影。
这样,利用本实施例1中的分析装置1,因为不使用诸如在专利文献3中公开的光谱滤光器之类的反射式光谱滤光器,可以如图1所示简化光路,并且抑制了装置尺寸的增大。此外,因为可以获取光谱而不受对象40类型的限制,可以利用单独的装置处理其他类型成分的分析。
此外,在本实施例1中,分析单元31能够从所获取的光谱中识别对象40中包含的成分。另外,分析单元31能够从预先准备的多条校准曲线中选择与所识别的成分相对应的校准曲线,并且使用所选择的校准曲线来计算要分析的目标成分的含量。具体地,分析单元31可以通过从所获取的光谱推导吸收率、并且将所推导的吸收率应用于所选择的校准曲线,来计算要分析的目标成分的含量。
在本实施例1中,将多条校准曲线存储在存储单元32中。存储单元32和分析单元31一起构成了控制装置30。另外,控制装置30还配置有驱动单元33。驱动单元33根据来自分析单元31的指令,来驱动发光单元10并且控制光源11的通/断。控制装置30的具体示例是微型计算机。
在本实施例1中,光源只需要能够照射所需范围内波长的光,并且没有特别的限制。例如,光源11是LED或者卤素灯。在图1的示例中,光源11是能够照射红外区域中的光的LED。此外,根据预想的对象类型来适当地设置要求光源11发射光的波长范围。
接下来,将使用图3至图5描述本实施例1中的分析装置1的操作。图3是示出了本发明实施例1中的分析装置的操作的流程图。图4是示出了由本发明实施例1中的分析装置所执行的处理的示意图。图5示出了本发明实施例中1中使用的示例性校准曲线,其中图5(a)至图5(c)分别示出了不同的校准曲线。此外,在以下描述中,适当地参考图1和图2。
如图3所示,首先,分析单元31测量由光检测器23的每一个光接收元件24输出的暗电流(步骤S1)。具体地,分析单元31在已经使驱动单元33关断光源11的状态下测量由光检测器23的光接收元件24输出的输出信号的输出值。注意:这种情况下的输出值是在暗电流产生时输出的信号的电压值。
这里,将暗电流产生时光接收元件24的输出信号的输出值(电压)记为D11-D1n。n表示光接收元件的数量。分析单元31还能够推导暗电流产生时的输出信号的输出值D11-D1n的平均值Dm1,并且在后续计算中使用平均值Dm1。
在图4中,曲线52示出了步骤S1中暗电流产生时的示例性输出信号。因为接收的光的波长对于每一个光接收元件24而言是不同的,所以当绘制在步骤S1中获得的输出信号的输出值D11-D1n时,将获得如图4所示的曲线52,其横轴是波长,其纵轴是电压。
接下来,分析单元31使驱动单元33接通光源11,并且获取总反射谱(步骤S2)。具体地,分析单元31使驱动单元33接通光源11,并且在设置全反射镜代替对象40的条件下测量此时由光接收元件24输出的输出信号的输出值。将此时的输出信号的输出值记为D21-D2n
然后,分析单元31分别从获得的光接收元件24的输出信号的输出值D21-D2n中减去在步骤S1中获得的暗电流产生时的输出信号的输出值D11-D1n,并且从获得的输出值中推导总反射谱。建立以下等式1,其中D31-D3n是构成总反射谱的输出值。此外,在等式1中,分析单元31可以减去输出值D11-D1n的平均值Dm1,来代替输出值D1k
等式1
D3k=D2k-D1k
“k”表示从第k个光接收元件获得的值,其中1≤k≤n。在图4中,曲线54通过对构成总反射谱的输出值D31-D3n进行绘制而获得,并且示出了在步骤S2获得的示例性总反射谱。
注意:在本实施例1中,可以在步骤S2中的输出值测量之后执行步骤S1,并且随后可以执行构成总反射谱的输出值的计算。此外,步骤S1和S2不需要与随后将描述的步骤S3连续地执行。另外,在已经执行了一次步骤S1和S2之后,可以重复地执行步骤S3开始的步骤。也就是说,在执行步骤S3之前只需要执行一次步骤S1和S2。此外,在执行步骤S1和S2和执行步骤S3开始的步骤之间可以存在时间滞后。
接下来,在步骤S2结束之后,分析单元31使驱动单元33接通光源11(步骤S3)。由于步骤S3,从光源11发射的光入射到对象40上,并且在被对象40反射之后入射到传感器单元20。随后,分析单元31测量由光接收元件24输出的输出信号的输出值(步骤S4)。
这里,将执行步骤S4时光接收元件24的输出信号的输出值(电压)记为V11-V1n。此外,在图4中,曲线51通过对在步骤S4中测量的输出信号的输出值V11-V1n进行绘制而获得,并且示出了在步骤S4中由光接收元件24输出的示例性输出信号。
此外,在本实施例1中,可以间歇地执行步骤S2和S3中光源11的照射。也就是说,驱动单元33能够使光源11执行脉冲照射。这是因为当使光源11连续发光时,光量可能随时间逐渐减少,导致在随后讨论的步骤S5中吸收率计算的误差。
当光源11执行脉冲照射时,分析单元31对来自光接收元件24的输出信号的输出值进行照射次数的测量。在这种情况下,分析单元31能够计算针对每一个光接收元件的输出值的平均值,并且在步骤S4开始的处理中使用所计算的平均值。
例如,在步骤S2中由于脉冲照射而多次获得输出值D21-D2n的情况下,分析单元31能够针对这些输出值分别计算平均值Dm21-Dn2n,并且使用这些值。此外,在由于步骤S3中脉冲照射而在步骤S4中多次获得输出值V11-V1n的情况下,分析单元31能够针对这些输出值分别计算平均值Vm11-Vm1n,并且使用这些值。
接下来,分析单元31对在步骤S4中获得的输出信号执行暗电流校正(步骤S5)。具体地,在步骤S4,分析单元31使用以下等式2,从在步骤S3中获得的输出信号的输出值V11-V1n(参见图4中的曲线51)减去暗电流的输出值D11-D1n(参见图4中的曲线52),并且执行基线校正。在以下等式2中,V2k表示校正之后的输出值。在以下等式2中,分析单元31可以类似地减去输出值D11-D1n的平均值Dm1来代替输出值D1k
等式2
V2k=V1k-D1k
此外,在图4中,曲线53通过对校正之后的输出值V21-V2n进行绘制而获得,并且示出了在步骤S5获得的示例性基线校正输出信号。
接下来,分析单元31使用基线校正输出值和总反射谱的输出值(参见图4的曲线54),获取对象40的光谱(步骤S6)。具体地,分析单元31使用以下等式3来计算基线校正输出值和总反射谱的输出值之差。所计算的差等价于对象40的光谱。在以下等式3中,Vk表示差值。
等式3
Vk=D3k-V2k
在图4中,曲线55通过对计算的差值V1-Vn进行绘制而获得,并且示出了对象40的示例性光谱(差)。此外,在本实施例1中,假设如上所述光源11照射红外区域中的光,则获得了红外区域中的光谱。
接下来,分析单元31例如通过基于步骤S4中获得的光谱而指定出现的峰值波长,来识别对象40中包含的成分,并且还根据峰值波长的值来计算吸收率(步骤S7)。
具体地,在本实施例1中,针对预想的每一成分,预先将峰值发生图案存储在存储单元32中。在步骤S7中,分析单元31向所存储的发生图案应用所指定的峰值波长,并且根据其结果识别对象40中包含的成分。此外,如上所述假设在本实施例1中获得的光谱是红外区域中的光谱,识别的成分包括葡萄糖、蔗糖、果糖、柠檬酸盐和水。
此外,在步骤S7中,分析单元31根据以下等式4计算吸收率Aλ。注意:在以下等式4中,j表示输出峰值的光接收元件。同样,1≤j≤n。
等式4
Aλ=-log10(V2j/D3j)
接下来,分析单元31访问存储单元32,并且基于步骤S7中的识别结果来选择与对象40相对应的校准曲线(参见图5(a)-(c))(步骤S8)。例如,如果对象40是血液,并且识别的成分是葡萄糖(血糖),则分析单元31选择图5(a)所示的校准曲线。此外,如果对象40是诸如柑橘或草莓之类的水果,并且识别的成分是葡萄糖、蔗糖和果糖,则分析单元31选择图5(a)-(c)所示的校准曲线。
随后,分析单元31通过向在步骤S8选择的校准曲线应用在步骤S7计算的吸收率Aλ,计算对象40中包含的成分的含量(浓度)(步骤S9)。例如,在对象40是血液的情况下,分析单元40计算葡萄糖浓度(血糖级别)。此外,例如在对象40是诸如柑橘或草莓之类的水果的情况下,分析单元31计算葡萄糖浓度、蔗糖浓度和果糖浓度。在步骤S7结束之后,分析单元31输出结果并且结束处理。
如上所述,根据本实施例1的分析装置1,可以指定对象40中包含的成分和合适的校准曲线,并且执行各种对象的成分分析。此外,因为执行成分分析所需的光学系统具有简单的配置,抑制了装置尺寸的增大。
注意:在本实施例1中,因为光谱滤光器22配置为使得入射光的波长对于每一个光接收元件不同,分析单元31针对每一个光接收元件的输出值执行算术运算。然而,本发明不局限于该示例。例如,光谱滤光器22可以配置为使得入射光的波长对于由两个或更多光接收元件组成的每一组而不同。在这种情况下,分析单元31计算针对每一组的输出值的平均值,并且使用获得的平均值执行上述算术运算。
此外,在本实施例1中,对象40的类型没有特别的限制,并且除了上述血液和水果之外,具体地包括蔬菜、粮食、化学物质和从活体中提取的各种体液。
实施例2
接下来将参考图6和图7描述本发明实施例2中的分析装置。首先,将使用图6描述本实施例2中的分析装置2的配置。图6是示出了本发明实施例2中的分析装置的示意性配置的配置图。
如图6所示,在本实施例2中,与图1所示的实施例1中的分析装置1不同,分析装置2除了传感器单元(下文中的“主传感器单元”)20之外还配置有参考传感器单元50。
与分析装置1不同,分析装置2还配置有分束器60和中性密度(Neutral Density,ND)滤光器(减光滤光器)61,分束器60对从发光单元10照射的光进行分束。另外,由于这种配置差别,分析单元34还执行分析装置1的分析单元31并未执行的处理。注意:除了上述区别之外,分析装置2与图1所示的实施例1中的分析装置1类似。下文中,描述将主要关注于与实施例1的区别。
分束器60设置在发光单元10和对象40之间,并且在由发光单元10照射的光入射到对象40之前将该光一分为二。一束分束光入射到对象40上,在对象处被反射,然后由主传感器单元20接收。另一束经由ND滤光器61由参考传感器单元50接收,而没有入射到对象40上。
参考传感器单元50配置有透镜51、光谱滤光器52和具有多个光接收元件54的光检测器53,并且与主传感器单元20类似地配置。也就是说,光谱滤光器52与光谱滤光器22相同,并且光检测器53与光检测器23相同。此外,透镜51与透镜21相同。此外,将ND滤光器61配置为使得透过ND滤光器61的光的量与由对象40反射之后的光的量相同。
注意:尽管图6中的光谱滤光器22和光检测器23之间以及光谱滤光器52和光检测器53之间存在间隔,但这是为了说明配置的目的。实践中,光谱滤光器22与光检测器23紧密接触,并且光谱滤光器52与光检测器53紧密接触,它们之间不存在任何间隔。
在分析装置2中,因此使用了两个传感器单元,即主传感器单元20和参考传感器单元50。因此在本实施例2中,与实施例1不同,不需要获取总反射谱。此外,因为在使光源11连续发光的情况下可以通过参考传感器单元检测光量的退化程度,所以在本实施例2中使光源11连续发光。
接下来将使用图7描述本实施例2中的分析装置2的操作。图7是示出了本发明实施例2中的分析装置的操作的流程图。此外,在以下描述中,适当地参考图6。
如图7所示,首先,分析单元34测量主传感器单元20中的暗电流以及参考传感器单元50中的暗电流(步骤S11)。具体地,分析单元34在已经使驱动单元33关断光源11的情况下,测量由光检测器23输出的输出信号的输出值E11-E1n以及由光检测器53输出的输出信号的输出值E01-E0n。此外,分析单元31能够推导输出值E11-E1n的平均值Em1和输出值E01-E0n的平均值Em0,并且在后续计算中使用平均值Em1和平均值Em0。
此外,步骤S11不必与下面将描述的步骤S12连续地执行,并且可以在已经执行一次步骤S11之后重复地执行从步骤S12开始的步骤。也就是说,在执行步骤S12之前只需要执行一次步骤S11。此外,在执行步骤S11和执行步骤S12开始的步骤之间可以存在时间滞后。
接下来,分析单元34使驱动单元33接通光源11(步骤S12)。此时在本实施例2中,如上所述,驱动单元33使光源11连续发光。通过分束器61对由于步骤S12而从光源11发射的光进行分束,并且一束在被对象40反射之后入射到主传感器单元20上。另一束经由ND滤光器61入射到参考传感器单元50上。
接下来,分析单元34获取来自主传感器单元20的输出信号和来自参考传感器单元50的输出信号(步骤S13)。具体地,分析单元34测量由光检测器23输出的输出信号的输出值B11-B1n和由光检测器53输出的输出信号的输出值B01-B0n
接下来,分析单元34对于在步骤S13中获得的来自主传感器单元20的输出信号和来自参考传感器单元50的输出信号执行暗电流校正。(步骤S14)。
具体地,在步骤S14,对于主传感器单元20,分析单元31使用以下等式5,从在步骤S13中测量的输出值B11-B1n减去暗电流的输出值E11-E1n,并且执行基线校正。在以下等式5中,B2k表示校正之后主传感器单元20的输出值。与实施例1类似,“k”表示从第k个光接收元件获得的值,其中1≤k≤n。
等式5
B2k=B1k-E1k
类似地,在步骤S14,对于参考传感器单元50,分析单元31使用以下等式6,从在步骤S13中测量的输出值B01-B0n减去暗电流的输出值E01-E0n,并且执行基线校正。在以下等式6中,B3k表示校正之后参考传感器单元50的输出值。
等式6
B3k=B0k-E0k
接下来,分析单元34使用主传感器单元20的基线校正输出值B21-B2n和参考传感器单元50的基线校正输出值B31-B3n,获取对象40的光谱(步骤S15)。具体地,分析单元34使用以下等式7,计算针对每一个光接收元件54(每一个波长)的扩散(diffusion)强度B1-Bn,在以下等式7中,G是根据光路等适当设置的系数。
等式7
Bk=(B2k/G)/B3k
当在横轴是波长、纵轴是电压的坐标系上绘制使用以上等式7计算的扩散强度B1-Bn时,在这种情况下也获得了与图4所示曲线55类似的曲线。也就是说,使用以上等式7计算的扩散强度B1-Bn表示对象40的光谱。如上所述,假设在本实施例2中,光源11也照射红外区域中的光,则获得了红外区域中的光谱。
接下来,分析单元34计算光源11的光量的退化程度(步骤S16)。具体地,在本实施例2中,分析单元34首先推导在步骤S13中测量的参考传感器单元50的输出值B01-B0n的平均值。分析单元34然后计算例如所推导的平均值和预设的参考值S之间的比率α(平均值/参考值)作为退化程度。注意:例如,可以将在首次接通新光源11时由参考传感器单元50的光接收元件54输出的信号的输出值的平均值、最大值或最小值用作参考值S。
接下来,分析单元34例如通过指定光谱中出现的峰值波长,基于在步骤S15中获得的光谱来识别对象40中包含的成分,并且还根据峰值波长的值计算吸收率Aλ(步骤S17)。在步骤S17中,与实施例1中图3所示的步骤S7类似地执行对象40中包含的成分的识别。也就是说,分析单元34将指定的峰值波长应用于存储单元32中存储的发生图案,并且根据结果识别对象40中包含的成分。
此外,在步骤S17中,分析单元34根据以下等式8计算吸收率Aλ。注意在以下等式8中,j表示输出峰值的光接收元件。同样,1≤j≤n。
等式8
Aλ=-log10(Bj/α)
接下来,分析单元34访问存储单元32,并且基于步骤S17的识别结果来选择与对象40相对应的校准曲线(参见图5(a)-(c))(步骤S18)。步骤S18是与实施例1中图3所示的步骤S8类似的步骤。
随后,分析单元34通过向在步骤S18选择的校准曲线施加在步骤S17计算的吸收率Aλ,计算对象40中包含的成分的含量(浓度)(步骤S19)。步骤S19是与实施例1中图3所示的步骤S9类似的步骤。
如上所述,根据本实施例2中的分析装置2,与实施例1不同,可以计算对象40的成分含量,而无需获取总反射谱。另外,在使光源11连续发光的情况下也可以抑制误差的发生。
在本实施例2中,与实施例1类似,可以指定对象40中包含的成分和合适的校准曲线,并且执行各种对象的成分分析。此外,因为执行成分分析所需的光学系统具有简单的配置,抑制了器件尺寸的增大。
注意:在本实施例2中,因为光谱滤光器22和光谱滤光器52配置为使得入射光的波长针对每一个光接收元件而不同,分析单元34针对每一个光接收元件的输出值执行算术运算。然而,本发明不局限于该示例。例如,光谱滤光器22和光谱滤光器52可以配置为使得入射光的波长针对由两个或更多光接收元件组成的每一组而不同。在这种情况下,分析单元34计算针对每一组的输出值的平均值,并且使用所获得的平均值执行上述算术运算。
实施例3
接下来将参考图8描述本发明的实施例2中的分析装置。图8是示出了本发明实施例3中的分析装置的示意性配置的配置图。如图8所示,在本实施例3中,分析装置3与图6所示的实施例2中的分析装置类似地构成,除了发光单元12和驱动单元35之外。下文中,描述将主要关注于与实施例2的差异。
如图8所示,在本实施例3中,与图1和图6所示的发光单元10不同,发光单元12配置有多个光源11。此外,在本实施例3中,当控制装置30的驱动单元35接通光源11时,交替地接通光源11,并且从发光单元12连续发光。
这样,在本实施例3中,可以从发光单元12准连续地发光,而无须连续接通每一个光源11。因此,分析装置3按照图7所示的除了步骤S16之外的步骤S11至S15然后S17至S19的顺序操作。在本实施例3中,因为不需要针对每一个光源11计算退化程度,减小了分析单元34上的负担。此外,因为可以使光连续地入射到主传感器单元20和参考传感器单元50上,与脉冲光入射的情况相比还实现了计算精度的改进。
尽管参考实施例描述了本申请的发明,本申请的发明不局限于以上实施例。本领域普通技术人员应该理解的是,在不脱离本申请的范围的情况下,可以对本申请的本发明及进行配置和细节上的各种改变。
本申请基于并且要求2010年3月24日递交的日本专利申请No.2010-067808的优先权,其全部内容合并在此作为参考。
本申请的发明中的分析装置具有以下特征。
(1)一种分析装置,用于分析对象中包含的成分,所述分析装置包括:发光单元,所述发光单元用光照射所述对象;透射式光谱滤光器;光检测器,具有多个光接收元件;以及分析单元,其中所述光谱滤光器包括:光透射性的基板,设置在光由所述对象反射之后或者光透过所述对象之后的光路上;多个凸部,在所述基板的一个表面上以金属材料形成;以及金属氧化物膜,使用折射率比所述金属材料高的金属氧化物材料形成,以覆盖所述多个凸部和基板的所述一个表面;所述多个凸部设置为使得存在于相邻凸部之间的金属膜用作衍射光栅,并且所述凸部用作波导,将所述衍射光栅的光栅间距、所述凸部的高度和所述金属氧化物膜的厚度中的至少一项,针对所述光谱滤光器的每一个部分而设置为不同值,使得透过所述光谱滤光器的光的波长针对每一个所述部分而改变;将所述光检测器设置为使得所述多个光接收元件中的每一个接收透过所述光谱滤光器的光,以及所述分析单元从分别由所述多个光接收元件输出的输出信号获取对象的光谱。
(2)在根据上述(1)所述的分析装置中,所述分析单元从所获取的光谱识别所述对象中包含的成分,从预先准备的多个校准曲线中选择与所识别的成分相对应的校准曲线,并且使用所选择的校准曲线来计算所述成分的含量。
(3)在根据上述(1)的分析装置中,所述发光单元间歇地用光照射所述对象。
(4)在根据上述(1)所述的分析装置中,所述发光单元配置有多个发光元件,并且通过使所述发光元件中的一个、两个或更多个交替地发光来用光连续地照射所述对象。
(5)在根据上述(1)所述的分析装置中,所述分析装置还包括:分束器,所述分束器对由所述发光单元照射的光分束;以及参考传感器单元,所述参考传感器单元接收由所述分束器分束的光,并且输出参考信号;其中所述分束器设置在所述发光单元和所述对象之间,所述参考传感器单元包括:衰减滤光器,与所述光谱滤光器相同的第二光谱滤光器;以及与所述光检测器相同的第二光检测器,所述衰减滤光器、所述第二光谱滤光器和所述第二光检测器设置为使得由所述分束器分束的光按照衰减滤光器、第二光谱滤光器和第二光检测器的顺序入射,所述第二光检测器的多个光接收元件根据入射光输出信号;以及所述分析单元基于来自所述第二光检测器的信号来对所述光检测器的所述多个光接收元件中的每一个的输出信号进行校正。
(6)在根据上述(1)所述的分析装置中,针对所述光谱滤光器的每一个部分形成所述衍射光栅的光栅间距,以使其比需要透过所述部分的光的波长短。
(7)在根据上述(1)所述的分析装置中,所述基板的材料包括氧化硅,所述金属材料包括金(Au),并且所述金属氧化物材料包括氧化钛。
(8)在根据上述(1)所述的分析装置中,所述多个凸部每一个均形成为矩形柱形状,并且设置成矩阵。
(9)在根据上述(1)所述的分析装置中,所述光检测器是固态成像装置,所述固态成像装置具有半导体基板,所述多个光接收元件以矩阵形式形成在所述半导体基板上。
工业应用性
根据本发明的分析装置,如上所述,可以处理多种成分的分析,同时抑制装置尺寸的增大。本发明的分析装置在以水果、蔬菜和其他粮食、化学物质、从活体提取的以血液代表的各种体液等为对象的多种分析中都是有用的。
附图标记列表
1分析装置(实施例1)
2分析装置(实施例2)
3分析装置(实施例3)
10发光单元
11光源
12发光单元
20主传感器单元
21透镜
22光谱滤光器
22a基板
22b凸部
22c金属膜
23光检测器
24光接收元件
30控制装置
31分析单元
32存储单元
33驱动单元
34分析单元
35驱动单元
40对象
50参考传感器单元
51透镜
52光谱滤光器
53光检测器
54光接收元件
60分束器
61中性密度滤光器(减光滤光器)

Claims (9)

1.一种分析装置,用于分析对象中包含的成分,所述分析装置包括:
发光单元,所述发光单元用光照射所述对象;
透射式光谱滤光器;
光检测器,具有多个光接收元件;以及
分析单元,
其中所述光谱滤光器包括:
光透射性的基板,设置在光由所述对象反射之后或者光透过所述对象之后的光路上;
多个凸部,在所述基板的一个表面上以金属材料形成;以及
金属氧化物膜,使用折射率比所述金属材料高的金属氧化物材料形成,以覆盖所述多个凸部和基板的所述一个表面,
所述多个凸部设置为使得存在于相邻凸部之间的金属膜用作衍射光栅,并且所述凸部用作波导,
将所述衍射光栅的光栅间距、所述凸部的高度和所述金属氧化物膜的厚度中的至少一项,针对所述光谱滤光器的每一个部分而设置为不同值,使得透过所述光谱滤光器的光的波长针对每一个所述部分而改变,
将所述光检测器设置为使得所述多个光接收元件中的每一个接收透过所述光谱滤光器的光,以及
所述分析单元从分别由所述多个光接收元件输出的输出信号获取所述对象的光谱。
2.根据权利要求1所述的分析装置,其中所述分析单元从所获取的光谱识别所述对象中包含的成分,从预先准备的多个校准曲线中选择与所识别的成分相对应的校准曲线,并且使用所选择的校准曲线来计算所述成分的含量。
3.根据权利要求1或2所述的分析装置,其中所述发光单元间歇地用光照射所述对象。
4.根据权利要求1或2所述的分析装置,其中所述发光单元配置有多个发光元件,并且通过使所述发光元件中的一个、两个或更多个交替地发光来用光连续地照射所述对象。
5.根据权利要求1至4中任一项所述的分析装置,还包括:
分束器,所述分束器对由所述发光单元照射的光分束;以及
参考传感器单元,所述参考传感器单元接收由所述分束器分束的光,并且输出参考信号;
其中所述分束器设置在所述发光单元和所述对象之间,
所述参考传感器单元包括:
衰减滤光器,
与所述光谱滤光器相同的第二光谱滤光器;以及
与所述光检测器相同的第二光检测器,
所述衰减滤光器、所述第二光谱滤光器和所述第二光检测器设置为使得由所述分束器分束的光按照衰减滤光器、第二光谱滤光器和第二光检测器的顺序入射,
所述第二光检测器的多个光接收元件根据入射光输出信号;以及
所述分析单元基于来自所述第二光检测器的信号来对所述光检测器的所述多个光接收元件中的每一个的输出信号进行校正。
6.根据权利要求1至5中任一项所述的分析装置,其中针对所述光谱滤光器的每一个部分形成所述衍射光栅的光栅间距,以使其比需要透过所述部分的光的波长短。
7.根据权利要求1至6中任一项所述的分析装置,其中所述基板的材料包括氧化硅,所述金属材料包括金Au,并且所述金属氧化物材料包括氧化钛。
8.根据权利要求1至7中任一项所述的分析装置,其中所述多个凸部每一个均形成为矩形柱形状,并且设置成矩阵。
9.根据权利要求1至8中任一项所述的分析装置,其中所述光检测器是固态成像装置,所述固态成像装置具有半导体基板,所述多个光接收元件以矩阵形式形成在所述半导体基板上。
CN201180015134.5A 2010-03-24 2011-02-21 分析装置 Expired - Fee Related CN102812346B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-067808 2010-03-24
JP2010067808A JP4812141B2 (ja) 2010-03-24 2010-03-24 分析装置
PCT/JP2011/053668 WO2011118309A1 (ja) 2010-03-24 2011-02-21 分析装置

Publications (2)

Publication Number Publication Date
CN102812346A true CN102812346A (zh) 2012-12-05
CN102812346B CN102812346B (zh) 2015-07-29

Family

ID=44672881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180015134.5A Expired - Fee Related CN102812346B (zh) 2010-03-24 2011-02-21 分析装置

Country Status (6)

Country Link
US (1) US9279720B2 (zh)
EP (1) EP2551661B1 (zh)
JP (1) JP4812141B2 (zh)
KR (1) KR20130051918A (zh)
CN (1) CN102812346B (zh)
WO (1) WO2011118309A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280396A (zh) * 2014-09-29 2015-01-14 苏州赛森电子科技有限公司 适用于led生产用蓝宝石基板检测与识别装置
CN105873495A (zh) * 2014-04-17 2016-08-17 奥林巴斯株式会社 光源装置
CN108279210A (zh) * 2018-02-08 2018-07-13 芜湖美智空调设备有限公司 滤网洁净度检测方法、滤网洁净度传感器和空气处理设备
CN110665842A (zh) * 2019-11-14 2020-01-10 广西立盛茧丝绸有限公司 一种近红外光谱选茧方法
CN111903114A (zh) * 2018-03-30 2020-11-06 三星电子株式会社 用于获取对象状态信息的电子设备及其控制方法
CN113167905A (zh) * 2018-12-06 2021-07-23 罗伯特·博世有限公司 激光雷达系统以及机动车
CN114047328A (zh) * 2022-01-10 2022-02-15 深圳市帝迈生物技术有限公司 一种样本分析仪及其检测方法
US11330983B2 (en) 2018-03-30 2022-05-17 Samsung Electronics Co., Ltd. Electronic device for acquiring state information on object, and control method therefor
CN115508307A (zh) * 2022-10-14 2022-12-23 中国人民解放军军事科学院国防科技创新研究院 一种太赫兹超表面传感器及太赫兹透射频谱确定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213759B2 (ja) * 2012-09-21 2017-10-18 パナソニックIpマネジメント株式会社 分析装置
TWI479142B (zh) * 2012-10-17 2015-04-01 Wistron Corp 生物晶片檢測裝置及其光源的檢測方法
KR101683266B1 (ko) * 2016-05-20 2016-12-06 (주)큐앤테크 휴대용 수질 분석 장치
KR101981963B1 (ko) * 2017-06-16 2019-05-27 주식회사 코아비스 발광부와 수광부를 이용한 연료량 측정 장치
US10393581B2 (en) 2018-01-29 2019-08-27 JVC Kenwood Corporation Spectroscope
JP2019132605A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
KR102634135B1 (ko) * 2022-01-13 2024-02-07 주식회사 템퍼스 옷감 분석 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313007A (ja) * 1991-04-08 1992-11-05 Mitsubishi Electric Corp 膜検査装置
JP2006012826A (ja) * 2004-06-26 2006-01-12 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006170669A (ja) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd 青果物の品質検査装置
US20060273245A1 (en) * 2003-08-06 2006-12-07 University Of Pittsburgh Surface plasmon-enhanced nano-optic devices and methods of making same
JP2007255969A (ja) * 2006-03-22 2007-10-04 Riken Keiki Co Ltd 赤外線式ガス検知器
US20100059663A1 (en) * 2006-04-19 2010-03-11 Commissariat A L'energie Atomique Micro-structured spectral filter and image sensor
JP2010051589A (ja) * 2008-08-28 2010-03-11 Waseda Univ 非侵襲ヒト皮膚メラニン計測法及びその装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277773A (en) * 1963-01-14 1966-10-11 John U White Optical apparatus for measuring the reflective and emissive characteristics of a sample
US3892492A (en) * 1972-10-16 1975-07-01 Loepfe Ag Geb Optoelectrical apparatus with directional light sources for detecting reflection behaviour of an object
US4629322A (en) * 1984-10-29 1986-12-16 The United States Of America As Represented By The Secretary Of The Army Material analysis using reflected light
US4750837A (en) * 1986-04-11 1988-06-14 Sclavo Inc. Fluorometer with reference light source
US5272345A (en) * 1989-09-22 1993-12-21 Ada Technologies, Inc. Calibration method and apparatus for measuring the concentration of components in a fluid
JPH06213804A (ja) 1993-01-20 1994-08-05 Saika Gijutsu Kenkyusho 糖度計測方法及びその装置
US5726805A (en) 1996-06-25 1998-03-10 Sandia Corporation Optical filter including a sub-wavelength periodic structure and method of making
US6721054B1 (en) * 1999-04-15 2004-04-13 David L. Spooner Method and apparatus for determining the reflectance of translucent objects
JP2000356591A (ja) 1999-06-14 2000-12-26 Neechia:Kk 青果物非破壊糖度計
WO2002037146A1 (en) * 2000-11-03 2002-05-10 Mems Optical Inc. Anti-reflective structures
JP2002196123A (ja) * 2000-12-26 2002-07-10 Asahi Glass Co Ltd 2波長用回折光学素子、2波長光源装置および光学ヘッド装置
US20030049858A1 (en) * 2001-07-15 2003-03-13 Golden Josh H. Method and system for analyte determination in metal plating baths
US7420156B2 (en) 2003-08-06 2008-09-02 University Of Pittsburgh Metal nanowire based bandpass filter arrays in the optical frequency range
JP2005331581A (ja) 2004-05-18 2005-12-02 Tohoku Univ 光フィルタ
JP4621270B2 (ja) * 2007-07-13 2011-01-26 キヤノン株式会社 光学フィルタ
KR100973647B1 (ko) * 2007-11-20 2010-08-02 삼성코닝정밀소재 주식회사 디스플레이 장치용 필터
US8310678B2 (en) * 2008-01-25 2012-11-13 Panasonic Corporation Analyzing device and analyzing method
JP2011043681A (ja) * 2009-08-21 2011-03-03 Canon Inc 光学素子、光検出素子、光変調素子、撮像素子及びカメラ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313007A (ja) * 1991-04-08 1992-11-05 Mitsubishi Electric Corp 膜検査装置
US20060273245A1 (en) * 2003-08-06 2006-12-07 University Of Pittsburgh Surface plasmon-enhanced nano-optic devices and methods of making same
JP2006012826A (ja) * 2004-06-26 2006-01-12 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006170669A (ja) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd 青果物の品質検査装置
JP2007255969A (ja) * 2006-03-22 2007-10-04 Riken Keiki Co Ltd 赤外線式ガス検知器
US20100059663A1 (en) * 2006-04-19 2010-03-11 Commissariat A L'energie Atomique Micro-structured spectral filter and image sensor
JP2010051589A (ja) * 2008-08-28 2010-03-11 Waseda Univ 非侵襲ヒト皮膚メラニン計測法及びその装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873495A (zh) * 2014-04-17 2016-08-17 奥林巴斯株式会社 光源装置
CN105873495B (zh) * 2014-04-17 2018-09-14 奥林巴斯株式会社 光源装置
CN104280396A (zh) * 2014-09-29 2015-01-14 苏州赛森电子科技有限公司 适用于led生产用蓝宝石基板检测与识别装置
CN108279210A (zh) * 2018-02-08 2018-07-13 芜湖美智空调设备有限公司 滤网洁净度检测方法、滤网洁净度传感器和空气处理设备
CN108279210B (zh) * 2018-02-08 2023-10-31 芜湖美智空调设备有限公司 滤网洁净度检测方法、滤网洁净度传感器和空气处理设备
CN111903114A (zh) * 2018-03-30 2020-11-06 三星电子株式会社 用于获取对象状态信息的电子设备及其控制方法
US11330983B2 (en) 2018-03-30 2022-05-17 Samsung Electronics Co., Ltd. Electronic device for acquiring state information on object, and control method therefor
CN113167905A (zh) * 2018-12-06 2021-07-23 罗伯特·博世有限公司 激光雷达系统以及机动车
CN110665842A (zh) * 2019-11-14 2020-01-10 广西立盛茧丝绸有限公司 一种近红外光谱选茧方法
CN114047328A (zh) * 2022-01-10 2022-02-15 深圳市帝迈生物技术有限公司 一种样本分析仪及其检测方法
CN115508307A (zh) * 2022-10-14 2022-12-23 中国人民解放军军事科学院国防科技创新研究院 一种太赫兹超表面传感器及太赫兹透射频谱确定方法

Also Published As

Publication number Publication date
EP2551661B1 (en) 2018-04-11
US20130003054A1 (en) 2013-01-03
CN102812346B (zh) 2015-07-29
JP4812141B2 (ja) 2011-11-09
EP2551661A4 (en) 2015-03-18
KR20130051918A (ko) 2013-05-21
WO2011118309A1 (ja) 2011-09-29
EP2551661A1 (en) 2013-01-30
JP2011202971A (ja) 2011-10-13
US9279720B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
CN102812346A (zh) 分析装置
US8594470B2 (en) Transmittting light with lateral variation
RU2730366C2 (ru) Аналитическая система и способ для определения параметров гемоглобина в цельной крови
US8743368B2 (en) Optical sensor system and method of sensing
US7495762B2 (en) High-density channels detecting device
Giovenzana et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine
JP4999707B2 (ja) 表面プラズモン共鳴センサにおける表面プラズモンの分光のための方法およびその使用のためのエレメント
KR20090061007A (ko) 자외선 검출장치 및 자외선 방어효과의 평가장치
WO2010095472A1 (ja) 試料分析装置
EP2846161A1 (en) Device for optically determining the concentration of alcohol and carbohydrates in a liquid sample
RU2396546C2 (ru) Спектрофотометр
US5416579A (en) Method for determining concentration in a solution using attenuated total reflectance spectrometry
JP2015532422A (ja) 分析物を検出するための方法
CA3187130A1 (en) Absorbance spectroscopy analyzer and method of use
CN106092968A (zh) 光学检测装置及方法
JP3903147B2 (ja) 青果物の非破壊糖度測定装置
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
JP2013053919A (ja) ヘイズ値測定装置及びヘイズ値測定方法
EP3144665A1 (en) Food analysis device
JP7027742B2 (ja) 分光システム
US20140110569A1 (en) Optical Head For Receiving Light And Optical System Using The Same
KR101222700B1 (ko) 표면 플라즈몬 공명 센서 시스템
JP2013068461A (ja) 屈折率測定装置および糖分濃度測定装置並びにその方法
RU2710009C1 (ru) Устройство для определения влагообеспеченности лиственных растений
JP2006220582A (ja) センシング装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NEC SOFT, LTD.

Free format text: FORMER OWNER: NEC SYSTEM TECHNOLOGIES LTD.

Effective date: 20140821

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Tokyo, Japan

Applicant after: NEC SOLUTION INNOVATORS, Ltd.

Address before: Tokyo, Japan

Applicant before: NEC Software Co.,Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: NEC SOFT, LTD. TO: JAPAN ELECTRICAL SCHEME INNOVATION CORPORATION

TA01 Transfer of patent application right

Effective date of registration: 20140821

Address after: Tokyo, Japan

Applicant after: NEC Software Co.,Ltd.

Address before: Japan Osaka

Applicant before: NEC System Technologies, Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

Termination date: 20200221

CF01 Termination of patent right due to non-payment of annual fee