CN102810407A - 一种高储能纯固态超级电容器的制备方法 - Google Patents

一种高储能纯固态超级电容器的制备方法 Download PDF

Info

Publication number
CN102810407A
CN102810407A CN2012102669976A CN201210266997A CN102810407A CN 102810407 A CN102810407 A CN 102810407A CN 2012102669976 A CN2012102669976 A CN 2012102669976A CN 201210266997 A CN201210266997 A CN 201210266997A CN 102810407 A CN102810407 A CN 102810407A
Authority
CN
China
Prior art keywords
preparation
energy storage
pure solid
high energy
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102669976A
Other languages
English (en)
Inventor
刘必前
任晓灵
杨海军
何敏
汪前东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN2012102669976A priority Critical patent/CN102810407A/zh
Publication of CN102810407A publication Critical patent/CN102810407A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明涉及一种高储能纯固态超级电容器的制备方法,所述的制备方法是先采用纳米复合陶瓷粉体与耐高压抗击穿的高分子材料共混,高温压制成具有较高击穿电压和介电常数的电介质层,而后采用磁控溅射法在电介质层两侧镀电极。使用的纳米复合陶瓷粉体是采用Al2O3均匀包覆具有高介电常数的纳米陶瓷晶体粉末而制成的。用本发明的工艺方法制备的纯固态超级电容器具有较高的储电能力,稳定性好、安全性高、自放电缓慢、可放大生产。

Description

一种高储能纯固态超级电容器的制备方法
技术领域
本发明涉及一种高储能纯固态超级电容器的制备方法。
背景技术
电容器作为一种充电快、使用寿命长的电能储存元件受到广泛的关注。随着电容器的发展,对提高电介质的介电常数,提高绝缘性能,提高电介质的耐高压性能,在工艺上制作出更薄的电介质层已经成为新一代电容器的重要发展方向。美国的Eestor公司采用钛酸钡作为高介电常数陶瓷材料制备纯固态的超级电容器能量密度高达0.4Wh/g,储电能力超过现有的电池。高纯钛酸钡的相对介电常数为20000左右,而钇离子掺杂的钨酸铅单晶的相对介电常数在0~50℃范围内高达(1.3~1.6)×105,在150℃时增加到3.94×106,有望成为新型高介电系数的储能材料。
发明内容
本发明的目的在于提供一种高储能纯固态超级电容器的制备方法。
本发明的高储能纯固态超级电容器是以具有高介电常数的纳米复合陶瓷粉体与耐高压抗击穿的高分子材料共混,制备具有较高击穿电压和介电常数的电介质层,再通过磁控溅射法在电介质层表面镀层金属电极而制得的。
本发明的高储能纯固态超级电容器的制备方法包括以下步骤:
(1)将纳米陶瓷粉体用Al2O3均匀包覆,制得纳米复合陶瓷粉体;
其中,纳米陶瓷粉体为具有高介电常数的纳米陶瓷晶体粉末,如钛酸钡(简称BT)晶体粉末、钇离子掺杂的钨酸铅(简称PWO)晶体粉体等;
(2)将高分子材料经冷冻后研磨成为纳米级的粉体颗粒,并与步骤(1)制得的纳米复合陶瓷粉体超声共混,高温压制成电介质层;
其中,高分子材料为耐高压抗击穿的高分子材料,如聚酰亚胺(简称PI)、聚四氟乙烯(简称PTFE)、聚对苯二甲酸乙二醇酯(简称PET)等;
所述的纳米复合陶瓷粉体与高分子材料的质量比控制在50/50~92/8之间;
所述的高温压制条件为180℃,100bar;
所述的电介质层厚度为0.05~20μm;
(3)采用磁控溅射法在步骤(2)制得的电介质层两侧镀层金属电极,从而制得高储能纯固态超级电容器。
所述的磁控溅射法条件为:真空为3.0×10-4Pa,工作气体为氩气,溅射气压为2.0Pa,靶基距为135mm,溅射时间为1~10min;
所述的电极材料为铝或银金属,金属电极层厚度为0.05~5μm。
本发明在高介电陶瓷粉体表面包裹一层氧化铝,可以大幅度提高陶瓷材料的击穿电压强度,此外与具有较高介电场强的高分子材料共混也可以提高其耐击穿性能,并且改善陶瓷材料的可加工性。用本发明的工艺方法制备的纯固态超级电容器具有较高的储电能力,稳定性好、安全性高、自放电缓慢、可放大生产。
附图说明
图1为高储能纯固态超级电容器的结构示意图。
其中,1为金属电极;2为电介质层
具体实施方式
下面以实施例子具体说明与本发明有关的实施方案,仅仅是用来说明本发明的实施方案的有限例子,并不限制本发明的范围。本发明的全部范围体现在前面的各项权利要求中。
实施例1
本实施例以钇离子掺杂的钨酸铅为高储能电介质层的主要组成部分,制备具有较高储电能力的电容器。
将0.120g聚对苯二甲酸乙二醇酯高分子材料冷冻至-150℃,研磨成为纳米级的粉体颗粒,与0.120gAl2O3均匀包覆的钇离子掺杂钨酸铅粉体超声共混,在180℃,100bar的条件下压制成电介质层;
将铝粉在电介质层两侧采用直流磁控溅射成膜。本底真空为3.0×10-4Pa,工作气体为氩气,溅射气压为2.0Pa,靶基距为135mm,溅射时间为10min,制得的高储能纯固态超级电容器的各项参数列于表1中。
表1高储能纯固态超级电容器的各项参数
Figure BSA00000756846000021
实施例2
本实施例以钛酸钡为高储能纯固态超级电容器的主要组成部分,制备具有较高储电能力的电容器。
将0.028g聚对苯二甲酸乙二醇酯高分子材料冷冻至-150℃,研磨成为纳米级的粉体颗粒,与0.520gAl2O3均匀包覆的钛酸钡粉体超声共混,在180℃,100bar的条件下压制成电介质层;
将铝粉在电介质层两侧采用直流磁控溅射成膜。本底真空为3.0×10-4Pa,工作气体为氩气,溅射气压为2.0Pa,靶基距为135mm,溅射时间10min,制得的高储能纯固态超级电容器的各项参数列于表2中。
表2高储能纯固态超级电容器的各项参数
实施例3
本实施例以钇离子掺杂的钨酸铅为高储能纯固态超级电容器的主要组成部分,制备具有较高储电能力的电容器。
将0.035g聚四氟乙烯高分子材料冷冻至-150℃,研磨成为纳米级的粉体颗粒,与0.325gAl2O3均匀包覆的钇离子掺杂钨酸铅粉体超声共混,在180℃,100bar的条件下压制成电介质层;
将铝粉在电介质层两侧采用直流磁控溅射成膜。本底真空为3.0×10-4Pa,工作气体为氩气,溅射气压为2.0Pa,靶基距为135mm,溅射时间为1min,制得的高储能纯固态超级电容器的各项参数列于表3中。
表3高储能纯固态超级电容器的各项参数
Figure BSA00000756846000032

Claims (6)

1.一种高储能纯固态超级电容器的制备方法,其特征是,该制备方法包括以下步骤:
(1)将纳米陶瓷粉体用Al2O3均匀包覆,制得纳米复合陶瓷粉体;
其中,纳米陶瓷粉体为具有高介电常数的纳米陶瓷晶体粉末,如钛酸钡晶体粉末、钇离子掺杂的钨酸铅晶体粉体等;
(2)将高分子材料经冷冻后研磨成为纳米级的粉体颗粒,并与步骤(1)制得的纳米复合陶瓷粉体超声共混,高温压制成电介质层;
其中,高分子材料为耐高压抗击穿的高分子材料,如聚酰亚胺、聚四氟乙烯、聚对苯二甲酸乙二醇酯等;
(3)采用磁控溅射法在步骤(2)制得的电介质层两侧镀层金属电极,从而制得高储能纯固态超级电容器。
2.根据权利要求1所述的一种高储能纯固态超级电容器的制备方法,其特征是,步骤(2)中所述的纳米复合陶瓷粉体与高分子材料的质量比控制在50/50~92/8之间。
3.根据权利要求1所述的一种高储能纯固态超级电容器的制备方法,其特征是,步骤(2)中所述的高温压制条件为180℃,100bar。
4.根据权利要求1所述的一种高储能纯固态超级电容器的制备方法,其特征是,步骤(2)中所述的电介质层厚度为0.05~20μm。
5.根据权利要求1所述的一种高储能纯固态超级电容器的制备方法,其特征是,步骤(3)中所述的磁控溅射法条件为:真空为3.0×10-4Pa,工作气体为氩气,溅射气压为2.0Pa,靶基距为135mm,溅射时间为1~10min。
6.根据权利要求1所述的一种高储能纯固态超级电容器的制备方法,其特征是,步骤(3)中所述的电极材料为铝或银金属,金属电极层厚度为0.05~5μm。 
CN2012102669976A 2012-07-31 2012-07-31 一种高储能纯固态超级电容器的制备方法 Pending CN102810407A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102669976A CN102810407A (zh) 2012-07-31 2012-07-31 一种高储能纯固态超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102669976A CN102810407A (zh) 2012-07-31 2012-07-31 一种高储能纯固态超级电容器的制备方法

Publications (1)

Publication Number Publication Date
CN102810407A true CN102810407A (zh) 2012-12-05

Family

ID=47234092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102669976A Pending CN102810407A (zh) 2012-07-31 2012-07-31 一种高储能纯固态超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN102810407A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992837A (zh) * 2015-07-21 2015-10-21 苏州电力电容器有限公司 应用于准法拉第超级电容器的复合基材及其制法与应用
CN106128778A (zh) * 2016-07-26 2016-11-16 胡英 一种全固态超级电容器及其制备方法
CN109387704A (zh) * 2018-09-18 2019-02-26 海南电网有限责任公司电力科学研究院 一种测量电介质材料介电模量的装置及测量方法
US10284005B2 (en) 2016-01-27 2019-05-07 Boe Technology Group Co., Ltd. Power supply assembly and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600645B1 (en) * 2002-09-27 2003-07-29 Ut-Battelle, Llc Dielectric composite materials and method for preparing
US7033406B2 (en) * 2001-04-12 2006-04-25 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
CN1959859A (zh) * 2005-11-02 2007-05-09 三星电机株式会社 聚合物-陶瓷电介质组合物、埋入式电容器及印刷电路板
CN101145613A (zh) * 2006-09-15 2008-03-19 新源动力股份有限公司 低温燃料电池电极用ptfe/c复合粉体及应用
CN101955621A (zh) * 2009-07-15 2011-01-26 北京化工大学 一种高介电常数聚合物基纳米复合材料的制备方法
CN102496457A (zh) * 2011-11-28 2012-06-13 西北核技术研究所 一种复合陶瓷薄膜叠层高储能密度电容器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033406B2 (en) * 2001-04-12 2006-04-25 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US6600645B1 (en) * 2002-09-27 2003-07-29 Ut-Battelle, Llc Dielectric composite materials and method for preparing
CN1959859A (zh) * 2005-11-02 2007-05-09 三星电机株式会社 聚合物-陶瓷电介质组合物、埋入式电容器及印刷电路板
CN101145613A (zh) * 2006-09-15 2008-03-19 新源动力股份有限公司 低温燃料电池电极用ptfe/c复合粉体及应用
CN101955621A (zh) * 2009-07-15 2011-01-26 北京化工大学 一种高介电常数聚合物基纳米复合材料的制备方法
CN102496457A (zh) * 2011-11-28 2012-06-13 西北核技术研究所 一种复合陶瓷薄膜叠层高储能密度电容器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜筱兰: "《硕士学位论文》", 31 December 2009 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992837A (zh) * 2015-07-21 2015-10-21 苏州电力电容器有限公司 应用于准法拉第超级电容器的复合基材及其制法与应用
US10284005B2 (en) 2016-01-27 2019-05-07 Boe Technology Group Co., Ltd. Power supply assembly and electronic device
CN106128778A (zh) * 2016-07-26 2016-11-16 胡英 一种全固态超级电容器及其制备方法
CN109387704A (zh) * 2018-09-18 2019-02-26 海南电网有限责任公司电力科学研究院 一种测量电介质材料介电模量的装置及测量方法

Similar Documents

Publication Publication Date Title
Chen et al. High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder.
Leng et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance
Wang et al. A one-step synthesis of porous V 2 O 3@ C hollow spheres as a high-performance anode for lithium-ion batteries
Li et al. A dimensionally stable and fast-discharging graphite–silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating
KR101773719B1 (ko) 2 차 전지용 실리콘계 활물질 입자 및 이의 제조 방법
US20110206963A1 (en) Inorganic oxide powder and inorganic oxide-containing slurry, and lithium ion secondary battery using the same slurry and method of producing the same
KR102081303B1 (ko) 전고체 리튬이온 이차전지
EP2997611A2 (en) Solid state catholyte or electrolyte for battery
TWI543428B (zh) 具雙層碳包覆之正極材料及其製法
JP5614646B2 (ja) 電極用薄膜、全固体リチウム電池、および電極用薄膜の製造方法
CN102810407A (zh) 一种高储能纯固态超级电容器的制备方法
KR20170110649A (ko) 탄화된 코코넛 껍질에 기초한 리튬이온 커패시터용 애노드
Wang et al. A framework with enriched fluorinated sites for stable Li metal cycling
KR102081301B1 (ko) 전고체 리튬이온 이차전지
Okumura et al. Enhancement of lithium-ion conductivity for Li2. 2C0. 8B0. 2O3 by spark plasma sintering
KR20160149762A (ko) 이차전지용 음극 및 이로부터 제조된 리튬이차전지
KR101870265B1 (ko) 초음파 분쇄 후처리 공정을 포함하는 그래핀 복합물의 제조방법과 이를 이용한 활물질 및 슈퍼커패시터의 제조방법
KR102647045B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
Li et al. V2CTx MXene sphere for aqueous ion storage
Wang et al. Simple microwave synthesis and improved electrochemical performance of Nb-doped MnO 2/reduced graphene oxide composite as anode material for lithium-ion batteries
Li et al. Enhanced electrochemical properties of ZnO encapsulated in carbon nanofibers as anode material for lithium-ion batteries
Li et al. Si@ C/TiO2@ C/Hollow-C Nanocomposite as a Lithium-Ion Battery Anode Produced by Refining Silicon and Ti–6Al–4V Residuals
CN104022270A (zh) 一种镍锡合金/碳复合电极材料的制备方法
CN109390575A (zh) 阳极材料
CN104505146A (zh) 一种具有纳米核壳及内晶型结构的介电复合材料及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121205