CN102803463A - 用于培养微生物和减缓气体的系统、设备和方法 - Google Patents
用于培养微生物和减缓气体的系统、设备和方法 Download PDFInfo
- Publication number
- CN102803463A CN102803463A CN2010800301738A CN201080030173A CN102803463A CN 102803463 A CN102803463 A CN 102803463A CN 2010800301738 A CN2010800301738 A CN 2010800301738A CN 201080030173 A CN201080030173 A CN 201080030173A CN 102803463 A CN102803463 A CN 102803463A
- Authority
- CN
- China
- Prior art keywords
- container
- media
- representational
- water
- framework
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/16—Apparatus for enzymology or microbiology containing, or adapted to contain, solid media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/14—Rotation or movement of the cells support, e.g. rotated hollow fibers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/18—Flow directing inserts
- C12M27/22—Perforated plates, discs or walls
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
- C12M3/02—Tissue, human, animal or plant cell, or virus culture apparatus with means providing suspensions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/08—Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
- C12M43/04—Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Combustion & Propulsion (AREA)
- Clinical Laboratory Science (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
提供用于培养微生物的系统、设备和方法。在一个例子中,系统可以包括用于在其内培养微生物的多个容器。各容器可以适于容纳水并且可以包括布置在其内并且至少部分地浸没在水中的媒介。在培养期间所述媒介可以适于支撑微生物并且由所述媒介支撑的微生物的浓度可高于悬浮在水中的微生物的浓度。
Description
相关申请
本申请是2009年10月23日提交的、申请号为12/605,121的同时待决的美国专利申请的部分继续申请并且要求该美国专利申请的优先权。上述美国专利申请要求2008年10月24日提交的、申请号为61/108,183,2009年5月6日提交的、申请号为61/175,950和2009年9月11日提交的、申请号为61/241,520的美国临时专利申请的益处,所有上述美国专利申请的内容以引用的方式被结合到这里。
技术领域
本发明总体上涉及用于培养微生物和减缓气体(mitigating gas)的系统、设备和方法,并且尤其是,涉及用于培养藻类和用于减缓气体诸如二氧化碳的系统、设备和方法,所述藻类用于用在生产可以直接用来或者以精炼的状态用来生产其它产品诸如生物柴油燃料或其它燃料的脂和其它细胞产品诸如微生物中。
背景技术
先前已经使微生物诸如藻类生长用以生产燃料,诸如生物柴油燃料。然而,由于生产微生物所需要的高成本和能量需求,微生物生长已经是起反作用的。在大部分情形中,成本和能量需求超出了从微生物生长过程得到的收入和能量。此外,在相对短的时期内培养高程度的微生物方面,微生物生长过程是效率低下的。因此,存在对于这样的生长微生物,诸如藻类的系统、设备和方法的需求,其具有低生产成本和能量需求、并且以高效的方式生产大量的微生物,因此有助于高程度的燃料生产。
发明内容
在一个例子中,提供一种用于培养微生物的系统。
在另一例子中,提供一种用于培养微生物的容器。
在再另一例子中,提供一种用于培养微生物的方法。
在更另一例子中,提供了培养藻类用于燃料生产的系统、容器或方法。
在进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,限定在所述壳体中用于允许气体进入所述壳体的入口,和媒介,所述媒介至少部分地设置在所述壳体之内并且包括长形构件和从所述长形构件延伸的多个环形构件。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,限定在所述壳体中用以允许气体进入所述壳体的入口,至少部分地设置在所述壳体内并且包括第一部分和第二部分的框架,所述第一部分与所述第二部分间隔开,和媒介,所述媒介至少部分地设置在所述壳体内并且被所述第一和第二部分支撑并在所述第一和第二部分之间延伸。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,和定位在所述壳体内并且与所述壳体的内表面相接触的媒介,所述媒介是可在所述壳体之内在第一位置和第二位置之间移动的,并且当所述媒介在所述第一和第二位置之间移动时所述媒介保持与所述壳体的内表面相接触。
在另一例子中,提供一种用于培养微生物的方法并且所述方法包括提供用于容纳水和微生物的容器,将媒介至少部分地设置在所述容器内并且与所述容器的内表面相接触,在所述容器内将所述媒介从第一位置移动到第二位置,和当所述媒介从所述第一位置移动到所述第二位置时保持所述媒介与所述壳体的内表面相接触。
在再另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内并且包括第一部分和第二部分的框架,所述第一部分与所述第二部分间隔开,并且所述框架是可相对于所述壳体转动的,连接到所述框架的第一和第二部分并且在所述框架的第一和第二部分之间延伸的第一媒介段,和连接到所述框架的第一和第二部分并且在所述框架的第一和第二部分之间延伸的第二媒介段,所述第一媒介段的至少一部分和所述第二媒介段的至少一部分彼此间隔开。
在更另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,所述壳体包括侧壁。所述容器也包括多个媒介段,所述多个媒介段至少部分地定位在所述壳体内并且包括第一对彼此间隔开第一距离的媒介段和第二对彼此间隔开第二距离的媒介段,所述第一距离大于所述第二距离,并且所述第一对媒介段被定位成比所述第二对媒介段更接近所述侧壁。
在进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内并且包括两个间隔开的框架部分的框架,和至少部分地设置在所述壳体内并且在所述两个间隔开的框架部分之间延伸的媒介,构成所述框架的第一材料的刚性大于构成所述媒介的第二材料。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内并且可相对于所述壳体移动的框架,连接到所述框架并且适于以第一速度和第二速度移动所述框架的驱动构件,所述第一速度与所述第二速度不同,和至少部分地定位在所述壳体内并且连接到所述框架的媒介。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内并且可相对于所述壳体移动的框架,所述框架包括两个间隔开的框架部分,连接到所述框架用于移动所述框架的驱动构件,和至少部分地定位在所述壳体内并且在所述两个间隔开的框架部分之间延伸的媒介。
在另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地设置在所述壳体内并且可相对于所述壳体移动的框架,连接到所述框架的媒介;和用于将光发射到所述壳体的内部的人造光源。
在再另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,用于将光发射到所述壳体的内部的人造光源,与所述人造光源相关联并且供从所述人造光源发射的光从其穿过的构件,和至少部分地定位在所述壳体内并且与所述构件相接触的擦拭元件,所述擦拭元件是可相对于所述构件移动的以擦靠在所述构件上。
在更另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物并且包括侧壁的壳体,所述侧壁允许太阳光从其穿过到达所述壳体的内部,与所述壳体相关联用于将光发射到所述壳体的内部的人造光源,与所述壳体相关联用于感应穿过所述侧壁并且到达所述壳体的内部的太阳光的量的传感器,和电连接到所述传感器和所述人造光源的控制器,当所述传感器感应到的太阳光少于穿到所述壳体的内部的太阳光的预期量时所述控制器能启动所述人造光源。
在进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,和设置在所述壳体的外侧用于朝向所述壳体的内部引导光的反射元件。
在更进一步的例子中,提供一种用于培养微生物的方法并且所述方法包括提供一容器,该容器容纳水并且包括至少部分地定位在所述容器内的媒介,所述媒介包括长形构件和从所述长形构件延伸的多个环形构件,在所述容器内培养微生物,从所述容器取走水和第一部分微生物并且将第二部分微生物留在所述媒介上,用不包含该微生物的水再填充所述容器,和在再填充后的容器内从保留在所述媒介上的第二部分微生物培养微生物。
在另一例子中,提供一种用于培养微生物的方法并且所述方法包括提供容器,该容器容纳水并且包括至少部分地定位在所述容器内的媒介,在所述容器内培养微生物,从所述容器取走基本全部的水和第一部分微生物并且将第二部分微生物留在所述媒介上,用不包含微生物的水再填充所述容器,和在所述再填充后的容器内从保留在所述媒介上的第二部分微生物培养微生物。
在再另一例子中,提供一种用于培养微生物的方法并且所述方法包括提供一壳体,该壳体具有大于宽度尺寸的高度尺寸,通过与容器相关联的水入口将水提供到所述容器中,通过与所述容器相关联的气体入口将气体提供到所述容器中,将多个媒介段提供在所述容器中,所述多个媒介段在大体竖直方向上延伸并且彼此间隔开,和在所述容器中培养微生物,第一浓度的微生物被所述多个媒介段支撑并且第二浓度的微生物悬浮在水中,微生物的所述第一浓度大于微生物的所述第二浓度。
在更另一例子中,提供一种用于培养微生物的容器并且所述容器包括具有大于宽度尺寸的高度尺寸的壳体,所述壳体适于容纳水和微生物,与所述壳体相关联用以将气体引入到所述容器中的气体入口,与所述壳体相关联用以将水引入到所述容器中的水入口,和多个媒介段,所述多个媒介段至少部分地设置在所述壳体内、在大体竖直方向上延伸并且彼此间隔开,第一浓度的微生物被所述多个媒介段支撑并且第二浓度的微生物悬浮在水中,微生物的所述第一浓度大于微生物的所述第二浓度。
在进一步的例子中,提供一种用于培养微生物的系统并且所述系统包括第一容器,所述第一容器用于容纳水且用于在所述第一容器内培养微生物,第二容器,所述第二容器用于容纳水且用于在所述第二容器内培养微生物,和管道,所述管道使所述第一容器和所述第二容器互相连接用以将从所述第一容器出来的气体输送到所述第二容器中。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,限定在所述壳体中的第一开口,在第一压力下通过所述第一开口将水引入到所述壳体中,和限定在所述壳体中的第二开口,在第二压力下通过所述第二开口将水引入到所述壳体中,所述第一压力大于所述第二压力。
在更进一步的例子中,提供一种用于培养微生物的方法并且所述方法包括提供包括第一开口和第二开口的壳体,在所述壳体中培养微生物,在第一压力下通过所述第一开口将水引入到所述壳体中,和在第二压力下通过所述第二开口将水引入到所述壳体中,所述第一压力大于所述第二压力。
在另一例子中,提供一种用于培养微生物的系统并且所述系统包括用于容纳水和微生物的容器,和用于容纳流体的管道,所述管道设置成接触所述容器的水,并且所述流体的温度不同于所述水的温度用以改变所述水的温度。
在再另一例子中,提供一种用于培养微生物的方法并且所述方法包括提供用于容纳水的容器,将框架至少部分地设置在所述容器内,将媒介连接到所述框架,在所述容器内在所述媒介上培养微生物,以第一速度移动所述框架和所述媒介,以不同于所述第一速度的第二速度移动所述框架和所述媒介,从所述容器取走一部分包含培养的微生物的水,和将额外的水引入到所述容器中以替换取走的水。
在更另一例子中,提供一种用于培养微生物的系统并且所述系统包括第一容器,所述第一容器用于容纳水和用于在其内培养第一种类的微生物,第二容器,所述第二容器用于容纳水和用于在其内培养第二种类的微生物,所述第一种类的微生物不同于所述第二种类的微生物,第一管道,所述第一管道连接到所述第一容器用以将来自于气源的气体传送到所述第一容器,和第二管道,所述第二管道连接到所述第二容器用以将来自于气源的气体传送到所述第二容器。
在进一步的例子中,提供一种用于培养微生物的系统并且所述系统包括第一容器,所述第一容器用于容纳水和用于培养第一种类的微生物,第二容器,所述第二容器用于容纳水和用于培养第一种类的微生物。第一管道,所述第一管道连接到所述第一容器用以将来自于气源的气体传送到所述第一容器,和第二管道,所述第二管道连接到所述第二容器用以将来自于所述气源的气体传送到所述第二容器,所培养的第一部分微生物用来制造第一产品并且所培养的第二部分微生物用来制造第二产品。
在更进一步的例子中,提供一种用于培养微生物的系统并且所述系统包括第一容器,所述第一容器用于容纳水和用于在其内培养第一种类的微生物,第二容器,所述第二容器用于容纳水和用于在其内培养第二种类的微生物,所述第一种类的微生物不同于所述第二种类的微生物,第一管道,所述第一管道连接到所述第一容器用以将气体传送到所述第一容器,所述气体源自于气源,和第二管道,所述第二管道连接到所述第二容器用以将气体传送到所述第二容器,所述气体源自于所述气源,并且在所述第一容器中培养的所述第一种类的微生物用来制造第一产品并且在所述第二容器中培养的所述第二种类的微生物用来制造第二产品。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,所述壳体包括用于允许光穿到所述壳体的内部的侧壁,和与所述侧壁相关联用以抑制至少一个波长的光穿过所述侧壁的紫外线抑制器。
在另一例子中,提供一种用于在微生物的培养期间收获游离氧的方法并且所述方法包括提供用于容纳水的容器,所述容器包括框架和由所述框架支撑的媒介,将气体引入到所述容器中,在所述容器内培养微生物,用驱动构件移动所述框架和媒介以从所述媒介逐出游离氧,所述游离氧是由培养微生物产生的,和从所述容器取走逐出的游离氧。
在再另一例子中,提供一种用于培养微生物的系统并且所述系统包括用于容纳水和微生物的第一容器,所述第一容器包括大于水平尺寸的竖直尺寸,用于容纳水和微生物的第二容器,所述第二容器包括大于水平尺寸的竖直尺寸,并且所述第二容器设置在所述第一容器之上,将气体提供到所述第一和第二容器用以有助于在所述第一和第二容器内培养微生物的气源,和将水提供到所述第一和第二容器用以有助于在所述第一和第二容器内培养微生物的水源。
在更另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地设置在所述壳体内并且包括与第二部分间隔开的第一部分的框架,连接到所述框架的第一和第二部分并且在所述框架的第一和第二部分之间延伸的第一媒介段,第一部分微生物被所述第一媒介段支撑,和连接到所述框架的第一和第二部分并且在所述框架的第一和第二部分之间延伸的第二媒介段,第二部分微生物被所述第二媒介段支撑,并且所述第一媒介段与所述第二媒介段间隔开。
在进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内的框架,连接到所述框架以移动所述框架的驱动构件,被所述框架支撑并且在培养期间为微生物提供支撑的媒介,和用于将光提供到所述壳体的内部的人造光源。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地定位在所述壳体内的框架,被所述框架支撑并且在培养期间为微生物提供支撑的媒介,用于将光提供到所述壳体的内部的第一人造光源,和用于将光提供到所述壳体的内部的第二人造光源,所述第一和第二人造光源是单独的光源。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,至少部分地设置在所述壳体内的框架,被所述框架支撑并且在培养期间为微生物提供支撑的媒介,和布置在所述壳体的外部并且用于将光提供到所述壳体的内部的人造光源,所述人造光源包括构件和连接到所述构件用以发射光的发光元件,并且所述构件是可朝向所述壳体和远离所述壳体地移动的。
在另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,连接到所述壳体并且至少部分地围绕所述壳体的至少部分不透明的外壁,所述至少部分不透明的外壁抑制光从其穿过并照射到所述壳体的内部,至少部分地布置在所述壳体内的框架,被所述框架支撑并且在培养期间为微生物提供支撑的媒介,和连接到所述壳体和所述外壁以将光从所述容器的外部传递到所述壳体的内部的光元件。
在再另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的至少部分不透明的壳体,所述至少部分不透明的壳体抑制光穿过其并到达所述壳体的内部,至少部分地设置在所述壳体内的框架,被所述框架支撑并且在培养期间为微生物提供支撑的媒介,和连接到所述壳体以将光从所述壳体的外部传递到所述壳体的内部的光元件。
在更另一例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,和设置在所述壳体的外侧并且可相对于所述壳体在第一位置和第二位置之间移动的构件,当处于所述第一位置时所述构件至少部分地围绕所述壳体的第一部分,当处于所述第二位置时所述构件至少部分地围绕所述壳体的第二部分,所述第一部分大于所述第二部分。
在进一步的例子中,提供一种用于培养微生物的方法并且所述方法包括以下步骤:提供用于容纳水和微生物的容器,所述容器包括至少部分地设置在所述容器内的媒介,在所述媒介上培养微生物,从所述容器取走至少一部分水同时将微生物保持在所述媒介上,和将取走的水的至少一部分再放回到所述容器中。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,限定在所述壳体中用以允许气体进入所述壳体的入口,与所述入口相关联的阀,所述阀调节流入到所述壳体中的气体,至少部分地布置在所述壳体内以检测容纳在所述壳体中的水的PH水平的PH传感器。和电连接到所述阀和所述PH传感器的控制器,所述控制器依靠所述PH传感器检测到的所述水的PH水平控制所述阀。
在更进一步的例子中,提供一种用于培养微生物的容器并且所述容器包括用于容纳水和微生物的壳体,和至少部分地设置在所述壳体内并且包括用于将浮力提供给所述框架的浮动装置的框架。
在另一例子中,提供一种用于培养藻类的系统并且所述系统包括容器,所述容器具有设置在其内的媒介,所述媒介提供供藻类在其内生长的栖息地。所述媒介也能擦拭所述容器的内部以从所述容器的内部扫掉藻类。而且,所述媒介可以是环形索媒介。所述媒介可以悬置在所述容器内的框架上并且所述框架可以是可转动的。可以以包括第一较慢速度和第二较快速度的多种速度转动所述框架,以所述第一较慢速度转动所述媒介和支撑在所述媒介上的藻类从而控制所述藻类暴露到太阳光的时间,以所述第二较快速度转动所述框架和所述藻类从而从所述媒介逐出所述藻类。所述系统可以包括用于有助于从所述媒介取走所述藻类的冲洗系统。例如,所述冲洗系统可以包括喷射所述媒介和支撑在其上的所述藻类以从所述媒介逐出所述藻类的高压喷射设备。在喷射期间所述框架和所述媒介可以转动。进一步地,所述系统可以包括人造光系统以将与直射太阳光不同的光提供到所述容器。例如,所述人造光系统可以使自然太阳光改变方向以朝向所述容器或者可以提供人造光。更进一步地,所述系统可以包括用于影响所述容器的温度和接触所述容器的光的量的环境控制装置。
在再另一例子中,提供一种用于培养微生物的容器并且所述容器包括适于容纳液体的壳体,至少部分地设置在所述壳体内的多个可转动的框架,各框架包括第一部分、与所述第一部分间隔开的第二部分、至少部分地定位在所述壳体内并且被所述第一和第二部分支撑并在所述第一和第二部分之间延伸的媒介、和连接到所述第一部分和所述第二部分中的至少一个的翼片。所述容器也包括至少一个用于转动所述框架的驱动机构和至少部分地定位在所述壳体内并适于被所述多个框架的翼片中的至少一个接合的光元件。
在更另一例子中,提供一种用于培养微生物的系统并且所述系统包括限定适于容纳液体的腔的壁,至少部分地设置在所述腔内的多个可转动的框架,各框架包括第一部分、与所述第一部分间隔开的第二部分、至少部分地设置在所述腔内并且被所述第一和第二部分支撑并在所述第一和第二部分之间延伸的媒介、和连接到所述第一部分和所述第二部分中的至少一个的翼片。所述系统也包括用于将所述腔内的液体移动到与所述框架的翼片相接合以转动所述框架的液体移动组件。
附图说明
图1是代表性的微生物培养系统的示意图;
图2是另一代表性的微生物培养系统的示意图;
图3是沿着图1和2中所示的系统的容器的纵平面截取的横截面图;
图4是图3中所示的容器的分解图;
图5是图3中所示的容器的连接板的顶部透视图;
图6是用于用在图3中所示的容器中的代表性的媒介的一部分的前视图;
图7是图6中所示的代表性的媒介的后视图;
图8是图6中所示的代表性的媒介的前视图,其中具有支撑构件;
图9是用于用在图3中所示的容器中的另一代表性的媒介的正视图;
图10是图9中所示的代表性的媒介的顶视图;
图11是用于用在图3中所示的容器中的进一步的代表性的媒介的正视图;
图12是图11中所示的代表性的媒介的顶视图;
图13是用于用在图3中所示的容器中的再另一代表性的媒介的正视图;
图14是图13中所示的代表性的媒介的顶视图;
图15是用于用在图3中所示的容器中的更另一代表性的媒介的正视图;
图16是图15中所示的代表性的媒介的顶视图;
图17是用于用在图3中所示的容器中的更进一步的代表性的媒介的正视图;
图18是图17所示的代表性的媒介的顶视图;
图19是用在图3所示的容器中的另一代表性的媒介的正视图;
图20是用在图3所示的容器中的进一步的代表性的媒介的正视图;
图21是用在图3所示的容器中的再另一代表性的媒介的正视图;
图22是用在图3所示的容器中的更另一代表性的媒介的正视图;
图23是用在图3所示的容器中的进一步的代表性的媒介的正视图;
图24是图5中所示的容器的连接板的一部分的顶部透视图,其中媒介安装到所述连接板并且用线示意性地表示媒介的一部分;
图25是沿着图3中的线25-25截取的容器的横截面图;
图26是沿着图25中的线26-26截取的横截面图;
图27是图3中所示的容器的衬套的顶部透视图;
图28是图3中所示的容器的衬套的可选实施例的顶视图;
图29是图3中所示的容器的衬套的另一实施方式的顶视图;
图30是容器和代表性的人造光系统的顶部透视图;
图31是沿着图30中的线31-31截取的横截面图;
图32是沿着容器和另一代表性的人造光系统的纵平面截取的横截面图;
图33是图32中所示的容器和人造光系统的一部分的放大图;
图34是图32中所示的容器和人造光系统的一部分的放大图,示出了擦拭所述人造光系统的一部分的另一种方式;
图35是沿着图32中所示的容器和人造光系统的纵平面截取的横截面图,示出了擦拭所述人造光系统的一部分的再另一种方式;
图36是图35中所示的容器和人造光系统的一部分的放大图;
图37是图35中所示的容器和框架支撑装置的一部分的顶部透视图;
图38是图37中所示的框架支撑装置的顶视图;
图39是图38的放大部分;
图40是沿着图38中的线40-40截取的框架支撑装置的横截面图;
图41是图40的放大部分;
图42是沿着图37中所示的容器和框架支撑装置的纵平面截取的横截面图;
图43是沿着容器的纵平面截取的部分横截面图,所述容器包括用于支撑容器的框架的浮动装置(以截面图示出);
图44是图43中所示的浮动装置的正视图;
图45是图43中所示的浮动装置的顶视图;
图46是图43中所示的浮动装置的顶视图,包括代表性的侧向支撑板;
图47是沿着包括另一代表性的浮动装置的容器的纵平面截取的容器的部分横截面图;
图48是沿着纵平面截取的容器的部分横截面图,该容器包括进一步的代表性的浮动装置;
图49是沿着图48中所示的容器和浮动装置的水平面截取的横截面图;
图50是沿着另一代表性的可选容器的纵平面截取的部分横截面图;
图51是图50中所示的容器和代表性的可选驱动机构的一部分的顶部透视图;
图52是图50中所示的容器的一部分的底部透视图;
图53是图50中所示的容器的一部分的顶部透视图;
图54是沿着容器和再另一代表性的人造光系统的纵平面截取的横截面图;
图55是图54中所示的容器和人造光系统的一部分的放大图;
图56是沿着图54中所示的人造光系统的代表性的光元件的水平面截取的横截面图;
图57是沿着图54中所示的人造光系统的另一代表性的光元件的水平面截取的横截面图;
图58是沿着图54中所示的人造光系统的再另一代表性的光元件的水平面截取的横截面图;
图59是沿着图54中所示的人造光系统的更另一代表性的光元件的水平面截取的横截面图;
图60是沿着容器和进一步代表性的人造光系统的纵平面截取的横截面图;
图61是另一代表性的人造光系统的部分侧视图;
图62是再另一代表性的人造光系统的部分侧视图;
图63是更另一代表性的人造光系统的侧视图;
图64是图63中所示的人造光系统的前视图;
图65是进一步代表性的人造光系统的部分侧视图;
图66是沿着容器和更进一步代表性的人造光系统的纵平面截取的部分横截面图;
图67是沿着图66中的线67-67截取的横截面图;
图68是沿着容器和另一代表性的人造光系统的水平面截取的横截面图;
图69是沿着容器和再另一代表性的人造光系统的水平面截取的横截面图;
图70是沿着容器和更另一代表性的人造光系统的水平面截取的横截面图;
图71是沿着容器和进一步代表性的人造光系统的纵平面截取的部分横截面图;
图72是沿着图71中的线72-72截取的横截面图;
图73是沿着容器和更进一步代表性的人造光系统的水平面截取的横截面图;
图74是沿着容器和再更进一步代表性的人造光系统的水平面截取的横截面图;
图75是沿着容器和另一代表性的包括分开式的上媒介板和下媒介板的媒介框架的水平面截取的横截面图;
图76是沿着图75中所示的容器和媒介框架的纵平面截取的部分横截面图;
图77是沿着容器和进一步代表性的包括分开式的上媒介板和下媒介板的媒介框架的水平面截取的横截面图;
图78是沿着图75中所示的容器和媒介框架的纵平面截取的横截面图,其中具有另一代表性的驱动机构;
图79是从图78中的线78-78观察的顶视图;
图80是沿着容器和再另一代表性的媒介框架的水平面截取的横截面图,所述媒介框架摆动并且包括部分地分开式的上媒介板和下媒介板;
图81是沿着容器的纵平面截取的横截面图,所述容器被示为具有冲洗系统;
图82是带有微生物培养系统的代表性的温度控制系统的容器的顶部透视图;
图83是沿着容器的纵平面截取的横截面图,所述容器被示为具有微生物培养系统的另一代表性的温度控制系统;
图84是容器和代表性的液体管理系统的一部分的正视图;
图85是代表性的容器、代表性的环境控制装置和用于以竖直方式支撑所述容器和所述环境控制装置的代表性的支撑结构的正视图;
图86是代表性的容器和用于将容器支撑在竖直和水平之间的角度的代表性的支撑结构的正视图;
图87是沿着图86中的线87-87截取的横截面图;
图88是代表性的容器和用于以水平方式支撑所述容器的代表性的支撑结构的正视图;
图89是沿着图88中的线89-89截取的横截面图;
图90是沿着图85中的线90-90截取的所述容器的一部分和所述环境控制装置的横截面图,所述环境控制装置被示为处于完全闭合位置;
图91是所述容器的一部分和所述环境控制装置的类似于图90中所示的那样的横截面图,所述环境控制装置被示为处于完全打开位置;
图92是所述容器的一部分和所述环境控制装置的类似于图90中所示的那样的横截面图,所述环境控制装置被示为处于半打开位置;
图93是所述容器的一部分和所述环境控制装置的类似于图90中所示的那样的横截面图,所述环境控制装置被示为处于另一半打开位置;
图94是环境控制装置的多个代表性的方位和一天时间内太阳的代表性的轨迹的示意图;
图95是所述容器的一部分和另一代表性的环境控制装置的类似于图90的横截面图,所述环境控制装置被示为处于完全闭合位置;
图96是被示为处于第一位置的另一代表性的环境控制装置的示意图;
图97是图96中所示的环境控制装置的另一示意图,所述环境控制装置被示为处于第二位置或者完全打开位置;
图98是图96中所示的环境控制装置的再另一示意图,所述环境控制装置被示为处于第三位置或者部分打开位置;
图99是图96中所示的环境控制装置的进一步的示意图,所述环境控制装置被示为处于第四位置或者另一部分打开位置;
图100是包括代表性的人造光系统的环境控制装置的一部分的顶部透视图;
图101是沿着图100中的线101-101截取的所述代表性的人造光系统的横截面图;
图102是包括另一代表性的人造光系统的环境控制装置的一部分的顶部透视图;
图103是沿着图102中的线103-103截取的所述代表性的人造光系统的横截面图;
图104是另一代表性的实施方式的容器的顶部透视图;
图105是沿着图104中的线105-105截取的横截面图;
图106是类似于图105的横截面图,示出了再另一代表性的实施方式的容器;
图107是类似于图105的横截面图,示出了更另一代表性的实施方式的容器和人造光系统;
图108是另一代表性的容器的顶部透视图;
图109是图108中所示的容器的顶视图,被示为去除掉了盖和支撑结构的一部分;
图110是图108中所示的容器的一部分的顶部透视图;
图111是图108中所示的容器的媒介框架的顶部透视图;
图112是图111中所示的媒介框架的正视图;
图113是图108中所示的容器的一部分的放大的顶视图,这个视图示出了光元件和处于第一位置的一对擦拭件;
图114是类似于图113的顶视图的放大的顶视图,示出了所述光元件和处于第二位置的所述一对擦拭件;
图115是类似于图113的顶视图的放大的顶视图,示出了所述光元件和处于第三位置的所述一对擦拭件;
图116是类似于图113的顶视图的放大的顶视图,示出了所述光元件和处于第四位置的所述一对擦拭件;
图117是类似于图113的顶视图的放大的顶视图,示出了处于第五位置的所述光元件和所述一对擦拭件;
图118是类似于图113的顶视图的放大的顶视图,示出了所述光元件和处于第六位置的所述一对擦拭件;
图119是类似于图113的顶视图的放大的顶视图,示出了所述光元件和处于第七位置的所述一对擦拭件;
图120是图108中所示的容器的框架的另一代表性的连接板的顶视图;
图121是图120的框架的顶部透视图,其中示出了图120的连接板处于上部连接板位置和下部连接板位置;
图122是微生物培养系统的代表性的系统框图,其中示出了控制器、容器、人造光系统和环境控制装置之间的关系;
图123是流程图,示出了操作微生物培养系统的代表性的方式;
图124是流程图,示出了操作微生物培养系统的另一代表性的方式;
图125是流程图,示出了操作微生物培养系统的再另一代表性的方式;
图126是流程图,示出了操作微生物培养系统的进一步的代表性的方式;
图127是沿着垂直于代表性的可选容器的纵向长度的平面截取的横截面图,这个代表性的容器具有大体上正方形的形状;
图128是沿着垂直于另一代表性的可选容器的纵向长度的平面截取的横截面图,这个代表性的容器具有大体上长方形的形状;
图129是沿着垂直于再另一代表性的可选容器的纵向长度的平面截取的横截面图,这个代表性的容器具有大体上三角形的形状;
图130是沿着垂直于更另一代表性的可选容器的纵向长度的平面截取的横截面图,这个代表性的容器具有大体上卵形的形状;
图131是通常被称作跑道的进一步的代表性的微生物培养系统的顶视图;
图132是沿着图131中的线132-132截取的横截面图;
图133是类似于图132的横截面图并且被示为具有另一代表性的框架基底;
图134是进一步代表性的框架基底的侧视图;
图135是类似于图132的部分横截面图并且被示为具有另一代表性的框架和连接板;
图136是图131的代表性的微生物培养系统的顶视图,被示为具有另一代表性的移动水的方式;
图137是图131的代表性的微生物培养系统的顶视图,被示为具有再另一代表性的移动水的方式;
图138是图131的代表性的微生物培养系统的顶视图,被示为具有进一步代表性的移动水的方式;
图139是通常被称作跑道的再另一代表性的微生物培养系统的顶视图;
图140是更另一代表性的微生物培养系统的顶视图,示出了布置在水体内的多个跑道;和
图141进一步代表性的微生物培养系统的示意图。
在详细解释本发明的任何独立的特征和实施方式之前,将会理解,本发明在它的应用方面不被限定到在下面的描述中阐述的或者在附图中示出的部件的构建和布置的细节。本发明能具有其它实施方式并且能以多种方式执行或实现。而且,应当理解,这里所使用的措词和术语是为了描述的目的并且不应当被认为是限定性的。
具体实施方式
参考图1,示出了用于培养微生物的代表性的系统20。所述系统20能培养多种类型的微生物,诸如藻类或微藻类。可由于多种原因而培养微生物,原因包括,例如,食用产品、营养补品、水产养殖、动物饲料、保健食品、药物、化妆品、肥料、燃料产品诸如生物燃料包括,例如生物质原油、丁醇、乙醇、航空燃料、氢、沼气、生物柴油等。可以培养的微生物的例子包括:用于生产用于健康和食品增补剂的多不饱和脂肪酸的三角褐指藻;用于生产用于抗肿瘤剂的海洋大环内酯(Amphidinolides)和前沟藻素(amphidinins)的前沟藻;用于生产用于抗真菌剂的goniodomins的平野-亚历山大藻(Alexandrium hiranoi);用于生产是弹性蛋白酶抑制剂的褐变抑制剂(oscillapeptin)的阿氏颤藻(Oscillatoria agardhii)等等。尽管由于多种原因和用途,本培养系统20能培养多种微生物,但是代表性的培养系统20的下面的描述将被描述为它涉及用于燃料产品的藻类的培养,并且这种描述不旨在是对本发明的限制。
从这个代表性的系统20收获的藻类经历处理以生产燃料,诸如生物柴油燃料、喷气发动机用燃料、和由从微生物提炼的脂类制造的其它产品。如同上面所指出的那样,在系统20中可以培养多种藻类种类,包括淡水和盐水种类,以生产用作燃料的油。代表性的藻类种类包括:布朗葡萄藻、牟氏角毛藻、莱茵衣藻、普通小球藻、蛋白核小球藻、绿球藻、双杜氏盐藻、杜氏盐藻、杜氏藻、细小裸藻、雨生红球藻、金藻、微拟球藻、舟形藻、Neochlorisoleoabundans、紫球藻、三角褐指藻、小定鞭金藻、Scenedes Musdimorphus、二形栅藻、斜生栅藻、四尾栅藻、极大螺旋藻、纯顶螺旋藻、水棉属绿藻、聚球藻、Tetraselmis maculata、干扁藻等。对于这些和其它藻类种类,为了生产大量的燃料和/或消耗大量的二氧化碳,高油含量和/或减缓二氧化碳的能力是所期望的。
不同类型的藻类需要不同类型的环境条件以有效地生长。大多数类型的藻类必需在水(淡水或盐水)中培养。其它所需要的条件取决于藻类的类型。例如,一些类型的藻类可能需要在将光、二氧化碳、和少量矿物质外加到水中的情况下培养。这种矿物质可以包括,例如,氮和磷。为了正确地培养,其它类型的藻类可能需要其它类型的添加剂。
继续参考图1,所述系统20包括气体管理系统24、液体管理系统28、多个容器32、藻类收集处理设备36、人造光系统37(参见图30-80和100-107)、就地清洁或冲洗系统38(参见图81),和可编程逻辑控制器40(参见图122)。所述气体管理系统24包括至少一个二氧化碳源44,其能是多种源中的一种或多种。例如,二氧化碳源44可以是从工业工厂、制造工厂、燃料动力设备产生的排放物,从废水处理工厂产生的副产品,或者是加压二氧化碳罐,等等。代表性的工业和制造工厂包括,例如,电厂、乙醇厂、水泥厂、煤燃烧厂等等。优选为,来自二氧化碳源44的气体不包含中毒程度的二氧化硫或其它有毒气体和化合物,诸如重金属化合物,其可能抑制微生物的生长。如果从源排出的气体包含二氧化硫或其它有毒气体或材料,优选为在引入到所述容器32中之前净化或纯化所述气体。所述气体管理系统24以进给流将二氧化碳引入到所述容器32。在一些代表性的实施方式中,所述进给流可以包括体积百分比在大约10%和大约12%之间的二氧化碳。在其它代表性的实施方式中,所述进给流可以包括体积百分比为大约99%的二氧化碳。这种高百分比的二氧化碳可能由多种不同的源产生,其中一个可以是乙醇制造工厂。可选地,所述进给流可以包括其它体积百分比的二氧化碳并且仍然在本发明的精神和范围之内。
在二氧化碳源自于工业或制造排放物、机器排放物,或者来自于废水处理厂的副产品的情形中,所述系统20为了有用的目的重复利用二氧化碳而不是允许二氧化碳释放到大气中。
用于所述系统20的二氧化碳源44能是单个源44,多个类似源44(举例来说,多个工业工厂),或多个不同源44(举例来说,工业工厂和废水处理厂)。所述气体管理系统24包括将源自于二氧化碳源44的二氧化碳输送到各个容器32的管道网48。在一些实施方式中,在所述气体管理系统24将二氧化碳引入到容器32中之前,来自容器32的排出物可以滤过和/或穿过冷却喷射塔用以冷却并且被引入到溶液中。
在图1中所示的代表性的实施方式中,所述容器32经由管48并联在一起。如同在所示的代表性的实施方式中所描绘的那样,管道网48包括主进入管48A和多个副进入分支48B,副进入分支48B从所述主进入管48A延伸并且将二氧化碳从所述主进入管48A供应到所述多个容器32中的每一个。所述副进入分支48B连接到所述容器32的底部并且将二氧化碳释放到大体上充满水的容器32的内部。当引入到所述容器32中时,二氧化碳在水中呈气泡的形式并且上升通过水到达所述容器32的顶部。在一些例子中,用于引入二氧化碳的预期的压力范围是大约25-50磅每平方英寸(psi)。所述气体管理系统24可以包括位于所述容器32的底部的气体喷头、扩散器、气泡分配器、水饱和气注入器,或其它装置以将二氧化碳气泡引入到所述容器32中并且使二氧化碳在整个容器中更均匀地分布。此外,其它气体喷头、扩散器、气泡分配器、或其它装置可以可增量式地(incrementally)布置在容器32内并且沿着容器32的高度布置以在多个高度位置处将二氧化碳气泡引入到容器32中。引入到容器32中的二氧化碳至少部分被容器32内的处于生长和培养处理中的藻类消耗。结果是,与引入到容器32中的二氧化碳相比,从容器32中排出的二氧化碳较少。在一些实施方式中,所述气体管理系统24必要时可以包括气体预过滤元件、冷却元件和有毒气体净化元件。
所述气体管理系统24进一步包括气体排出管52。如同上面所描述的那样,未被容器32内的藻类消耗的二氧化碳沿着容器32向上移动并且积聚在各个容器32的上部区域中。在藻类经历光合作用过程时藻类消耗二氧化碳,所述光合作用过程对于培养藻类来说是必需的。光合作用过程的副产品是由藻类产生的氧,其被释放到容器32的水中并且可以停留或集结在媒介110和藻类上,或者可以上升并且积聚在容器32的顶部区域处。水和容器32中的高氧含量可能引起氧抑制,其抑制藻类消耗二氧化碳并且最终抑制光合作用过程。因此,期望排出积聚在所述容器32的顶部的氧和其它气体。
能以多种方式从容器32排出所积聚的二氧化碳和氧,所述方式包括,例如,排放到环境、排回到主气体管中用以重复利用,排到工业工厂中用作用于燃烧过程诸如给工业工厂供电的燃料,或者排到能吸收额外的二氧化碳的进一步的过程中。
应当理解,所示的代表性的系统20在净化或消耗存在于进入气体中的二氧化碳方面是有效的。因此,排出的气体具有的二氧化碳量相对低并且能被安全地排到环境中。可选地,排出的气体能被重新发送到主气体管,在那里排出的气体与存在于所述主气体管中的气体混合用以重新引入到容器32中。进一步地,排出的气体的一部分能被排到环境并且气体的一部分能被重新引入到主气体管中或者被发送到进一步的处理中。
所述液体管理系统28包括水源54、管网和至少一个泵64,管网包括将水输送到所述容器32的进水管56、从容器32排出水和藻类的出水管60。所述泵64控制引入到所述容器32中的水的量和从所述容器32排出的水的量以及将水引入到所述容器32中的速度和从所述容器32排出水的速度。在一些实施方式中,所述液体管理系统28可以包括两个泵,一个用于控制将水引入到所述容器32中并且一个用于控制从所述容器32排出水和藻类。所述液体管理系统28也可以包括水回收管68,水回收管68将用过的水重新引入返回到进水管56中,所述用过的水先前被从所述容器32排出并且被过滤以去除掉藻类。所述系统20之内的水的这种重复利用减少了培养藻类所需要的新水的量并且可以为后批藻类的培养提供藻类播种(seeding)。
多个容器32用来在其内培养藻类。所述容器32与周围环境密封并且由控制器40通过气体和液体管理系统24、28以及下面更详细地描述的其它部件来控制所述容器32的内部环境。参考图122,所述控制器40包括人造光控制器300,具有操作定时器304和移除计时器306的马达控制器302,温度控制器308,液体控制器310,气体控制器312,和环境控制装置(ECD)控制器313。将在下面更详细地描述所述控制器40的与所述微生物培养系统20的部件相关的操作。在代表性的实施方式中,所述控制器40可以是AllenBradley CompactLogix可编程逻辑控制器(PLC)。可替换地,所述控制器40可以是用于以这里所描述的方式控制所述系统20的其它类型的装置。
在一些实施方式中,所述容器32以竖直的方式被定向并且可以被以相对紧密地并排在一起的方式排列以有效地利用空间,并且例如,容器具有3英寸到125+英尺的宽度或直径,和6到30+英尺的高度。例如,一英亩土地可以包括大约2000到2200个具有24英寸的直径的容器。在其它实施方式中,所述容器一个堆叠在另一个之上以提供空间的更有效的利用。在容器被堆叠在一起的这种实施方式中,引入到底部容器的气体可以上升通过所述底部容器,当到达所述底部容器的顶部时,可以被输送到设置在所述底部容器之上的容器的底部。以这种方式,可以将气体输送通过几个容器从而有效地利用气体。
可以以多种不同的方式竖直地支撑所述容器32。在图85中示出了并且在下面更详细地描述了以竖直的方式竖直地支撑所述容器32的一种代表性的方式。这种示例性的例子仅仅是以竖直方式支撑所述容器32的许多代表性的方式中的一种并且不旨在作为限制。可以预期以竖直方式支撑所述容器32的其它方式并且其也在本发明的精神和范围之内。此外,可以以除了竖直之外的方位支撑容器32。
例如,图86和87示出了以竖直和水平之间的代表性的角度支撑容器32的代表性的方式。这个示例性的例子仅仅是以竖直和水平之间的角度支撑容器32的许多代表性的方式中的一种,并且所示的代表性的角度仅仅是可以以其支撑容器32的许多代表性的角度中的一个。这种代表性的支撑方式和角度不旨在作为限制。可以预期得到以竖直和水平之间的角度和其它代表性的角度支撑容器32的其它方式,并且其在本发明的精神和范围之内。
也例如,图88和89示出了水平地支撑容器32的代表性的方式。这个示例性的例子仅仅是水平地支撑容器32的许多代表性的方式中的一种并且不旨在作为限制。可以预期得到水平地支撑容器32的其它方式,并且其在本发明的精神和范围之内。
光能或光子是用在藻类培养系统20中的光合作用过程的重要因素。光子可以源自于太阳光或人造光源。这里所披露的一些代表性的实施方式使用太阳光作为光子的源,这里所披露的其它代表性的实施方式使用人造光作为光子的源,同时再其它实施方式使用太阳光和人造光的组合作为光子的源。关于图1中所示的代表性的实施方式,太阳光72是光子的源。图1中所示的容器32被布置成接收直射太阳光72以有助于光合作用过程,该光合作用过程有助于容器32内的藻类的培养。
现在参考图2,示出了用于培养藻类的另一代表性的系统20并且其与图1中所示的系统20具有许多相似之处,尤其是关于多个容器32、液体管理系统28,和控制器40。图1和2中所示的实施方式之间的类似部件包括类似的附图标记。在图2中所示的代表性的实施方式中,所述容器32通过气体管理系统24,并且更具体地通过管网48串联在一起,其与图1中所示的实施方式相反,图1的实施方式中所述容器32并联在一起。当串联在一起时,所述气体管理系统24包括将气体引入到第一容器32的底部的主进入管48A并且包括将从一个容器32排出的气体输送到下一个容器32的底部的多个串联的副进入分支48B。在到达最后一个容器32之后,通过气体排出管52将气体从所述容器32排到任意一个或多个环境中,重新引入到主气体管中,或者传送到进一步的过程。
如同上面所指出的那样,所述气源44可以是工业或制造工厂,其排出的气体可以具有对一种藻类种类的培养来说是有害的,但是对第二种藻类种类的培养来说是有利的成分。在这种情形中,容器32可以经由所述气体管理系统24串联在一起,如同上面所描述的和在图2中所示的那样,以适合这种排出气体。例如,第一容器32可以容纳在排出气体中存在特定成分的情况下生长旺盛的第一藻类种类并且第二容器32可以容纳在排出气体中存在所述特定成分的情况下生长不旺盛的第二藻类种类。在所述第一和第二容器32串联在一起的情况下,所述排出气体进入所述第一容器32并且为了培养的目的所述第一藻类种类基本上消耗掉了所述排出气体的所述特定成分。然后,来自所述第一容器32的结果气体,其基本上缺少所述特定成分,经由所述气体管理系统24被输送到所述第二容器32,在那里为了培养的目的所述第二藻类种类消耗所述结果气体。因为所述结果气体基本上缺乏所述特定成分,所以所述气体不抑制所述第二藻类种类的培养。换句话说,所述第一容器32担当过滤器以去除掉或者消耗掉存在于所述排出气体中的一种或多种特定成分,所述一种或多种特定成分对于存在于后继容器32中的其它种类的藻类来说可能是有害的。
应当理解,所述多个容器32能以并联和串联相结合的方式连接在一起并且能适当地构造所述气体管理系统24从而以串联和并联相结合的方式将气体传送到所述容器32。
图1和2中所示的并且在上面所描述的微生物培养系统可以包括液体管理系统28,所述液体管理系统28允许在需要时倒空和填充单独的容器32。这个特征是用于控制容器32的污染的有价值的办法。如果污染发生在一个或多个容器32中,那些容器32可以被倒空并且去除掉污染。相反,在培养池塘系统中,在池塘中的任何地方的污染物都污染整个池塘,并且因此,必须清空和/或处理整个池塘。此外,图1和2的系统包括独立的容器32并且如果污染发生在其中一个容器32中,其它容器32不受影响。这样,与培养池塘系统相比,图1和2的系统更善于处理污染物。
参考图3-27,将更详细地描述所述多个容器32。在这个例子中,所述多个容器32都是基本上相同的,并且因此在这里仅仅示出和描述了一个容器32。所示的和所描述的容器32仅仅是容器32的一个代表性的实施方式。所述容器32能具有不同的构造并且能包括不同的部件。所示的容器32和伴随的描述不意味着是限定性的。
尤其参考图3和4,所示的代表性的容器32包括圆柱形壳体76和截头圆锥形基底80。可选地,所述壳体76能具有不同的形状,下文中将参考图127-130更详细地描述其中的一些形状。在所示的代表性的实施方式中,所述壳体76是完全透光的或透明的,因此允许相当大量的太阳光72穿透所述壳体76,进入到腔84中,并且接触容纳在所述容器32之内的藻类。在一些实施方式中,所述壳体76是半透明的以允许一些太阳光72穿透所述壳体76并且进入到所述腔84中。在其它实施方式中,所述壳体76可以涂有红外线抑制剂,紫外线阻碍剂,或其它过滤涂层以抑制热、紫外线、和/或特定波长的光穿透所述壳体76并且进入到所述容器32中。所述壳体76能由多种材料制成,例如包括,塑料(诸如聚碳酸酯)、玻璃和允许太阳光72穿透所述壳体76的任何其它材料。可以制成所述壳体76的多种可能材料或产品中的一种是由新罕布什尔州(New Hampshire)的曼彻斯特市(Manchester)的Kalwall公司制造的半透明水产养殖罐。
在一些实施方式中,形成所述壳体76的材料可能在正常的情况下不易于形成所述壳体76的所期望的形状,诸如圆柱形。在这种实施方式中,所述壳体76可能想要形成卵形横截面形状而不是基本上圆形的横截面形状。为了有助于所述壳体76形成所期望的形状,可能需要额外的部件。例如,一对支撑环可以布置在所述壳体76之内并且固定到所述壳体76,一个接近顶部并且一个接近底部。这些支撑环是基本上圆形的并且有助于将所述壳体76形成圆柱形的形状。此外,所述容器32的其它部件可以有助于所述壳体76形成圆柱形的形状,诸如上和下连接板112、116,衬套200,和盖212(下面更详细地描述所有的这些部件)。可以用来制造所述容器壳体76的材料的例子可以包括聚碳酸酯、丙烯酸(acrylic)、LEXAN(一种高耐用的聚碳酸酯树脂热塑性塑料),纤维增强塑料(FRP)、层压复合材料(玻璃塑料叠层)、玻璃等。这种材料可以形成板片并且卷成基本上圆柱形的形状,使得所述板片的边缘彼此接合并且以不透气和不透水的方式粘结、焊接或以其它方式固定在一起。当处于静止时,这种板片可以不形成精确的圆柱形形状,因此需要上面所描述的那种部件帮助形成所期望的形状。可选地,这种材料可以被形成为所期望的圆柱形形状,而不是被形成为板片和被卷压。
所述底部80包括开口88,通过所述开口88将二氧化碳气体从所述气体管理系统24注入到所述容器32中。气阀92(参见图3)连接在所述气体管理系统24和所述容器32的底部80之间,以选择性地阻止或允许气体流到所述容器32中。在一些实施方式中,所述气阀92电连接到控制器40并且所述控制器40确定所述气阀92何时打开和关闭。在其它实施方式中,用户手动操作所述气阀92并且用户确定所述气阀92何时打开和关闭。
继续参考图3和4,所述壳体76也包括与所述液体管理系统28流体连通的水入口96,以便于使水流到所述容器32中。在所示的代表性的实施方式中,所述水入口96布置在所述壳体76中,在所述壳体76的底部附近。可替换地,所述水入口96可以布置的更接近或者更远离所述底部。在所示的代表性的实施方式中,所述壳体76包括单个水入口96。可替换地,所述壳体76可以包括多个水入口96以便于将水从多个位置注入到所述容器32中。在一些实施方式中,所述水入口96被限定在所述容器32的底部80中而不是在壳体76中。
所述壳体76进一步包括与所述液体管理系统28流体连通以便于将水流出所述容器32的多个水出口100。在所示的代表性的实施方式中,所述水出口100布置在所述壳体76的顶部附近。可替换地,所述水出口100可以布置的更接近或者更远离所述壳体76的顶部。在一些实施方式中,所述水出口100限定在所述容器32的底部80中。尽管所示的代表性的实施方式的壳体76包括两个水出口100,所述壳体76可替换地能包括单个水出口100以有助于从所述容器32流出水。在其它实施方式中,所述开口88能被用作供水通过其从所述容器32排出的出口或排放口,。
所述壳体76也包括与所述气体管理系统24流体连通以有助于气体流出所述容器32的气体出口104。在操作期间,如同上面所讨论的那样,气体积聚在所述壳体76的顶部处,并且因此所述气体出口104布置在所述壳体76的顶部附近以适于气体聚集。尽管所示的代表性的实施方式的壳体76包括单个气体出口104,所述壳体76可替换地能包括多个气体出口104以有助于气体流出所述容器32。
继续参考图3和4,所述容器32进一步包括设置在所述壳体腔84中并且用以将媒介110支撑在其上的媒介框架108。如同这里所使用的那样,术语“媒介”意指提供至少一个用于支撑微生物并有助于微生物培养的表面的结构元件。所述框架108包括上连接板112,下连接板116,和轴120。在这个例子中,所述上和下连接板112、116是基本上相同的。
现在参考图5,所述上和下连接板112、116是基本上圆形的并且包括用于接收所述轴120的中心孔124。在一些实施方式中,适当地设置所述中心孔124的大小以接收所述轴120,以及在所述轴120和所述连接板112、116之间提供压配合或阻力配合(resistance fit)连接。在这种实施方式中,将所述连接板112、116固定到所述轴120不需要额外的紧固或结合。在其它实施方式中,所述轴120被紧固到所述上和下连接板112、116。能以多种方式将所述轴120紧固到所述连接板112、116。例如,所述轴120能包括在其上的螺纹并且所述连接板112、116的中心孔124的内表面能包括互补的螺纹,因此有助于将所述连接板112、116螺接到所述轴120上。而且,例如,所述轴120可以包括在其上的螺纹,可以通过所述连接板112、116的中心孔124插入所述轴120,并且能在各个连接板112、116的上面和下面将螺母螺接到所述轴120上,因此将所述连接板112、116压在所述螺母之间并且将所述连接板112、116固定到所述轴120。在再其它实施方式中,能以多种方式将所述连接板112、116结合到所述轴120,诸如焊接、铜焊、粘结等。不论将所述连接板112、116固定到所述轴120的方式是什么样的,为了抑制所述连接板112、116相对于所述轴120的移动,期望所述连接板112、116和所述轴120之间是刚性连接。
应当理解,所述框架108可以包括代替所述连接板112、116的其它装置,诸如金属或塑料丝网筛,金属或塑料线矩阵等等。在这种可选方案中,可以通过和围绕存在于所述网筛或矩阵中的开口使所述媒介110成圈或者可以用紧固件诸如猪环(hog ring)将所述媒介110附接到所述网筛和矩阵。
继续参考图5,所述上和下连接板112、116包括通过其限定的多个孔128,限定在所述连接板112、116的周边中的多个凹进132,和限定在所述连接板112、116的外周边边缘140中的狭槽136。所有这些孔128、凹进132和狭槽136用来将所述媒介110固定到所述连接板112、116。在所示的代表性的实施方式中,所述连接板112、116连接到所述轴120,使得所述连接板112的孔128和凹进132与所述连接板116的相应孔128和凹进132竖直地相对准。在所示的代表性的实施方式的连接板112、116中的所述孔128和凹进132的构造和大小仅仅是为了代表性的示例性的目的并且不意味着是限定性的。所述连接板112、116能具有不同构造和大小的孔128和132。在一些例子中,所述孔128和凹进132的构造和大小取决于在所述容器32中培养的藻类的类型。已经旺盛地生长的藻类需要更大的媒介绳110之间的间距,然而,已经更少旺盛地生长的藻类可以具有更紧密地堆叠在一起的媒介绳110。例如,藻类种类小球藻(C.Vulgaris)和葡萄藻(Botryococcus barunii)生长非常旺盛并且单独的媒介绳110的间距可以是大约1.5英寸的中心间距。而且,例如,藻类种类三角褐指藻(Phaeodactylum tricornutum)可能不展现与小球藻和葡萄藻一样旺盛的生长,并且因此,单独的媒介绳110的间隔减小到大约1.0英寸的中心间距。此外,例如,对于藻类种类布朗葡萄藻(B.Braunii),单独的媒介绳110的间距是大约2+英寸的中心间距。应当理解,可以基于被培养的藻类的种类确定单独的媒介绳110的间距并且这里所描述的代表性的间距是为了示例的目的并且不旨在是限定性的。下面将更详细地描述所述媒介110到所述连接板112、116的连接。
现在参考图6-8,示出了代表性的媒介110。所示的媒介110是能用在所述容器32中的多种不同类型的媒介110中的一种并且不意味着是限定性的。所示的媒介110是环形绳索媒介,其包括长形构件144和沿着所述长形构件144设置的多个环。在所示的代表性的实施方式中,所述长形构件144是媒介110的长形中心芯。如同这里所使用的那样的,长形指的是媒介的两个尺寸是更长的。在所示的代表性的实施方式中,所述媒介110的竖直尺寸是长形尺寸。在其它代表性的实施方式中,水平尺寸或其它尺寸可以是长形尺寸。
现在参考图6,示出了代表性的实施方式的环形绳索媒介110。图6的媒介110包括具有第一侧152和第二侧156的长形中心芯144,从所述第一和第二侧152和156中的每一侧侧向地延伸的多个凸起或媒介构件148(在所示的代表性的实施方式中是环)以及与所述中心芯144相关联的增强构件160。在这个例子中,所述增强构件160包括交织的绳索。所述媒介110也包括前部部分164(参见图6)和后部部分168(参见图7)。
可以以多种方式和用多种材料构建所述中心芯144。在一个实施方式中,所述中心芯144是针织的。可以以多种方式并且可以采用多种机器针织所述中心芯144。在一些实施方式中,能通过可从意大利的科美斯股份公司(Comez SpA)买到的针织机针织所述中心芯144。所述芯144的针织部分可以包括若干(举例来说,四到六)纵排缝线172。交织的针织芯144本身能担当增强构件160。所述芯144可以由纱类材料制成。合适的纱类材料可以包括,例如,聚酯、聚酰胺、聚偏二氯乙烯、聚丙烯和本领域技术人员已知的其它材料。所述纱类材料可以具有连续的丝结构,或者纺成的短纤维纱。所述中心芯144的侧向宽度l是相对窄的并且常常变化。在一些实施方式中,所述侧向宽度l不大于大约10.0mm,典型地在大约3.0mm和大约8.0mm之间或者在大约4.0mm和大约6.0mm之间。
如同在图6中所示的那样,多个环148从所述中心芯144的第一和第二侧152和156侧向地延伸。如同能看到的那样,所述多个环148和所述中心芯144被设计成提供培养藻类时可以聚集藻类或者约束藻类的场所。所述多个环148提供形状的柔性以适合藻类的生长群体。同时,所述多个环148抑制气体,尤其是二氧化碳通过水上升,因此增加二氧化碳存在于在所述媒介110上生长的藻类附近的时间量(在下面更详细地描述)。
所述多个环148典型地由与所述中心芯144相同的材料构成,并且也可以包括可变的侧向宽度l’。在这个例子中,所述多个环148中的每一个的侧向宽度l’可以在大约10.0mm和大约15.0mm之间的范围之内并且在这个例子中,所述中心芯144占所述媒介110的整个侧向宽度的大约1/7和1/5之间。所述媒介110包括提供物理捕获和夹带在其内的水生微生物诸如微藻类的夹带的高长丝支数纱。所述媒介110的环的形状也有助于以类似于网的方式捕获藻类。
参考图6-8,可以任选地通过使用多种不同的增强构件加强所述媒介110。所述增强构件可以是所述媒介110的组成部分,诸如媒介110的交织绳,或是独立于所述媒介110的额外的增强构件。尤其参考图6,所述媒介110可以包括两个增强构件176和180,其中在所述芯144的每侧上分别布置一个构件。在这种实施方式中,所述两个增强构件176和180是所述媒介110的交织线的组成部分的外侧凸条纹(wale)。尤其参考图8,所述媒介110包括独立于所述交织的针织中心芯144的额外的增强构件160。所述额外的增强构件沿着所述中心芯144延伸并且与所述中心芯144互连。所述增强构件160的材料典型地具有比所述中心芯144的材料更高的抗拉强度并且可以具有在大约50.0磅和大约500磅之间的断裂强度。这样,所述增强构件160可以由多种材料构成,包括高强度合成丝、带、和不锈钢线或其它线。两个尤其有用的材料是Kevlar和Tensylon在一些实施方式中,多种额外的增强构件160能用来增强所述媒介110。
可以以多种方式将一个或多个增强构件160添加到所述中心芯144。可以加强所述媒介110的第一种方式是通过在针织步骤期间将一个或多个增强构件160添加到所述芯144的纬线中。可以以基本上平行的关系将这些增强构件160布置到所述芯144的经线并且将其缝制到所述芯144的复合结构中。将会认识到,与已知媒介的中心芯相比,在不显著地危害所述芯的抗拉强度的情况下,这些增强构件的使用允许减少所述中心芯144的宽度。
可以加强所述媒介110的另一种方式包括在所述针织步骤之后的捻(twist)操作中引入一个或多个增强构件160。这种方法允许将抗拉增强构件引入到所述中心芯144与所述中心芯围绕这些增强构件160缠绕平行进行。
此外,可以将并入增强构件160的多种方式结合在一起。这样,在针织过程期间可以将一个或多个增强构件160放入到所述中心芯144中,并且然后在随后的捻步骤期间可以引入一个或多个增强构件160。这些增强构件160能是相同的或者不同的(举例来说,在针织期间,能使用Kevlar并且在捻期间,能引入不锈钢丝)。
进一步地,增强构件160的存在能帮助减少媒介110的拉伸。沿着这些线,与已知的结构相比,所述媒介110在每英尺媒介上能保持更多磅的重量。所述媒介110能提供高达大约500磅重量每英尺。这具有减少在使用期间媒介屈服或者甚至破坏的风险的好处,并且能使所述藻类培养系统20在需要从所述媒介110取走藻类之前生产更大体积的藻类。
如同上面所指出的那样,所示的代表性的媒介仅仅是可以与所述系统20一起使用的多种不同媒介中的一种。现在参考图9和10,示出了另一代表性的媒介110并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144是长形中心芯144,其可以是编织材料,并且所述媒介构件148可以被刺到所述中心芯144中使得基本上垂直于所述中心芯144地定向所述媒介构件148。所述媒介构件148不是环,而是远离所述中心芯144向外伸出的基本上线性的材料绳。当用在容器32中时,所述中心芯144在上和下连接板112、116之间竖直地延伸并且基本上水平地定向所述媒介构件148。存在于所述容器32中的藻类可以搁置到或者附着到所述中心芯144和所述媒介构件148上,因此提供与上面描述的并且在图6-8中示出的代表性的媒介110的相同的好处。
继续参考图9和10,所述中心芯144可以由多种材料构成并且可以用多种方式制成。例如,所述中心芯144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚乙二烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述中心芯144:针织、挤压、模制、起绒、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述中心芯144中或者与所述中心芯144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它多丝合股纤维诸如聚酯和聚乙二烯。应当理解,所述媒介构件148可以由与所述中心芯44相同的材料构成或者可以由与所述中心芯144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述中心芯144中或者使所述媒介构件148与所述中心芯144一起形成:针织、成簇、注射、挤压、模制、起绒、结合等等。
这里所描述的并且在图9和10中示出的代表性的媒介110可以具有与上面所描述的并且在图6-8中示出的代表性的媒介110相似的特性和特征。例如,图9和10中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图11和12,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144是长形中心芯144,其可以是编织材料,并且所述媒介构件148可以被编织到所述中心芯144中,使得所述媒介构件148被定向成基本上垂直于所述中心芯144。所述媒介构件148不是环,而是远离所述中心芯144向外伸出的基本上线性的材料绳。当用在容器32中时,所述中心芯144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁在或者附着到所述中心芯144和所述媒介构件148上,因此提供与上面所描述的并且在图6-10中所示出的代表性的媒介110的相似的益处。
继续参考图11和12,所述中心芯144可以由多种材料构成并且可以用多种方式制成。例如,所述中心芯144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和具有光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述中心芯144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述中心芯144中或者与所述中心芯144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述中心芯44相同的材料构成或者可以由与所述中心芯144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述中心芯144中或者使所述媒介构件148与所述中心芯144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图11和12中示出的代表性的媒介110可以具有与上面所描述的并且在图6-10中示出的代表性的媒介110相似的特性和特征。例如,图11和12中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图13和14,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144是长形中心芯144,其可以是纱材料或者可以起毛(fray)的其它材料,并且可以通过起绒或以其它方式弄乱所述纱材料而形成所述媒介构件148。当用在容器32中时,所述中心芯144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148从所述中心芯144向外地伸出。存在于所述容器32中的藻类可以搁在或者附着到所述中心芯144和所述媒介构件148上,因此提供与上面所描述的并且在图6-12中所示出的代表性的媒介110的相似的益处。
继续参考图13和14,所述中心芯144可以由多种材料构成并且可以用多种方式制成。例如,可以通过下面的方式中的一种或多种形成所述中心芯144:针织、成簇、注射、挤压、模制、起绒、结合等等。因为通过起绒或者以其它方式弄乱所述中心芯144而形成所述媒介构件148,所以所述媒介构件148由与所述中心芯144相同的材料构成。
这里所描述的并且在图13和14中示出的代表性的媒介110可以具有与上面所描述的并且在图6-12中示出的代表性的媒介110相似的特性和特征。例如,图13和14中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图15和16,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144是长形中心芯144,其可以由被刮擦、切屑、冲刷、粗糙、形成凹陷、点刻、凿或以其它方式形成不完整体以提供从所述中心芯144伸出的媒介构件148的固体材料构成。当用在容器32中时,所述中心芯144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148以基本上水平的方式从所述中心芯144伸出。存在于所述容器32中的藻类可以搁在或者附着到所述中心芯144和所述媒介构件148上,因此提供与上面所描述的并且在图6-14中所示出的代表性的媒介110的相似的益处。
继续参考图15和16,所述中心芯144可以由多种材料构成并且可以用多种方式制成。例如,所述中心芯144可以由塑料,丙烯酸纤维,金属碳纤维,玻璃,纤维增强塑料,合成物或者绳、丝或微粒的混合组合物组成。因为可以通过使所述中心芯144的外表面不良(imperfect)而形成所述媒介构件148,所以所述媒介构件148由与所述中心芯144相同的材料构成。
这里所描述的并且在图15和16中示出的代表性的媒介110可以具有与上面所描述的并且在图6-14中示出的代表性的媒介110相似的特性和特征。例如,图15和16中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图17和18,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144是长形中心芯144,其可以由易于从其传输和发射光的材料构成,并且所述媒介构件148包括一个或多个紧密地围绕所述中心芯144缠绕的媒介绳。一个或多个光源可以将光发射到这个代表性的媒介110的中心芯144中并且然后所述媒介110将从其发射光。存在于所述容器32中的藻类可以置于或者附着到所述中心芯144和所述媒介构件148上。由于所述媒介构件148和所述中心芯144的紧密的缠绕,从所述中心芯144发射的光将发射到媒介构件148和在其上的藻类上。在这个代表性的媒介110的一些实施方式中,所述中心芯144的外表面可以被,例如刮擦、切屑、冲刷、粗糙、形成凹陷、点刻、凿或以其它方式形成不良表面以帮助将光从所述中心芯144的内部衍射到所述中心芯144的外部。
继续参考图17和18,所述中心芯144可以由多种材料构成并且可以用多种方式制成。例如,所述中心芯144可以由透明或半透明材料构成,诸如,丙烯酸纤维、玻璃等等。这种材料也可以展现出光引导性能。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以具有多种构造。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝和多丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。而且,例如,围绕所述中心芯144缠绕的媒介构件148可以具有多种不同的构造诸如类似于图6-8中所示的那样的环绳索媒介,图9-16中所示的任一种其它代表性的媒介,或者其它形状、大小和构造。
这里所描述的并且在图17和18中示出的代表性的媒介110可以具有与上面所描述的并且在图6-16中示出的代表性的媒介110相似的特性和特征。例如,图17和18中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图19,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144布置在所述媒介构件148的一端并且所述媒介构件148延伸到所述长形构件144的一侧。在一些代表性的实施方式中,所述长形构件144可以是编织材料,并且所述媒介构件148可以被编织到所述长形构件144中,使得所述媒介构件148被定向成基本上垂直于所述长形构件144。在所示的代表性的实施方式中,所述媒介构件148是远离所述长形构件144向外伸出的基本上线性的材料绳。在其它代表性的实施方式中,所述媒介构件148可以是环。当用在容器32中时,所述长形构件144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁置在或者附着到所述长形构件144和所述媒介构件148上,因此提供与上面所描述的并且在图6-18中所示出的代表性的媒介110的相似的益处。
继续参考图19,所述长形构件144可以由多种材料构成并且可以用多种方式制成。例如,所述长形构件144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述长形构件144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述长形构件144中或者与所述长形构件144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述长形构件44相同的材料构成或者可以由与所述长形构件144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述长形构件144中或者使所述媒介构件148与所述长形构件144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图19中示出的代表性的媒介110可以具有与上面所描述的并且在图6-18中示出的代表性的媒介110相似的特性和特征。例如,图19中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图20,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144布置在所述媒介构件148的一端附近并且从所述媒介构件148的中心移位。在一些代表性的实施方式中,所述长形构件144可以是编织材料,并且所述媒介构件148可以被编织到所述长形构件144中,使得所述媒介构件148被定向成基本上垂直于所述长形构件144。在所示的代表性的实施方式中,所述媒介构件148是远离所述长形构件144向外伸出的基本上线性的材料绳。在其它代表性的实施方式中,所述媒介构件148可以是环。当用在容器32中时,所述长形构件144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁置在或者附着到所述长形构件144和所述媒介构件148上,因此提供与上面所描述的并且在图6-19中所示出的代表性的媒介110的相似的益处。
继续参考图20,所述长形构件144可以由多种材料构成并且可以用多种方式制成。例如,所述长形构件144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述长形构件144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述长形构件144中或者与所述长形构件144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述长形构件144相同的材料构成或者可以由与所述长形构件144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述长形构件144中或者使所述媒介构件148与所述长形构件144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图20中示出的代表性的媒介110可以具有与上面所描述的并且在图6-19中示出的代表性的媒介110相似的特性和特征。例如,图20中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图21,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144布置在所述媒介构件148的一端附近并且从所述媒介构件148的中心移位。在一些代表性的实施方式中,所述长形构件144可以是编织材料,并且所述媒介构件148可以被编织到所述长形构件144中使得所述媒介构件148被定向成基本上垂直于所述长形构件144。在所示的代表性的实施方式中,所述媒介构件148是远离所述长形构件144向外伸出的基本上线性的材料绳。在其它代表性的实施方式中,所述媒介构件148可以是环。当用在容器32中时,所述长形构件144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁置在或者附着到所述长形构件144和所述媒介构件148上,因此提供与上面所描述的并且在图6-20中所示出的代表性的媒介110的相似的益处。
继续参考图21,所述长形构件144可以由多种材料构成并且可以用多种方式制成。例如,所述长形构件144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述长形构件144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述长形构件144中或者与所述长形构件144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述长形构件144相同的材料构成或者可以由与所述长形构件144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述长形构件144中或者使所述媒介构件148与所述长形构件144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图21中示出的代表性的媒介110可以具有与上面所描述的并且在图6-20中示出的代表性的媒介110相似的特性和特征。例如,图21中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图22,示出了另一代表性的媒介并且其包括长形构件144和从所述长形构件144伸出的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,沿着多个媒介构件148,所述长形构件144布置在不同位置处。在一些代表性的实施方式中,所述长形构件144可以是编织材料,并且所述媒介构件148可以被编织到所述长形构件144中使得所述媒介构件148被定向成基本上垂直于所述长形构件144。在所示的代表性的实施方式中,所述媒介构件148是远离所述长形构件144向外伸出的基本上线性的材料绳。在其它代表性的实施方式中,所述媒介构件148可以是环。当用在容器32中时,所述长形构件144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁置在或者附着到所述长形构件144和所述媒介构件148上,因此提供与上面所描述的并且在图6-21中所示出的代表性的媒介110的相似的益处。
继续参考图22,所述长形构件144可以由多种材料构成并且可以用多种方式制成。例如,所述长形构件144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述长形构件144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述长形构件144中或者与所述长形构件144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述长形构件144相同的材料构成或者可以由与所述长形构件144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述长形构件144中或者使所述媒介构件148与所述长形构件144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图22中示出的代表性的媒介110可以具有与上面所描述的并且在图6-21中示出的代表性的媒介110相似的特性和特征。例如,图22中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
现在参考图23,示出了另一代表性的媒介并且其包括一对长形构件144和从所述长形构件144伸出并在所述长形构件144之间延伸的多个凸起或媒介构件148。在这个所示的代表性的实施方式中,所述长形构件144布置在所述媒介构件148的端部附近并且从所述媒介构件148的中心移位。在一些代表性的实施方式中,所述长形构件144可以是编织材料,并且所述媒介构件148可以被编织到所述长形构件144中使得所述媒介构件148被定向成基本上垂直于所述长形构件144。在所示的代表性的实施方式中,所述媒介构件148是远离所述长形构件144向外伸出的基本上线性的材料绳。在其它代表性的实施方式中,所述媒介构件148可以是环。当用在容器32中时,所述长形构件144在所述上和下连接板112、116之间竖直地延伸并且所述媒介构件148被定向成基本上水平的。存在于所述容器32中的藻类可以搁置在或者附着到所述长形构件144和所述媒介构件148上,因此提供与上面所描述的并且在图6-22中所示出的代表性的媒介110的相似的益处。
继续参考图23,所述长形构件144可以由多种材料构成并且可以用多种方式制成。例如,所述长形构件144可以由用高抗拉强度的合成材料诸如NYLONKEVLARDACRONSPECTRA和其它多丝合股纤维诸如聚酯和聚偏二氯乙烯制成的针织纤维结构构成。可以用金属线和展现出光引导性能的单丝增强所述结构。而且,例如,可以通过下面的方式中的一种或多种形成所述长形构件144:针织、成簇、注射、模制、起绒、挤压、结合等等。关于所述媒介构件148,所述媒介构件148可以由多种材料构成并且可以用多种方式引入到所述长形构件144中或者与所述长形构件144一起形成。例如,所述媒介构件148可以由下面的材料中的一种或多种构成:NYLONKEVLARDACRONSPECTRA以及其它单丝合股纤维诸如聚酯和聚偏二氯乙烯。材料也可以展现出光引导性能。应当理解,所述媒介构件148可以由与所述长形构件144相同的材料构成或者可以由与所述长形构件144不同的材料构成。而且,例如,可以以下面的方式中的一种将所述媒介构件148引入到所述长形构件144中或者使所述媒介构件148与所述长形构件144一起形成:针织、成簇、注射、模制、起绒、结合等等。
这里所描述的并且在图23中示出的代表性的媒介110可以具有与上面所描述的并且在图6-22中示出的代表性的媒介110相似的特性和特征。例如,图23中所示的所述媒介110可以具有上面结合图6-8中所示的媒介110描述的任何形式的增强构件。
所示的和所描述的代表性的媒介被呈现为所述系统20能使用的多种不同类型的媒介中的一些并且不旨在是限定性的。因此,其它类型的媒介在本发明的旨在的精神和范围之内。
参考图3-5和24-26,将描述媒介110到框架108的连接。所述媒介110能以多种方式连接到所述框架108,然而,这里将仅仅描述其中的一些方式。所描述的用于将所述媒介110连接到所述框架108的方式不意味着是限定性的并且,如同上面所陈述的那样,所述媒介110能以多种方式连接到所述框架108。
所述媒介110可以以多种方式附连到所述容器的框架108并且这里所描述的方式仅仅是多种可能方式中的几个。在第一个代表性的连接方式中,所述媒介110能由在所述上和下连接板112、116之间来回地串过(string)的单个长绳构成。在这种方式中,所述媒介绳110的第一端被系到或者以其它方式固定到所述上连接板112或所述下连接板116,媒介绳110在所述上和下连接板112、116之间来回地延伸,并且所述第二端被系到所述上连接板112或所述下连接板116,这取决于所述媒介绳110的长度和在所述媒介绳被串完时所述连接板112、116中的哪一个距离第二端最近。以这种方式来回地串单个绳110提供在所述上和下连接板112、116之间延伸的多个彼此间隔开的媒介段110。能以多种方式在所述上和下连接板112、116之间来回地串所述单个媒介绳110,但是,为了简短的目的,这里将仅仅描述一个代表性的方式,然而,所描述的方式不旨在是限定性的。
所述绳的第一端在限定于上连接板112中的第一个孔128中被系到所述上连接板112。所述媒介绳110然后向下延伸到所述下连接板116并且插入通过限定在所述下连接板116中的第一个孔128。所述媒介绳110然后向上插入通过定位成与限定在所述下支架板116中的第一个孔128相邻近的第二个孔128并且向上朝向所述上连接板112延伸。所述媒介绳110然后向上插入穿过被定位成与限定在所述上连接板112中的第一个孔128相邻近的第二个孔128并且然后向下插入通过被定位成与限定在所述上连接板112中的第二个孔128相邻近的第三个孔128。所述媒介绳110在限定于所述上和下连接板112、116中的邻近孔128之间来回的继续延伸直到所述媒介110已经插入通过限定在所述上和下连接板112、116中的所有孔128。因为所示的代表性的连接板112、116包括六个孔128并且所述媒介绳110的第一端被系到所述上连接板112中的其中一个孔,所以最后一个被占据的孔128将在所述上连接板112中。
在所述媒介110已经占据了所述上连接板112中的第六个孔128之后,所述媒介绳110延伸到所述上连接板112中的第一凹进132中。从这个第一凹进132,所述媒介绳110向下朝向所述下连接板116中的第一凹进132延伸并且延伸到所述下连接板116中的第一凹进132中。所述媒介绳110然后沿着所述下连接板116的底表面184延伸并且向上延伸到所述下连接板116中的邻近第一凹进132的第二凹进132。从这个第二凹进132,所述媒介绳110向上延伸并且延伸到限定在所述上连接板112中的邻近第一凹进132设置的第二凹进132中。所述媒介绳110然后沿着所述上连接板112的顶表面188延伸并且向下延伸到所述上连接板112中的邻近第二凹进132的第三凹进132。所述媒介绳110在限定在所述上和下连接板112、116中的邻近凹进132之间的来回的继续延伸直到所述媒介110已经插入通过限定在所述上和下连接板112、116中的所有凹进132。因为所示的代表性的连接板112、116包括十个凹进132并且所述上连接板112中的其中一个凹进132首先被占据,所以最后一个被占据的凹进132将在所述上连接板112中。在将所述媒介绳110向上插入到所述上连接板112中的最后一个凹进132中之后,所述媒介绳110的第二端被系到限定在所述上连接板112中的其中一个孔。为了帮助将所述媒介绳110固定到所述上和下连接板112、116,紧固件192诸如线、绳索、或其它细的牢固的并且可弯曲的装置围绕所述上和下连接板112、116中的每一个的边缘140定位并且被紧固到限定于所述上和下连接板112、116中的每一个的边缘140中的狭槽136中以使媒介绳110夹在所述凹进132中并在所述紧固件192和所述上和下连接板112、116之间。如同上面所指出的那样,所示的和所描述的将所述媒介绳110连接到所述框架108的方式仅仅是代表性的方式并且存在多种可选方式并且所述多种可选方式在本发明的精神和范围之内。
在所示的例子中,所述上板和下板112、116的孔128大体上在竖直方向上相对准,使得所述上板112的孔128与所述下板116的孔128在竖直方向上相对准。类似地,所述上和下板112、116的凹进132大体上在竖直方向上相对准。如同所示的那样,所述媒介绳110的在所述上和下连接板112、116之间延伸的多个延伸部或段以基本上竖直的方式延伸。通过在所述上和下板112、116的相对准的孔128以及所述上和下板112、116的相对准的凹进132之间延伸所述媒介绳110而实现这一点。然而,应当理解,所述媒介绳110也能以相对于竖直方向倾斜的方式在所述上和下连接板112、116之间延伸,从而所述媒介绳110在不对准的孔128和凹进132之间延伸。应当理解,当所述媒介绳110在所述上和下连接板112、116之间延伸时,它也可以呈现螺旋形状。
在第二种连接方式中,所述媒介110能由单独地串在所述上和下连接板112、116之间的多个分离的媒介110构成。在这种方式中,每个媒介110在所述上和下连接板112、116之间延伸一次。每个媒介110的第一端被系到或者以其它方式固定到所述上连接板112或所述下连接板116中的其中一个并且第二端延伸到且固定到所述上连接板112或所述下连接板116中的另一个。以这种方式串多个媒介110提供在所述上和下连接板112、116之间延伸的多个彼此间隔开的媒介段110。在一些实施方式中,所述多个媒介110以基本上竖直的方式串在所述上和下连接板112、116之间,通过在相对准的孔128和相对准的凹进132之间延伸所述媒介110而实现这一点。在其它实施方式中,所述多个媒介110以相对于竖直方向倾斜的方式串在所述上和下连接板112、116之间,通过在不对准的孔128和不对准的凹进132之间延伸所述媒介110而实现这一点。在进一步的实施方式中,当所述多个媒介110在所述上和下连接板112、116之间延伸时,它们可以呈现螺旋形状。
应当理解,可以以不用于这里所描述的那些方式的多种方式将所述单个或多个媒介110连接到所述上和下连接板112、116。例如,所述单个或多个媒介110可以以任何其它合适的方式夹紧到、粘结到、紧固到或固定到所述框架108。
尤其参考图25,媒介110的所示的代表性定位提供的媒介110在所述容器32的中心附近(也就是,在所述轴20附近)比朝向所述容器32的外周边更密集。所述媒介110的这种定位有助于,除了其它方面之外,太阳光穿透最外侧的媒介绳110并且进入到内媒介绳110所定位的所述容器32的中心,因此有助于位于所述内媒介绳110上的藻类的有效的光合作用和培养。另一方面,如果所述媒介110在所述容器32的外周边附近是更密集的,密集的外媒介110将阻碍大量的太阳光,因此抑制太阳光穿到所述容器32的内部并且抑制位于所述内媒介绳110上的藻类的光合作用和培养。在所述媒介110串在这些描述的实施方式中的上和下连接板112、116之间的情况下,所述媒介110为通过所述容器32中的水上升的气体(举例来说,二氧化碳)提供阻尼路径。这个阻尼路径减缓气泡的上升,因此有助于增加气泡和支撑在所述媒介110上的藻类之间的接触时间。
不论用来将所述媒介110连接到所述上和下连接板112、116的方式是什么样的,在限定于所述上和下连接板112、116的周边中的凹进132之间延伸的最外侧媒介绳110从所述上和下连接板112、116的外边缘140的外部突出。通过在所述连接板112、116的外边缘140的外部延伸,所述媒介绳110接合所述壳体76的内表面196(将在下面更详细地描述其目的),如同在图25和26中最好地示出的那样。
现在参考图3、4和27,所述容器32也包括设置在所述壳体76内的代表性的衬套200。所述衬套200是基本上圆形的并且布置在所述壳体76的底部附近。所述衬套200包括接收轴120的一端的中心开口204并且为所述轴120的所述端提供支撑。此外,所述衬套200维持所述框架108相对于所述壳体76的正确的定位。在这个例子中,所述轴120被宽松地限制在所述中心开口204之内并且所述衬套抑制所述轴120的实质性的侧向移动。所述衬套200包括允许被引入到所述容器32的底部的气体穿过所述衬套200的多个气体孔208。所述衬套200能包括任何数量和任何大小的孔208,只要气泡符合要求地穿过所述衬套200。尤其参考图28和29,示出了所述衬套200的两个额外的例子。如同能看到的那样,所述衬套200包括不同构造和大小的孔208。
回来参考图3和4,所述容器32进一步包括顶帽或盖212,顶帽或盖212设置在所述壳体76的顶部处以封闭和密封所述壳体76的顶部,因此使所述容器32与外部环境相密封。在一些实施方式中,所述盖212是紧密配合的塑料帽,诸如能旋拧到所述容器中并且能从所述容器上旋拧下来的PVC清除(clean out)连接器。可替换地,所述盖212能是多种物体,只要所述物体充分地密封所述壳体76的顶部。所述盖212也包括中心开口216和布置在所述中心开口216中用以接收轴120并有助于轴120相对于所述盖212转动的轴承(在下面更详细地描述)。所述轴120在所述盖212的下面延伸到所述壳体76中并且所述轴120的一部分保持在所述盖212之上。驱动皮带轮或齿轮220连接到所述轴120的布置在所述盖212之上的部分并且刚性地固定到所述轴120以防止所述齿轮220和所述轴120的相对移动。所述齿轮220连接到包括驱动构件224和带或链228的驱动构件。所述驱动构件224是可操作的以转动所述齿轮220和轴120,因此相对于所述壳体76转动所述框架108(下面更详细地描述)。在所示的代表性的实施方式中,所述驱动构件224可以是交流或直流电机。可替换地,所述驱动构件224可以是多种其它类型的驱动构件,诸如燃料动力发动机,风力驱动构件,气动驱动构件,人力驱动构件等等。
如同上面所指出的那样,为了驱动藻类的光合作用,提供人造光系统37以补充或替换自然太阳光72可能是所期望的。所述人造光系统37可以呈现多种形状和形式,并且可以以多种方式操作。这里示出和描述几种代表性的人造光系统37,然而,这些代表性的人造光系统37不旨在是限定性的并且其它人造光系统是可预期得到的并且在本发明的精神和范围之内。
参考图30和31,示出了人造光系统37的代表性的实施方式。这个代表性的人造光系统37是可预期得到的并且不旨在是限定性的多种类型的人造光系统中的一种。所述代表性的人造光系统37能延展藻类暴露到光的时间段或者能补充自然太阳光72。在所示的例子中,所述人造光系统37包括基部39和连接到所述基部39的光源诸如发光二极管(LEDs)41阵列。所述基部39和LED 41设置在每个容器32的暗侧上。已经知道LEDs41以低电压操作,因此消耗非常少的能量,并且不产生不期望量的热。容器32的暗侧是容器32的接收的太阳光72量最少的侧。例如,设置在北半球中的容器32中在冬季期间,太阳在天空中是低的并且在南方,因此朝向所述容器32的南侧发射最多的太阳光72。在这个例子中,暗侧是容器32的北侧。因此,该LEDs41阵列设置在所述容器32的北侧上。
在一些实施方式中,所述LEDs 41可以具有在大约400纳米(nm)到大约700纳米之间的频率范围。所述人造光系统37可以包括在其上的单频率LEDs 41或者可以包括多种不同频率的LEDs 41,因此提供宽频谱的频率。在其它实施方式中,所述LEDs 41可以仅仅使用光谱的有限部分而不是整个光谱。在这种使用有限光谱的情况下,LEDs消耗更少的能量。所述LEDs使用的光谱的代表性的部分可以包括蓝光谱(也就是,频率在大约400和大约500纳米之间)和红光谱(也就是,频率在大约600和大约800纳米之间)。LEDs可以从光谱的其它部分和在其它频率发射光并且仍在本发明的旨在的精神和范围之内。
在一些代表性的实施方式中,所述基部39在本质上可以是反光的用以将太阳光72反射到所述容器32的暗侧或者所述容器32的一些其它部分。在这种实施方式中,穿过、错过或者以其它方式未被发射到所述容器32中或上的太阳光72可以接合所述反光的基部39并且反射到所述容器32上或中。
在其它实施方式中,所述人造光系统37可以包括不同于LEDs的光源41,诸如荧光灯、白炽灯、高压钠灯、金属卤化物灯、量子点灯、激光、光引导纤维等。在再其它实施方式中,所述人造光系统37可以包括围绕所述容器32布置的多个光纤光通道以将光发射到所述容器32上。在这种实施方式中,所述光纤光通道可以以多种方式接收光,包括LEDs或者其它发光装置或者来自于定向成接收太阳光72并且将所收集的太阳光72经由光缆传递到所述光通道的太阳光收集设备。
此外,由所述人造光系统37发射的光可以被连续地发射或者可以以所期望的速率闪烁。闪烁的LEDs 41模拟自然水中的状况,诸如由波动作用引起的光衍射和通过水的清澈度变化引起的不一致的光强度。在一些例子中,所述光可以以大约37KHz的速率闪烁,其已经被示出比LEDs 41发射连续光时产出高20%的藻类产量。在其它例子中,所述光可以在大约5KHz到大约37KHz的范围之间闪烁。
现在参考图32和33,示出了人造光系统37的另一代表性的实施方式。图30和31中所示的容器和人造光系统与图32和33中所示的容器和人造光系统之间的相似部件用相同的附图标记表示。
在这个所示的代表性的实施方式中,所述人造光系统37包括设置在所述容器32的中心处或中心附近的透明或半透明中空管320和设置在所述管320内的光源41,诸如发光二极管(LEDs)阵列。可替换地,其它类型的光源41可以被设置在所述管32内,并且包括例如,荧光灯、白炽灯、高压钠灯、金属卤化物灯、量子点灯、光纤、电致发光灯、频闪灯、激光等。这个人造光系统37从内侧向外为所述容器32和藻类提供光,所述从内侧向外的方向是与射入到所述容器32中的太阳光72相反的方向。来自所述人造光系统37的光可以用来补充或替代太阳光72并且将直射光提供给所述容器32的内部。在一些例子中,因为为了到达所述容器32的内部太阳光72必须穿透所述壳体76、水和布置在所述容器32中的藻类或者太阳光32可能不具有特定的高强度(举例来说,在阴天时、太阳升起时或者太阳落下时),所以穿透到所述容器32的内部的太阳光72是挑战性的。
所述管320相对于所述容器32的壳体76是固定的并且所述框架108围绕所述管320转动。所述管320的底端延伸通过所述下连接板116的中心孔124并且固定到所述衬套200的中心开口204。所述下连接板116的中心孔124是足够大的以提供在所述孔124的内边缘和所述管320之间的间距。所述管320的第二端可以以多种方式固定到所述衬套200,只要所述固定是刚性的并且在操作期间不允许所述管320和所述衬套200之间的移动。在一些实施方式中,所述管320的外壁包括外螺纹并且所述衬套的中心开口204的内边缘包括互补的内螺纹。在这个实施方式中,所述管320螺接到所述衬套的中心开口204中并且螺纹地固定到所述衬套200。在其它实施方式中,所述管320可以包括在其外表面上的螺纹,延伸通过所述下连接板116的中心孔124,并且一个或多个螺母或其它带螺纹的紧固件324可以螺接到所述管320上以将所述管320固定到所述衬套200。在这种实施方式中,第一螺母324可以设置在所述衬套200之上,第二螺母324可以设置在所述衬套200之下,并且可以朝向所述衬套200旋拧所述螺母324以将所述管320固定到所述衬套200。在再其它实施方式中,所述管320的底端可以以多种其它方式固定到所述衬套200,诸如,结合、焊接、粘结或阻止所述管320和所述衬套200之间的移动的任何其它类型的固定。所述管320的顶端延伸通过所述上连接板112的中心孔124,其中所述中心孔124是足够大的以提供在所述中心孔124的内边缘和所述管320之间的间距。下面将更详细地描述支撑所述管320的顶端的方式。
继续参考图32和33,因为人造光系统37包括在所述容器32的中心处的发光管320,所以需要所述框架108具有不同的构造。在这个所示的代表性的实施方式中,所述框架108包括上和下连接板112、116,中空驱动管328,侧向支撑板332,和多个支撑杆336。所述驱动管328连接到皮带轮220,驱动带228和马达324,并且以与轴120类似的方式被驱动。所述侧向支撑板332固定到所述驱动管328并且与所述驱动管328一起转动。所述支撑板332可以以多种不同的方式固定到所述驱动管328,只要所述支撑板332和驱动管328一起转动。例如,所述支撑板332可以焊接、结合、粘结、螺接、或以其它方式固定到所述驱动管328。所述侧向支撑板332可以具有多种不同的形状和构造,包括,例如,圆柱形,十字形(参见图46)等等。所述多个支撑杆336在它们的顶端处固定到所述支撑板332并且在它们的底端处固定到所述下连接板116。所述支撑杆也穿过所述上连接板112并且也可以固定到其上。在所示的代表性的实施方式中,所述框架108包括两个支撑杆336。然而,所述框架108可以包括任何数量的支撑杆336并且仍然在本发明的精神和范围之内。在所述框架108的转动期间,所述马达224驱动所述皮带228和皮带轮220,其然后转动所述驱动管328。所述驱动管328的转动将转动所述支撑板332,因此使得所述支撑杆336转动并且最终使所述上和下连接板112、116以及所述媒介110转动。
尤其参考图33,将描述一种用于将电力输送到布置在所述管320中的LEDs 41的代表性的方式。期望所述管320的内部保持干燥并且没有湿气以防止损坏所述LEDs 41或所述系统20的其它电子器件。在所示的代表性的实施方式中,所述管320的顶端围绕所述驱动管328的底端并且密封件340布置在所述驱动管328的外表面和所述管320的内表面之间,因此形成有效的密封从而防止水进入所述管320。所述管320和所述驱动管328之间的这种密封装置也为所述管320的顶端提供支撑。因为所述驱动管328承受所述驱动带228和皮带轮220施加的力,所以可以围绕所述驱动管328提供支撑装置344以提供额外的支撑。
为了将电力提供到所述管320之内的LEDs 41,多根电线348必须从电源延伸到所述LEDs 41。在所述代表性的实施方式中,所述驱动管328是中空的并且所述电线348延伸到所述驱动管328的顶端中,通过所述驱动管328,从所述驱动管328的底端出来,进入到所述管320中,并且最终连接到所述LEDs 41。如同上面所指出的那样,所述驱动管328转动并且所述管320和LEDs 41不转动。所述电线348的转动将造成所述线348缠绕并且甚至破坏,与所述LEDs 41断开,或者以其它方式中断从所述电源到所述LEDs41的电力供应。因此,期望当所述驱动管328转动时所述电线348在所述驱动管328之内保持静止。可以以多种方式实现这一点。例如,所述电线348可以延伸通过所述驱动管328的中心而使得不引起所述线348和所述驱动管328的内表面之间的接触。通过防止所述线348和所述驱动管328的内表面之间的接触,所述驱动管328将能在不接触所述线348和不缠绕所述线348的情况下相对于所述线348转动。而且,例如,第二管或装置可以同心地设置在所述驱动管328内,可以从所述驱动管328的内表面向内移位,并且在所述驱动管328之内是固定不动的,因此使得所述驱动管328围绕所述第二管或装置转动。在这种例子中,所述电线348延伸通过所述第二管或装置并且通过所述第二管或装置防止与所述驱动管328的内表面接合。用于防止所述电线348缠绕的许多其它方式是可预期得到的并且其在本发明的精神和范围之内。
继续参考图33,提供擦拭片352以接触和擦靠在所述管320的外表面上。所述擦拭片352在它的顶端处连接到所述上连接板112并且在它的底端处连接到所述下连接板116。所述框架108的转动使得所述擦拭片352转动,因此使得所述擦拭片352擦靠在所述管320的外表面上。这种擦拭清除掉附连到所述管320的外表面的任何藻类或其它堆积物。使管320没有藻类和其它堆积物为所述管320提供最佳的照明性能。堆积在所述管320的外表面上的大量藻类会不利地影响这个实施方式的人造光系统37的效率。
应当理解,图32和33中所示的人造光系统37可以单独使用或者可以与这里所披露的任何其它人造光系统37结合使用。例如,所述系统20可以包括如同在图30和31中所示的那样的用于从外部照明所述容器32的第一人造光系统37并且可以包括图32和33中所示的那样的用于从内部照明所述容器32的人造光系统37。
参考图34,示出了擦拭所述管320的外表面的另一种方式。在这个所示的代表性的实施方式中,内媒介段或绳110被布置成邻近所述管320的外表面并接合所述管320的外表面。所述框架108的转动使得所述媒介绳110擦靠在所述管320的外表面上并且从所述管320的外表面清除掉藻类或其它残屑。为了简化的目的,在图34中仅仅示出了内媒介绳110,尽管在所述容器32中将存在其它媒介绳110。
参考图35和36,示出了擦拭所述管320的外表面的另一可选方式。在这个所示的代表性的实施方式中,类似于图34中所示的那样地设置所述媒介绳110。也就是说,内媒介绳110被布置成邻近并且接触所述管320的外表面。类似于图34,为了简化的目的,在图35和36中仅仅示出了内媒介绳110,尽管所述容器32中会存在其它媒介绳110。在一些例子中,由于离心力,所述框架108的转动可以使得所述内媒介绳110远离所述管320的外表面地弯曲并且不与所述管320的外表面接触。为了抑止所述内媒介绳110的这种向外弯曲,刚性装置354可以连接到每个所述内媒介绳110。所述刚性装置354可以由多种材料制成,包括例如,塑料、金属、硬橡胶等等。可以使用的刚性装置354的例子包括松紧绳、减震绳、塑料线、金属线等。所述刚性装置354可以在所述上和下连接板112、116之间在所述内媒介绳110的全部长度上延伸或者可以在所述内媒介绳110的长度的一部分上延伸。例如,所述刚性装置354可以从所述上连接板112向下延伸,从所述下连接板116向上延伸,或者从所述上连接板112向下延伸并从所述下连接板116向上延伸,仅仅沿着所述内媒介绳110的一部分,诸如六英寸。参考图35和36中所示的代表性的实施方式,第一刚性装置354沿着第一内媒介绳110的长度的一部分从所述上连接板112向下延伸并且第二刚性装置354沿着第二内媒介绳110的长度的一部分从所述下连接板116向上延伸。在这个所示的代表性的实施方式中,所述刚性装置354可以不擦靠在所述管320的外表面上。因此,通过偏置所述第一和第二刚性装置354,所述第二内媒介绳110的上部部分将擦拭所述管320的与所述第一刚性装置354相符合(in linewith)的外表面,并且所述第一内媒介绳110的底部部分将擦靠在所述管320的与所述第二刚性装置354相符合的外表面上。这种布置确保内媒介绳110将擦拭所述管320的整个外表面。可替换地,所述刚性装置354可以布置成擦靠在所述管320的外表面上。
用于擦拭所述管320的外表面的其它可选方案是可能的并且在本发明的旨在的精神和范围之内。
现在参考图37-42,示出了另一种用于支撑所述框架108以及图32和33的人造光系统37的可选方式。在这个所示的代表性的实施方式中,所述系统20包括框架支撑装置600,该框架支撑装置600具有圆形支撑架604、中心插座608,从所述中心插座608朝向所述圆形支撑架604延伸的多个臂612,和由所述臂612支撑的多个辊装置616。所述圆形支撑架604被支撑在所述容器壳体76之内从而阻止它向下移动,因此为搁置在其上的框架108提供竖直支撑。所述圆形支撑架604可以以多种不同方式支撑在所述壳体76之内,诸如,压配合、摩擦配合,干涉配合、焊接、紧固、粘结、结合或者通过从所述壳体76的内表面延伸到所述壳体76的内部中的供所述圆形支撑架604支撑、紧固、结合等在其上的压痕或架。
所述中心插座608居中地设置以接收所述管320的底端并且以不漏水的方式密封所述管320的底端,因此防止水进入到所述管320中。所述管320的底端可以以多种方式连接到所述插座608,诸如,焊接、紧固、粘结、结合、压配合、摩擦配合、干涉配合、或者其它类型的固定。在一些实施方式中,所述管320的底端和所述插座608之间的连接本身足以提供不漏水的密封。在其它实施方式中,密封装置,诸如衬套、水泵密封件、O型环、填料等等,可以用来在所述管320的底端和所述插座608之间形成不漏水的密封。在所示的代表性的实施方式中,所述框架支撑装置600包括四个臂612。可替换地,所述框架支撑装置608可以包括其它数量的臂612并且在本发明的旨在的精神和范围之内。所述臂612从所述插座608向外延伸并且从下面被所述支撑架604支撑在它们的远端上。在一些实施方式中,所述臂612的远端与所述支撑架604结合、焊接、粘结、以其它方式固定在一起,或者与所述支撑架604一体地形成。在其它实施方式中,所述臂612的远端可以仅仅搁置在所述支撑架604上或者可以被接纳在限定于所述架604中的凹进中以抑止所述臂612和所述中心插座608的转动。在所示的代表性的实施方式中,单个辊装置616固定到每个臂612的远端的顶部。所述辊装置616包括基座620、轴624、和被所述轴624转动地支撑的辊628。所述轴624平行于所述臂612并且所述辊616被定向成垂直于所述轴624和臂612。所述辊装置616被设置成接合所述下连接板116的底表面并且允许所述下连接板116在所述框架支撑装置600之上并且相对于所述框架支撑装置600滚动。在这种方式中,所述框架支撑装置600为所述框架108提供竖直支撑并且允许所述框架108相对于所述框架支撑装置600转动。应当理解,所述框架支撑装置600可以包括以其它方式定向的其它数量的辊装置616,诸如,每个臂612有多个辊装置616,辊装置616不设置在所有的臂612上,辊装置616设置在交替(alternating)的臂612上等等。也应当理解,可以使用其它装置替换所述辊装置616以有助于所述下连接板616相对于所述框架支撑装置600移动,同时为所述框架108提供竖直支撑。
进一步应当理解,框架支撑装置600也可以与所述上连接板112一起使用。在这种例子中,上框架支撑装置600将被设置在所述上连接板112的正下方,接合所述上连接板112的底表面以提供竖直支撑,并且允许上连接板112相对于上框架支撑装置600转动。这种上框架支撑装置600可以被构造并且可以以与下框架支撑装置600相同的方式起作用。
参考图43-46,示出了用于支撑框架108以及图32和33的人造光系统37的再另一种可选方式。在这个所示的代表性的实施方式中,所述系统20包括用于给所述框架108提供竖直支撑的浮动装置632。在一些代表性的实施方式中,所述浮动装置632可以提供将所述框架108维持在所期望的位置处所需要的竖直支撑的一部分。在其它代表性的实施方式中,所述浮动装置632可以提供将所述框架108维持在所期望的位置处所需要的全部竖直支撑。所述浮动装置632设置在所述侧向支撑板332和上连接板112之间。在其它实施方式中,所述浮动装置632可以设置在所述上连接板112的下面或者设置在所述下连接板116的下面。而且,在进一步的实施方式中,所述系统20可以包括多个浮动装置632,诸如两个浮动装置632。在这种代表性的实施方式中,第一浮动装置可以如同在图43中所示的那样设置在所述侧向支撑板332和上连接板112之间并且第二浮动装置可以设置在所述下连接板116的下面。
所述浮动装置632可以具有任何形状和构造,只要它为布置在所述容器32中的框架108提供所期望量的竖直支撑。在所示的代表性的实施方式中,所述浮动装置632是基本上圆柱形的以配合所述容器壳体76的形状。取决于所期望的浮力的量,所述浮动装置632的厚度或高度可以变化。所述浮动装置632包括用于允许所述驱动管328和所述管320穿过其的中心孔636,和用于允许支撑杆336穿过所述浮动装置632的多个孔640。如同上面所指出的那样,所述容器32可以包括任何数量和任何构造的支撑杆336并且,类似地,所述浮动装置632可以包括任何数量和任何构造的孔640以适应支撑杆336的总数量。
所述浮动装置632可以由多种漂浮材料构成。在一些代表性的实施方式中,所述浮动装置632由阻止水吸收的闭孔(closed cell)材料构成。在这种实施方式中,所述浮动装置632可以由一种闭孔材料或多种闭孔材料构成。可以构成所述浮动装置632的代表性的闭孔材料包括但不限于,聚乙烯、氯丁橡胶、PVC和各种橡胶混合物。在其它代表性的实施方式种,所述浮动装置632可以由芯644和围绕并且封闭所述芯644的外壳648构成。所述芯644可以由闭孔材料或开孔材料构成,同时所述外壳648优选为由闭孔材料构成,因为它直接接触所述容器32中的水。在所述芯644是闭孔材料并且不吸收水的情形中,所述外壳648可以是不漏水和不漏气的或者可以是可漏水和漏气的。在所述芯644是开孔材料的情形中,所述外壳648优选为是围绕所述芯644不漏水和不漏气的以阻止水接近所述芯644并且被所述芯644吸收。可以构成所述芯644的代表性的闭孔材料包括,但不限于,聚乙烯、氯丁橡胶、PVC和各种橡胶混合物,并且可以构成所述芯644的代表性的开孔材料包括,但不限于,聚苯乙烯、聚醚、和聚酯型聚氨酯泡沫。可以构成所述外壳648的代表性的材料包括,但不限于,玻璃纤维增强塑料、PVC、橡胶、环氧树脂和其它防水涂层形成的壳。
尤其参考图46,所述浮动装置632被示为具有代表性的侧向支撑板332。在这个所示的代表性的实施方式中,所述侧向支撑板332是基本上十字形的。提供十字形的侧向支撑板332的一个代表性的理由是减少所述侧向支撑板332的材料的量和总重量。通过减少所述侧向支撑板332的重量,整个框架108的重量变少并且需要所述浮动装置632支撑的重量更少。在这个代表性的十字形的实施方式中,所述侧向支撑板332的在所述支撑杆336连接到所述侧向支撑板332的位置之间的材料被去除。如同上面所指出的那样,所述容器32可以包括任何数量和任何构造的支撑杆336并且,类似地,所述侧向支撑板332可以具有任何构造以适应支撑杆336的数量和构造。
如同上面所指出的那样,所述浮动装置632能具有多种构造并且能布置在所述容器32内的多个位置处。参考图47,示出了另一代表性的浮动装置800。在这个代表性的实施方式中,所述浮动装置800包括多个浮动装置,其中一个连接到并且围绕所述支撑杆336中的每一个。这些浮动装置800也基本上在所述支撑杆336的布置在所述上和下连接板112、116之间的整个高度上延伸。以与图43-46中所示的浮动装置632相类似的方式,图47中所示的代表性的浮动装置800为所述框架108提供竖直支撑。在一些代表性的实施方式中,所述浮动装置800可以提供将所述框架108维持在所期望的位置处所需要的竖直支撑的一部分。在其它代表性的实施方式中,所述浮动装置800可以提供将所述框架108维持在所需要的位置处所需要的全部竖直支撑。
参考图48和49,示出了再另一代表性的浮动装置804。在这个代表性的实施方式中,所述浮动装置804包括连接到所述下连接板116的顶表面的多个浮动装置。以与图43-46中所示的浮动装置632相类似的方式,图48和49中所示的代表性的浮动装置804为所述框架108提供竖直支撑。可替换地,所述浮动装置804可以连接到所述下连接板116的底表面或者所述上连接板112的顶表面或底表面。在一些代表性的实施方式中,所述浮动装置800可以提供将所述框架108维持在所期望的位置处所需要的竖直支撑的一部分。在其它代表性的实施方式中,所述浮动装置804可以提供将所述框架108维持在所需要的位置处所需要的全部竖直支撑。
现在参考图50-53,示出了容器32的另一代表性的实施方式。在这个代表性的实施方式中,所述容器32包括用于转动所述框架108和媒介110的另一驱动机构。在所示的实施方式中,所述驱动机构包括马达(未示出)、驱动链228、链轮或齿轮220、连接到所述齿轮220的板652、环绕所述板652以确保所述板652维持在中心的定心环654,和连接到所述板652的驱动管328。所述马达在所期望的方向上驱动所述链228,因此转动所述齿轮220。因为所述齿轮220连接到所述板652并且所述板652连接到所述驱动管328,所以所述齿轮220的转动最终转动所述驱动管328。所述管320被固定定位在所述容器32的中心的合适位置处,并且所述齿轮220、板652、定心环654和驱动管328都环绕所述中心管320并且围绕所述中心管320转动。密封构件656,诸如O型环布置在限定于所述齿轮220中的凹进658中,环绕所述管320,并且接合所述管320的外表面以围绕所述管320进行密封。所述密封构件656阻止所述容器32之内的液体在所述管320和所述驱动机构之间泄漏到所述容器32的外面。可替换地,所述密封构件656可以布置在限定于所述驱动机构的其它部件(诸如,板652、驱动管328等等)中的凹进中,并且可以接合所述管320的外表面以围绕所述管320进行密封。
尤其参考图50,所述驱动机构也包括连接到所述驱动管328并且可与所述驱动管328一起转动的支撑板332。两个销钉660从所述支撑板332向下延伸并且插入到限定在所述浮动装置632中的孔662中。所述销钉660将所述驱动机构连接到所述浮动装置632,使得所述驱动机构的转动有助于所述浮动装置632和所述框架108的转动。然而,不抑制所述浮动装置632相对于所述销钉660的竖直移动。当所述容器32之内的水位变化时所述浮动装置632发生这种竖直移动。参考图52,所述浮动装置632包括供所述管320延伸从其通过的中心孔636。所述中心孔636的大小被设置的足够大以允许所述浮动装置632在所述管320的外表面和所述浮动装置632之间没有显著的摩擦力的情况下相对于所述管320转动。尽管代表性的所示的实施方式包括两个销钉660,任何数量的销钉660可以用来将所述驱动机构连接到所述浮动装置632。此外,所述驱动机构可以以不同于所示的销钉660和浮动装置632的构造的方式连接到所述框架108。
如同上面所示的那样,所述管320固定在合适的位置处并且不转动。现在参考图50-53,所述容器32包括固定到盖212用以支撑所述管320的顶部的第一支撑件666和用于支撑所述管320的底部的第二支撑件668。所述顶部支撑件666包括供所述管320的顶部设置在其中的孔670。适当地设置所述孔670的大小以紧密地接合所述管320的外表面从而抑制所述管320的顶部相对于所述顶部支撑件666的移动。所述底部支撑件668包括中心插座608、从所述中心插座608延伸的多个臂612和由所述臂612支撑的多个辊装置616。所述管320刚性地固定到所述中心插座608以抑制所述管320和所述插座608之间的移动。所述臂612包括在它们的端部处的弯曲板672,所述弯曲板672接合所述容器32的内表面从而阻止所述底部支撑件668相对于所述容器壳体76的实质性侧向移动。因为在水上的所述浮动装置632的浮力而使得在所述容器32之内的所述框架108被抬升,所以水从所述容器32的排出使得所述框架108在所述容器32中下降直到所述下连接板116搁置在所述辊装置616上。如果期望在从所述容器32排出水时所述框架108转动,所述辊装置616有助于这种转动。在所示的实施方式中,所述底部支撑件668包括四个辊装置616。在其它实施方式中,所述底部支撑件668可以包括任何数量的辊装置616以适应所述框架108的转动。所述底部支撑件668可以由不锈钢或其它相对高密度的材料制成以给所述底部支撑件668提供相对重的重量,当所述容器32充满水时其抵抗向上地施加到所述管320的浮力。所述底部支撑件668的相对重的重量也有助于将所述容器32的内部部件插入到充满水的容器32中。这种内部部件可以包括,例如,底部支撑件668、管320、框架108、媒介110、和驱动机构的一部分。
结合图50-53中所示的代表性的实施方式描述的管320能具有与在其它管实施方式中披露的任何其它管320相同的功能。例如,这个实施方式的管320能容纳类似于图32和33-43中所示的那样的发光元件。
现在参考图54和55,示出了人造光系统37的再另一代表性的实施方式。用相同的附图标记表示图30-33中所示的容器和人造光系统与图54和55中所示的容器和人造光系统之间的相似部件。
图54和55中所示的人造光系统37可以包括与图32和33中所示的管320和光源类似的中心管320和相关的光源41(参见图54)或者所述人造光系统37可以不包括图32和33中所示的管320和光源(参见图55)。在图54中所示的包括管320和光源41的人造光系统37的实施方式中,所述管320和光源41类似于图32和33中所示的管320和光源41。
继续参考图54和55,人造光系统37包括连接在所述上和下连接板112、116之间的多个光元件356。所述光元件356能将光发射到所述容器32内。在所示的代表性的实施方式中,所述光元件356是具有圆形横截面形状的圆柱形杆并且由易于发射光的材料,诸如玻璃、丙烯酸树脂等制成。可替换地,所述光元件356可以具有其它形状并且可以由其它材料制成,并且这种所示的和所描述的例子不旨在是限定性的。例如,参考图56-59,所述发光元件356被示为具有多种其它代表性的横截面形状,诸如正方形、卵形、三角形、六边形。应当理解,所述发光元件356能具有其它横截面形状,包括具有任何数量的边或任何弧形周边的形状。
在一些代表性的实施方式中,构成所述光元件356的材料包括红外线抑制材料或红外线过滤材料,其应用于所述光元件356或者包含在所述光元件的材料的成分中以减少或限制光穿过光元件356时发生在光元件356中的热累积。所述光元件356在它们的端部处分别连接到所述上和下连接板112、116,所述上和下连接板112、116被构造成包括用于接收各光元件356的端部的孔360(参见图54中的上连接板112的顶视图)。所述人造光系统37可以包括任何数量的光元件356并且所述上和下连接板112、116在其内可以包括互补数量的孔360以容纳所述光元件356的端部。一个或多个媒介绳110围绕各光元件356缠绕以使所述媒介110紧邻所述光元件356。因为所述光元件356固定到所述上和下连接板112、116,所以所述光元件356与所述框架108一起转动。
尤其参考图55,所述人造光系统20包括多个光源41,一个光源41与每个光元件356相关联,用于将光提供给所述光元件356。在所示的代表性的实施方式中,所述光源41是LEDs。在其它实施方式中,所述光源41可以是其它类型的灯并且仍然在本发明的精神和范围之内。例如,所述光源41可以是荧光灯、白炽灯、高压钠灯、金属卤化物灯、量子点灯、光纤、电致发光灯、频闪灯、激光、或任何其它类型的照明设备。
所述光源41优选为容纳在防水壳之内或者被以其它方式密封从而防止水到所述光源41中。所述光源41设置在所述光元件356的顶端处并且将光发射到所述光元件356的顶端中。发射到所述光元件356中的光行进通过所述光元件356,从所述光元件356发射到所述容器32中,并且发射到所述媒介110和藻类上。可替换地,所述光源41可以设置在所述光元件356的其它位置处,诸如,底端或者顶端和底端之间的中间位置,以将光发射到所述光元件356中。
经由电线364将电力从电源供给到所述光源41。如同上面所指出的那样,所述发光元件356与所述框架108一起转动。因此,需要在不缠绕所述电线364的情况下将电力供给到所述光源41。类似于图32和33中所示的人造光系统37的实施方式,本代表性的实施方式的人造光系统37包括中空驱动管328。所述驱动管328将从所述马达224施加的转动力最终传递到所述框架108。在本代表性的实施方式中,所述电线364必需与所述光源41一起转动以防止电线364缠绕。因此,所述驱动管328,电线364,和框架108都一起转动。为了确保不中断所述光源41的操作,需要将连续的、不中断的电力供给到连接到所述光源41的电线364。可以以多种不同方式将这种连续的、不中断的电力提供给所述光源41并且所示的和所描述的代表性的实施方式不旨在是限定性的。在所示的代表性的实施方式中,所述人造光系统37包括固定到所述驱动管328的外表面的多个铜环368,一个环用于接合正接头(contact)372、一个环用于接合负接头376并且一个环用于接合地接头380。所述铜环368彼此绝缘以防止发生短路。所述正和负接头372、376连接到电源并且所述地接头380连接到地,并且各接头372、376、380接合各自的环368的外表面。朝向所述环368偏置所述接头372、376、380以确保所述接头372、376、380和所述环368之间的连续接合。当所述驱动管328和环368转动时,所述环368在所述接头372、376、380下移动并且所述接头372、376、380沿着所述环368的外表面滑动。朝向所述环368偏置所述接头372、376、380确保在移动期间所述接头372、376、380将连续接合所述环368。将连续的、不中断的电力提供给所述光源41的其它方式是可预期得到的并且在本发明的精神和范围之内。
在图54和55中所示的人造光系统37的一些代表性的实施方式中,所述发光元件356具有光滑的或抛光的外表面。在其它代表性的实施方式中,所述光元件356具有带有划痕的、带有刻痕的、带有缺口的、带有凹痕的外表面或者以其它方式不良外表面以有助于光从所述光元件356的内部衍射到所述光元件356的外部。在再其它代表性的实施方式中,所述光元件356可以形成有促进光从所述光元件356的内部衍射到所述光元件356的外部的形状。
应当理解,图54和55中所示的人造光系统37可以单独使用或者可以与这里所披露的任何其它人造光系统37结合使用。例如,所述系统20可以包括用于从外部照亮所述容器32的如同在图30和31中所示的那样的第一人造光系统37并且可以包括用于从内部照亮所述容器32的图54和55中所示的人造光系统37。
现在参考图60,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-55中所示的容器和人造光系统与图60中所示的容器和人造光系统之间的相似部件。
这个人造光系统37包括布置在沿着所述容器32的不同高度处的多个光元件356。所述光元件356能所述容器32内发光。在所示的代表性的实施方式中,所述光元件356是由易于发射光的材料,诸如玻璃、丙烯酸树脂等制成的圆柱形的盘。可替换地,所述光元件356可以具有其它形状并且可以由其它材料制成,并且这种所示的和所描述的例子不旨在是限定性的。在所示的代表性的实施方式中,所述人造光系统37包括三个光元件356,然而,这个实施方式中所示的光元件356的数量是用于示例性的目的并且不旨在是限定性的。所述系统37可以包括任何数量的光元件356并且仍在本发明的精神和范围之内。所述光元件356被固定在所述容器32内的合适位置处并且不相对于所述容器32移动。在所示的代表性的实施方式中,通过摩擦止挡件384将所述光元件356固定在合适位置处,每个光元件356对应一个摩擦止挡件384。可替换地,可以通过任何数量的摩擦止挡件384和通过其它固定方式将所述光元件356固定在合适位置处。例如,可以通过摩擦配合、压配合、紧固件、结合、粘结、焊接或者任何其它的固定方式将所述光元件356固定在所述容器32中的合适位置处。所述光元件356通常是圆形的并且具有与所述容器32的直径类似的直径。所述人造光系统37也包括多个光源41,每个光元件356对应至少一个光源41,该至少一个光源41将光提供给所述光元件356。所述光源41可以是多种不同类型的光源,包括,例如,LEDs、荧光灯、白炽灯、高压钠灯、金属卤化物灯、量子点灯、光纤、电致发光灯、频闪灯、激光、光导纤维等等。所述光源41被定位成将光发射到所述光元件356内或上并且然后所述光元件356将光发射到所述容器32中。所述光源41经由电线388连接到电源。
因为所述光元件356是固定的并且本质上将所述容器32分成多个部分(在所示的代表性的实施方式中分成三个部分),所以必需改变所述框架108和媒介110以适应这种部分。与包括单个上连接板112和单个下连接板116的框架108不同,所述框架包括用于每个部分的上和下连接板112、116。更具体地,所述框架108包括总共六个连接板,包括三个上连接板112和三个下连接板116。媒介110以这里所描述的任何方式串在各组上和下连接板112、116之间。因此,对于各个独立的部分来说,所述媒介110是特定的(也就是说,存在于顶部部分中的媒介不串到第二或第三部分,并且反之亦然)。
继续参考图60,以与上面结合图3和4中所示的框架108所描述的方式相类似的方式转动所述框架108。因此,所述轴120转动各部分中的连接板112、116和媒介110。多个擦拭器392被固定到所述连接板112、116并且擦靠在所述光元件356的外表面上以帮助清洁所述外表面和增强从所述光元件356的发光。所述擦拭器392邻近所述光元件356的顶表面和底表面地固定到所述连接板112、116的表面。在所示的代表性的实施方式中,第一擦拭器392A固定到所述容器32的顶部部分中的下连接板116的底表面,第二擦拭器392B固定到中间部分中的上连接板112的顶表面,第三擦拭器392C固定到中间部分中的下连接板116的底表面,第四擦拭器392D固定到底部部分中的上连接板112的顶表面,并且第五擦拭器392E固定到底部部分中的下连接板116的底表面。由于擦拭器392的这种构造,所述光元件356的必需的外表面被擦拭和清洁以增强光发射到所述容器32中。所述擦拭器392可以由多种不同的材料制成,诸如,橡胶、塑料和其它材料。
类似于上面参考图54和55所描述的光元件356,图60中所示的光元件356可以具有光滑的或抛光的外表面,或者带有划痕、刻痕、缺口、凹痕或以其它方式不良外表面以帮助光从所述光元件356的内部衍射到所述光元件356的外部。此外,所述光元件356可以形成为促进光从所述光元件356的内部衍射到所述光元件356的外部的形状。
应当理解,图60中所示的人造光系统37可以单独使用或者可以与这里所披露的任何其它人造光系统37结合使用。例如,所述系统20可以包括用于从外部照亮所述容器32的如同图30和31中所示的那样的第一人造光系统37并且可以包括用于从内部照亮所述容器32的如图60所示的人造光系统37。
现在参考图61,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-60中所示的容器和人造光系统与图61中所示的容器32和人造光系统37之间的相似部件。
图61中所示的并且在这里所描述的代表性的人造光系统37的原理可以适用于中心管320或光元件356。更具体地,所述中心管320和光元件356可以由实心透明或半透明材料构成并且包括在其内的固定在所述实心材料内的合适位置处的多个反光元件808。光发射源41,诸如LED41可以将光发射到所述中心管320和光元件356中,并且所发射的光被从所述中心管320和光元件356的内部反射和/或折射到所述中心管320和光元件356的外部。所反射的和/或折射的光进入所述容器壳体76的内部并且将光提供给布置在所述容器32中的藻类。所述中心管320和光元件356的实心材料可以是多种透明或半透明材料并且在本发明的旨在精神和范围内。代表性的材料包括,但不限于,玻璃、丙烯酸树脂、塑料、光纤等待。类似地,反光元件808可以由多种材料和元件构成并且在本发明的旨在的精神和范围之内。代表性的材料包括,但不限于,鸟嘌呤晶体、聚酯薄膜(Mylar)斑点、闪光剂、玻璃切屑和珠,金属切屑(举例来说,银、不锈钢、铝)、鱼鳞、或任何其它相对小的反光材料斑点、晶体、或片。
现在参考图62,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-61中所示的容器和人造光系统与图62中所示的容器和人造光系统之间的相似部件。
图62中所示的并且在这里所描述的代表性的人造光系统37的原理可以适于中心管320或光元件356。更具体地,所述中心管320和光元件356可以包括在其内限定一腔816的中空外壳812,布置在所述腔816内的透明或半透明液体820,和悬浮在所述液体820内的多个反光元件824。所述液体820具有足够的粘度以将所述反光元件824基本上固定在合适位置处或者至少充分地减缓移动速率以抑制所述反光元件824沉淀在或者移动到不期望的构造。密封所述外壳812以防止流体进出或流出所述壳体812。光源41,诸如,LED41可以将光发射到所述中心管320和光元件356中,并且所发射的光被从所述中心管320和光元件356的内部反射和/或折射到所述中心管320和光元件356的外部。所反射的和/或折射的光进入所述壳体76的内部并且将光提供给布置在所述容器32中的藻类。所述中心管320和光元件356内的液体820可以是多种透明或半透明液体820并且在本发明的旨在的精神和范围之内。代表性的液体820包括,但是不限于,四氯乙烯、水、酒精、矿物油等等。类似地,反光元件824可以由多种材料和元件构成并且在本发明的旨在的精神和范围之内。代表性的材料包括,但不限于,鸟嘌呤晶体、聚酯薄膜斑点、闪光剂、玻璃切屑和珠、金属切屑(举例来说,银、不锈钢、铝)、鱼鳞、或任何其它相对小的反光材料斑点、晶体、或片。
现在参考图63和64,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-62中所示的容器和人造光系统与图63和64中所示的容器32和人造光系统37之间的相似部件。
图63和64中所示的并且在这里所描述的代表性的人造光系统37的原理可以适于中心管320或光元件356。更具体地,所述中心管320和光元件356可以包括在其内限定一腔832的中空外壳828,布置在所述腔832内的反光元件836,马达840以及连接在所述马达840和所述反光元件836之间的转动轴844。密封所述外壳828以防止液体进入所述外壳828。反光元件836被定向在这样的直立、稍微倾斜的位置,即,从所述壳体828的顶部附近的一侧到底部附近的另一侧倾斜。马达840将转动给予转动轴844,其进而转动所述中心管320和所述光元件356内的反光构件836。在所示的代表性的实施方式中,所述马达840被设置在所述中心管320和光元件356内并且设置在所述中心管320和光元件356的底部附近。可替换地,所述马达840可以被设置在所述中心管320和光元件356内的其它位置处或者可以布置在所述中心管320和光元件356的外侧,并且可以具有合适的连接元件以将转动给予所述转动轴844。光源41,诸如,LED41可以将光发射到所述中心管320和光元件356中,并且被安装在枢转轴848上并且是可围绕枢转轴848枢转的。所述光源41适于围绕所述枢转轴848来回摆动从而在所述反光构件836的不同高度处将光发射到所述反光构件836上。来自所述光源41的光被所述反光构件836从所述中心管320和光元件356的内部反射和/或折射到所述中心管320和光元件356的外部。所反射的和/或折射的光进入所述壳体76的内部并且将光提供给布置在所述容器32中的藻类。与所述摆动光源42连接的所述反光构件836的角度和转动提供在整个所述容器32内的光分布。所述反光构件836的示例性的代表性的角度仅仅是多种可能定向角度中的一种并且不旨在是限定性的。许多其它定向角度是可能的并且在本发明的旨在的精神和范围之内。只要所述反光构件836反射或折射光,所述反光构件836可以是多种不同元件。代表性的反射构件836包括,但不限于,镜子、聚合物基复合物(举例来说,嵌入在塑料构件中的玻璃珠)、反光聚酯薄膜、抛光铝、镀银玻璃、或任何其它反光设备。
现在参考图65,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-64中所示的容器和人造光系统与图65中所示的容器32和人造光系统37之间的相似部件。
图65中所示的并且在这里所描述的代表性的人造光系统37的原理可以适于中心管320或光元件356。更具体地,所述中心管320和光元件356可以由实心透明或半透明材料构成并且包括围绕所述中心管320和光元件356的多个间隔开的水平带852。带852可以具有不透明的、不反光的外表面并且可以包括面向所述中心管320和光元件356的反光内表面。可替换地,带352可以是透明的。光源41,诸如,LED41可以将光发射到所述中心管320和光元件356中,并且所发射的光可以在所述带852之间的位置处被从所述中心管320和光元件356的内部反射和/或折射到所述中心管320和光元件356的外部。所反射的和/或折射的光进入所述壳体76的内部并且将光提供到布置在所述容器32中的藻类。带852的反光内表面反射所述中心管320和光元件356内的光,并且有助于将光反射到所述中心管32和光元件356的外面,因此有助于从所述中心管320和光元件反射更多的光。所述中心管320和光元件356的实心材料可以是多种透明或半透明材料并且在本发明的旨在的精神和范围之内。代表性的材料包括,但不限于,玻璃、丙烯酸树脂、塑料、光纤等等。所述带852可以由多种元件构成并且在本发明的旨在的精神和范围之内。代表性的元件包括,但不限于,窄带、油漆、聚酯薄膜、玻璃聚合物基复合物诸如嵌入塑料基中的玻璃、或任何其它元件。在所示的代表性的实施方式中,所述不透明的元件具有间隔开的水平带852的构造。可替换地,所述不透明的元件可以具有其它构造并且在本发明的精神和范围之内。例如,所述不透明的元件可以被布置在所述中心管320和光元件356的外部并且可以具有竖直带、倾斜带、螺旋带、带、斑点、其它间断地布置的形状等等的构造。
现在参考图66和67,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-65中所示的容器和人造光系统与图66和67中所示的容器32和人造光系统37之间的相似部件。
图66和67中所示的并且在这里所描述的代表性的人造光系统37的原理可以适于中心管320或光元件356。更具体地,所述中心管320和光元件356可以包括在其内限定一腔860的中空壳壁856和限定通过所述壳壁856的多个孔864。一束光携带元件868被设置在所述壳腔860中。所述光携带元件868的第一端被布置在所述中心管320和光元件356的顶部处或附近,并且所述光携带元件868的其它端延伸通过限定在所述壳壁856中的各个孔864并且延伸到所述容器32的内部中。光源41,诸如LED41可以将光发射到所述光携带元件868的顶端中。所发射的光行进通过所述光携带元件868并且从所述光携带元件868的底端发射出去,进入到所述容器32的内部中。
在所示的代表性的实施方式中,多个光携带元件868延伸通过各孔864并且彼此可以具有不同的长度。在所述光携带元件868和所述孔864之间形成不漏水密封以抑止液体通过所述孔进入所述中心管320和光元件356。在所示的代表性的实施方式中,所述孔864具有这样的构造,即,所述构造包括多个间隔开的组的孔,每组有四个孔864,其中所述四个孔864在类似的水平面中相对齐并且围绕所述中心管320和光元件356彼此以90度的增量间隔开。可替换地,所述孔864可以具有其它构造并且在本发明的旨在的精神和范围之内。例如,所述孔864可以具有在所述中心管320和光元件356的壳壁856中的任何构造,包括,但不限于,相对于其它组共平面的孔具有任何间距的多组共平面的孔,限定在水平面中的以任何间隔开的增量彼此间隔开的任何数量的孔,处于随机图案中的孔,等等。所述光携带元件868可以具有多种不同类型的光携带元件868并且在本发明的旨在的精神和范围之内。例如,所述光携带元件868可以是,但不限于,光纤缆线、玻璃纤维、丙烯酸树脂棒、玻璃棒等等。该束光携带元件868可以包括任何数量的光携带元件868并且可以适当地设置所述中心管320和光元件356的直径以适应任何所期望的数量的光携带元件868。此外,单独的光携带元件868可以具有多种形状以及对应的直径或宽度。例如,所述光携带元件868可以具有多种水平横截面形状,包括,但不限于,圆形、正方形、三角形、或者任何其它多边形或弧形周边形状。类似地,所述光携带元件868可以具有多种对应的直径(对于圆形)或宽度(对于除了圆形之外的形状),诸如,0.25到大约2.0毫米。进一步地,任何数量的光携带元件868可以延伸通过限定在所述壳壁856中的各孔864并且可以适当地设置所述孔864的大小以适应任何所期望的数量的光发射元件868。
继续参考图66和67,所述光携带元件868的底端被布置在所述容器32的液体中并且易于堆积藻类或存在于所述液体中的其它碎屑,因此减少从所述底端发射出去的光量。为了抑止堆积在所述光携带元件868的底端上,所述框架108转动并且媒介110接合所述光携带元件868的底端或一些其它部分,从而从所述底端逐出或擦拭掉堆积物。这样,所述光携带元件868的底端保持为无堆积物或者基本上无堆积物。
现在参考图68,示出了人造光系统37的再进一步的代表性的实施方式。用相同的附图标记表示图30-67中所示的容器和人造光系统与图68中所示的容器32和人造光系统37之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括围绕所述容器32的外部逐渐增加地布置的多个频闪灯872。频闪灯872是闪烁灯,所述闪烁灯通常包括氙气体并且可以是可调节的从而以不同速度闪烁。与其它类型的人造光相比,频闪灯872可以发射相对大量的光子,因此将大量光子提供到藻类从而以更快的速度驱动光合作用。在一些代表性的实施方式中,所述频闪灯872可以以大约20kHz的频率闪烁。在其它代表性的实施方式中,所述频闪灯872可以以大约2-14kHz的频率闪烁。这些代表性的闪烁频率不旨在是限定性的并且,因此,所述频闪灯872可以以任何频率闪烁并且在本发明的旨在的精神和范围之内。频闪灯872的所示的代表性的构造和数量不旨在是限定性的。这样,可以围绕所述容器32的外部以任何增量以及在任何位置处布置任何数量的频闪灯872,并且仍然在本发明的旨在的精神和范围之内。
现在参考图69,示出了人造光系统37的更进一步的代表性的实施方式。用相同的附图标记表示图30-68中所示的容器和人造光系统与图69中所示的容器32和人造光系统37之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括增量地布置在所述容器32壳体壁76中的多个频闪灯872。与这个所示的代表性的实施方式相关联的频闪灯872在结构和功能上类似于上面所描述的并且与图68相关联的频闪灯872,并且因此,这里将不再描述所述频闪灯。频闪灯872优选为被密封在所述壳体壁76中以防止液体接触所述频闪灯872。在一些代表性的实施方式中,所述壳体壁76可以包括两个间隔开的同心壁,以在它们之间提供一供所述频闪灯872可以设置在其内的腔876。在其它代表性的实施方式中,所述壳体壁76可以是整体式单件壁并且可以在其内限定多个用于接收所述频闪灯872的腔。而且,所述腔优选为被构造成防止液体接触所述频闪灯872。频闪灯872的所示的代表性的构造和数量不旨在是限定性的。因此,可以将任何数量的频闪灯872以任何增量和任何位置布置在所述容器32的壳体壁76内,并且仍然在本发明的旨在的精神和范围之内。
现在参考图70,示出了人造光系统37的另一代表性的实施方式。用相同的附图标记表示图30-69中所示的容器和人造光系统与图70中所示的容器32和人造光系统37之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括布置在所述容器32内的多个频闪灯872。与这个所示的代表性的实施方式相关联的频闪灯872在结构和功能上类似于上面所描述的并且与图68和69相关联的频闪灯872,并且因此,这里将不再描述所述频闪灯。优选地,防止频闪灯872与所述容器32内的液体相接合。在一些代表性的实施方式中,所述频闪灯872可以被布置在中空光元件356和中心管356内,并且被适当地密封以防止液体接近所述频闪灯872。在其它代表性的实施方式中,可以以不漏液体的方式包围或密封频闪灯872并且将所述频闪灯872设置在所述容器32内。频闪灯872的所示的和所描述的代表性的构造和数量不旨在是限定性的。因此,可以将任何数量的频闪灯872以任何增量和任何位置布置在所述容器32内,并且仍然在本发明的旨在的精神和范围之内。
现在参考图71和72,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-70中所示的容器和人造光系统与图71和72中所示的容器32和人造光系统37之间的相似部件。
在图71和72中所示的并且在这里所描述的代表性的人造光系统37的原理可以适于中心管320或光元件356。更具体地,所述中心管320和光元件356可以各自包括在其内限定一腔884的中空壳体880。在所示的代表性的实施方式中,所述人造光系统37包括面板形式的多个电致发光光元件888,其中在各中心管320和光元件356中分别设置一个面板。电致发光面板888是可弯曲的并且可以弯曲成所期望的形状,诸如,被卷成圆柱形辊,如同在图72和72中所示的那样。可替换地,电致发光面板888可以被弯曲成其它形状,诸如,任何多边形形状或者任何弧形周边形状。电致发光光元件888由当由交变电场供能时发射光的材料制成。在所示的代表性的实施方式中,所述人造光系统37包括十九个电致发光光元件888,其不旨在是限定的。可替换地,图71和72的人造光系统37能具有布置在容器32内的任何构造中的任何数量的电致发光光元件888。此外,除了所示的代表性的面板形式之外,所述电致发光光元件888能具有多种形式。例如,所述电致发光光元件888可以被形成为锥形、半圆形、条带形、或任何其它截面图案形状。
现在参考图73,示出了人造光系统37的另一代表性的实施方式。用相同的附图标记表示图30-72中所示的容器和人造光系统与图73中所示的容器32和人造光系统37之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括布置在所述容器32中并且与所述容器壳体76的内表面196相接触的面板形式的电致发光光元件888。与这个所示的代表性的实施方式相关联的电致发光光元件888在结构和功能上类似于上面所描述的并且与图71和72相关联的电致发光光元件888,并且因此,这里将不再描述所述电致发光光元件。电致发光光元件888覆盖所述容器32的内表面196的大部分部分,其可以阻碍太阳光穿透到所述容器32中。因此,所述容器32的壳体76可以由不透明或半透明的材料制成,因为大量太阳光将不能通过所述壳体壁76进入到所述容器32的内部。可替换地,所述容器32的壳体76可以由类似于用在其它透明壁的容器32中的那些的透明材料制成。在电致发光光元件88围绕整个容器32的内部布置的情况下,从所述容器32的周围提供基本上相等量的人造光(或光子),其提供在整个所述容器32内的更均匀的光分布。太阳光通常是到达容器32的一侧或另一侧,其因此,在大多数天,提供给所述容器32的一侧的光比另一侧要多。应当理解,所述电致发光光元件888可以被以不同的方式定向在所述容器壳体76的内表面196内并沿着所述容器壳体76的内表面定向并且沿着不足所述容器壳体76的整个内部延伸。也应当理解,多于一个电致发光光元件888可以布置在所述容器壳体76的内部内并且沿着所述容器壳体76的内部延伸,并且多个电致发光光元件888可以具有任何形状并且可以,相组合地,接合所述容器壳体76的任何比例的内表面196。
现在参考图74,示出了人造光系统37的进一步的代表性的实施方式。用相同的附图标记表示图30-73中所示的容器和人造光系统与图74中所示的容器32和人造光系统37之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括围绕所述容器32的外部布置的并且与所述容器32的外部接触的面板形式的电致发光光元件888。可替换地,所述电致发光光元件888可以向外地与所述容器32的外部间隔开。与这个所示的代表性的实施方式相关联的电致发光光元件888在结构和功能上类似于上面所描述的并且与图71-73相关联的电致发光光元件888,并且因此,这里将不再描述所述电致发光光元件。在所示的代表性的实施方式中,电致发光光元件888围绕或环绕整个容器32。应当理解,所述电致发光光元件888可以被以不同的方式定向在所述容器32的外部并且围绕不足整个容器32延伸。也应当理解,多于一个电致发光光元件888可以被布置在所述容器32的外部并且围绕所述容器32的外部延伸,并且多个电致发光光元件888可以具有任何形状并且可以,组合地,围绕所述容器32的任何比例部分延伸。
这里披露了将人造光提供到所述容器32的内部的多种不同方式。这些方式中的一些包括利用量子(quantum)点从中心光管320发射光并且将光发射到光元件356或从光元件356发射光。在其它代表性的实施方式中,量子点可以被埋在所述容器壳体76中,布置在所述容器壳体76的内表面196上,和布置在所述容器壳体76的外表面上以将光发射到所述容器32的内部。
参考图75和76,示出了另一代表性的媒介框架108。用相同的附图标记表示前面所披露的容器和媒介框架,与图75和76中所示的容器32和媒介框架108之间的类似部件。
在所示的代表性的实施方式中,所述媒介框架108包括分开式的上和下连接板112、116。上和下连接部112、116是基本上类似的,并且因此,将仅仅详细描述所述上连接板112。应当理解,关于所述上连接板112的结构、功能或替代实施例的任何描述也可以涉及到所述下连接部116。
所述上连接板112包括内构件892和外构件896,所述外构件896围绕所述内构件892同心地设置并且与所述内构件892间隔开。在所述内构件892和外构件896之间提供内间隙900,并且在所述外构件896的外表面和所述容器壳体76的内表面196之间提供外间隙904。多个光元件356被布置在所述内间隙900和外间隙904两者中,适当地设置所述内间隙900和外间隙904的大小,以在所述上连接板112转动时防止所述内构件892和外构件896擦靠在所述光元件356上(下面更详细地描述)。在一些实施方式中,在所述光元件356的布置在所述内构件892和外构件896之间的部分处以及所述光元件356的布置在外构件896和容器壳体76的内表面196之间的部分处,可以用保护层材料环绕所述光元件356,以防止所述光元件356的磨损。与这个所示的代表性的实施方式相关联的光元件356可以是这里所示出的和所描述的任何光元件356。
浮动装置908连接到所述媒介框架108以给所述媒介框架108提供浮力。在所示的代表性的实施方式中,所述浮动装置908包括连接到所述内构件892的上表面的内漂浮构件912和连接到所述外构件896的上表面的外漂浮构件916。在一些实施方式中,所述内和外漂浮构件912、916可以连接到所述内和外构件892、896的底表面。在其它实施方式中,所述浮动装置908可以连接到所述下连接板116。在进一步的实施方式中,所述浮动装置908可以连接到所述上和下连接板112、116两者。在这种实施方式中,所述浮动装置908可以包括分别连接到所述上和下连接板11、116的上部部分和下部部分。
驱动机构920与所述媒介框架108相连接以将转动施加到所述媒介框架108。在所示的代表性的实施方式中,所述驱动机构920类似于图50和51中所示的驱动机构。更具体地,销钉660连接到所述内构件892。可替换地,销钉660可以连接到所述外构件896或者所述驱动机构可以包括连接到所述内和外构件892、896的销钉660。在所示的代表性的实施方式中,所述驱动机构920仅仅连接到所述上连接板112的内构件892并且仅仅将转动给予所述上连接板112的内构件892。
为了将转动施加到所述上连接板112的外构件896,多个挠性凸片928连接到所述内构件892的外表面和所述外构件896的内表面。凸片928是足够长的以彼此交叠,使得经由所述驱动机构920转动所述内构件892时,连接到所述内构件892的凸片928接合连接到所述外构件896的凸片928并且使所述外构件896与所述内构件892一起转动。额外的凸片932连接到所述外构件896的外表面并且可以是足够长的以接合所述容器壳体76的内表面196。当所述上连接板112和凸片928、932转动时,凸片928接触布置在所述内间隙900中的光元件356,并且凸片932接合所述容器壳体76的内表面196以及布置在所述外间隙904中的光元件356。凸片928、932是足够挠性的以在接触所述光元件356时变形并且当脱离所述光元件356时返回到它们的变形前的方位。当所述凸片928、932转动时,凸片928、932擦靠在所述光元件356上,与所述媒介110擦靠在所述光元件356上相结合,以去除可能已经堆积在所述光元件356上的碎屑。在所示的代表性的实施方式中,所述凸片928、932延伸所述上和下连接板112、116之间的全部距离。在其它实施方式中,所述凸片928、932在长度上可以是更短得多并且可以仅仅在所述内和外构件892、896之间延伸。在这种实施方式中,所述凸片928、932不擦拭所述光元件356的几乎整个高度并且所述光元件356主要被在所述上和下连接板112、116之间延伸的媒介110擦拭。在其它实施方式中,所述凸片928、932可以连接到所述浮动装置908,而不是连接到所述上和/或下连接板112、116。
与图75和76相关联的上和下连接板112、116包括由间隙分离开的两个构件。应当理解,所述上和下连接板112、116能包括任何数量的构件并且仍然在本发明的精神和范围之内。例如,参考图77,所述上和下连接板112、116可以包括三个构件。更具体地,所述上和下连接板112、116可以包括内构件936、中间构件940和外构件944,其中第一间隙948在内构件936和中间构件940之间,第二间隙952在中间构件940和外构件944之间,并且第三间隙956在所述外构件944和所述容器壳体76的内表面196之间。光元件356和凸片可以被以与上面所描述的类似的方式和为了与上面所描述的类似的原因布置在所有三个间隙中。
现在参考图78和79,示出了另一驱动机构960。用相同的附图标记表示前面所披露的容器和驱动机构,与图78和79中所示的容器32和驱动机构960之间的相似部件。
驱动机构960被示为与包括与图75和76中所示的分开式的连接板相类似的分开式的上和下连接板112、116的媒介框架108一起使用。应当理解,所述驱动机构960能与这里所披露的任何其它媒介框架一起使用,诸如,包括整体式上和下连接板的那些媒介框架以及包括具有多于两个构件的其它分开式的连接板的那些媒介框架。
在所示的代表性的实施方式中,所述驱动机构960包括马达964、马达输出轴968、反转齿轮箱972、反输出轴976、多个驱动传动构件980、以及多个驱动轮组件984。所述马达964连接到所述容器32的顶部盖212并且在第一方向上转动所述马达输出轴968。所述马达输出轴968连接到所述反转齿轮箱972,所述反转齿轮箱972接收所述马达输出轴968的转动并且有助于所述反输出轴976在与第一方向反向的第二方向上转动。两个驱动传动构件980连接到所述马达输出轴968并且两个驱动传动构件980连接到所述反输出轴976。所述驱动传动构件980连接到各驱动轮组件984用以将所述马达964和反输出轴976的驱动运动传递到所述驱动轮组件984。各所示的代表性的驱动轮组件984分别包括轴988、连接到所述轴988的一对轮992、和用于给所述轮组件984提供支撑的支撑构件996。驱动传动构件980连接到各轴988以在各自的第一或第二方向上转动地驱动所述轴988。轮992与所述轴988一起转动并且接合所述内或外构件892、896中的一个的顶表面。在所述轮992以及所述内和外构件892、896的顶表面之间存在足够的摩擦,使得所述轮992的转动引起所述内和外构件892、896的转动。
在所示的代表性的实施方式中,所述内和外构件892、896中的每一个分别接合两个轮组件984,其中在所述框架108的竖直中心转动轴线的各侧上分别有一个轮组件984。由于这种构造,必须在相反的方向上驱动竖直中心转动轴的相反侧上的轮组件984,否则,驱动轮组件984将彼此对抗。因此,提供反转齿轮箱972以接收所述马达输出轴968的方向转动并且在相反的方向上转动所述反输出轴976,因此在与连接到所述马达输出轴968的两个轮组件984相反的方向上驱动连接到所述反输出轴976的两个轮组件984。在这种方式中,在所述框架108的竖直中心转动轴线的两侧上的驱动轮组件984一起工作以相互合作地驱动所述分开式框架。为了将转动运动从一个构件给到另一个构件,所示的代表性的实施方式的驱动机构960不需要将所述内和外构件892、896连接在一起。
应当理解,所示的代表性的实施方式的驱动机构960仅仅是多种实施方式的驱动机构960中的一种。所述驱动机构960能具有多种其它构造,只要所述驱动机构960能驱动分开式连接板112、116,诸如图75-79中所示的那些。例如,所述驱动机构960可以包括其它数量的轮992,可以包括不同数量的用于驱动所述分开式连接板112、116的各构件的驱动轮组件984,可以包括除了轮之外的驱动元件,可以包括不同的驱动传动构件,可以以不同的方式连接到所述容器32和支撑在所述容器32上/中,等等。
参考图80,示出了进一步的代表性的媒介框架108。用相同的附图标记表示前面所披露的容器和媒介框架,与图80中所示的容器32和媒介框架108之间的相似部件。
在所示的代表性的实施方式中,所述媒介框架108包括具有限定为从其通过的多个狭槽1000的上和下连接板112、116。上和下连接板112、116是基本上相同的。多个光元件356在所述上和下连接板112、116之间竖直地延伸并且被设置在所述狭槽1000中,适当地设置所述狭槽1000的大小以接收所述光元件356并防止所述上和下连接板112、116擦拭或以其它方式接合所述光元件356。在所示的代表性的实施方式中,上和下连接板112、116各包括八个狭槽1000,其中在各内狭槽1000中分别布置三个光元件356并且在各外狭槽1000中分别布置四个光元件356。可替换地,上和下连接板112、116可以包括其它数量的狭槽1000并且在所述狭槽1000中可以布置其它数量的光元件356。
类似于这里所披露的驱动机构中的一个或者任何其它驱动机构的驱动机构连接到框架108并且能在两个方向上转动所述框架108,使得所述框架108来回摆动。更具体地,驱动机构在第一方向上转动所述框架108,停止所述框架108,然后在相反方向上转动所述框架108,停止所述框架108,并且再次在第一方向上转动所述框架108。当需要时可以重复这个过程。为了适应这种框架摆动,狭槽1000具有弧形形状并且不完全充满光元件356(也就是说,同一组光元件356中的一端光元件356和另一端光元件356之间的弧形距离小于它们布置在其内的狭槽1000的弧形长度)。所述光元件356和狭槽1000的端部之间的这个多余的间距允许所述框架108摆动。在所示的代表性的实施方式中,所述狭槽1000和光元件356的间距使得所述框架108能摆动大约45度。可替换地,狭槽1000和光元件356的间距可以使得所述框架108能摆动其它度数。
现在参考图81,示出了冲洗系统38的一代表性的实施方式。这个代表性的冲洗系统38是可预期得到的多种类型的冲洗系统中的一种并且不旨在是限定性的。所述代表性的冲洗系统38是可操作的以在侵害物种或者其它污染物已经进入所述容器32的情况下帮助从所述媒介110去除掉藻类或者用于清洁所述容器32的内部。所述冲洗系统38允许在不拆卸所述容器32或所述系统20的其它部件的情况下冲洗或清洁所述容器32的内部。所述代表性的冲洗系统38包括加压水源(未示出)、与所述加压水源流体连通的加压水进入管42,和与所述管42流体连通的多个喷嘴43。所述喷嘴43以所期望的间距沿着所述容器壳体76的高度逐渐增加地布置并且设置在所述容器壳体76的孔或切口中。在各喷嘴43和相关孔之间形成不漏气和不漏水的密封以防止空气和水泄漏到所述容器32中或者从所述容器32泄漏出来。在一些实施方式中,所述喷嘴43设置在孔中使得所述喷嘴43的末端与所述容器壳体76的内表面196平齐或者从所述容器壳体76的内表面196凹陷,从而喷嘴不伸出到所述容器壳体76中。这确保当转动时所述媒介110不接合或不潜在地阻碍所述喷嘴43。下面将更具体地描述所述冲洗系统38的操作。
当所述容器32正在培养藻类时,所述容器32维持有益于藻类的生长的环境是重要的。对藻类的生长极为重要的一个环境参数是藻类所处的水温。所述容器32必需将其内的水维持在促进有效的藻类生长的特定温度范围内。合适的温度范围可能取决于容器32内培养的藻类的类型。例如,当容器32内培养的藻类是三角褐指藻时所述容器32内的水温应保持的尽可能接近20℃并且不超过35℃。本例子是被控制以促进有效的藻类培养的容器内的水的多种不同温度范围中的一种并且不旨在是限定性的。对于不同类型的藻类,水能被控制在不同的温度范围内。
多种不同的温度控制系统能用来帮助控制所述容器32内的水温。参考图82和83,示出了并且将在这里描述两个代表性的温度控制系统45。这些代表性的温度控制系统45是可预期得到的多种类型的温度控制系统45中的两种并且不旨在是限定性的。
尤其参考图82,示出了单个容器32和相关联的温度控制系统45。与每个容器32相关联的温度控制系统45是基本上相同的,并且因此,将仅仅示出和描述一个温度控制系统45。所述温度控制系统45包括加热部分46和冷却部分47。在需要时所述加热部分46加热水并且在需要时所述冷却部分47冷却水。所述加热部分46布置在所述容器32内并且在所述容器32的底部附近。所述加热部分46的这种定位利用了热总是上升的自然热规律。因此,当启动所述加热部分46时,被所述加热部分46加热的水上升通过所述容器32并且朝向所述加热部分46向下推动较冷的水,在所述加热部分46处所述较冷的水被加热。所述冷却部分47布置在所述容器32内并且在所述容器32的顶部附近。类似地,所述冷却部分47的这种定位也利用了自然热规律。因此,当启动所述冷却部分47时,通过使具有比冷却的水更高的温度的水上升而移动被所述冷却部分47冷却的水。冷却的水的移动使得冷却的水在容器32中向下移动。可以转动所述框架108和媒介110以帮助所述水的混合,从而在整个所述容器32内形成基本上均匀的水温。
所述加热部分46包括加热盘管49、流体入口50和流体出口51。所述入口50和出口51分别允许流体引入和排出所述加热盘管49。为了加热所述容器32内的水,与置于所述容器32内的水的温度相比,通过所述入口50引入所述加热盘管49的流体具有升高的温度。所述流体能是多种不同类型的流体,包括但不限于,液体诸如水,和气体。所述冷却部分47包括冷却盘管53、流体入口55和流体出口57。所述入口55和出口57分别允许流体引入和排出所述冷却盘管53。为了冷却所述容器32内的水,通过所述入口55引入到所述冷却盘管53中的流体具有比布置在所述容器32内的水的温度更低的温度。所述流体能是多种不同类型的流体包括,但不限于,液体诸如水,和气体。
现在参考图83,示出了温度控制系统45的另一例子。类似于图82中所示的例子,示出了单个容器32和相关联的温度控制系统45。与每个容器32相关联的温度控制系统45是基本上相同的,并且因此将仅仅示出和描述一个温度控制系统45。所述温度控制系统45包括绝热上升管58和穿到所述绝热上升管58中并且穿过所述绝热上升管58的交换管59。所述绝热上升管58通过上传递管61和下传递管62与所述容器32流体连通。来自所述容器32的水在所述上升管58以及所述上和下传递管61、62之内。如果所述容器32内的水的温度需要冷却,比所述容器32内的水的温度更低的流体穿过所述交换管59。所述上升管58内的水围绕所述交换管59并且被冷却。所述上升管58内的冷却水被所述容器32内的更温的水移动,因此使得所述容器32和所述上升管58内的水逆时针方向循环。换句话说,冷却水在所述上升管58中向下移动并且通过所述下传递管62移动到所述容器32的底部中,同时所述容器32内的较暖的水移出所述容器32,移到所述上传递管61中,并且移到所述上升管58中。如果所述容器32内的水的温度需要加热,比所述容器32内的水的温度更暖的水穿过所述交换管59。所述上升管58内的水围绕所述交换管59并且被加热。所述上升管58内的加热水上升,因此使得所述容器32和所述上升管58内的水顺时针方向循环(如同由箭头63所表示的那样)。换句话说,较温的水在所述上升管58中向上移动,并且通过所述上传递管61移到所述容器32的顶部中,同时所述容器32内的较冷的水移出所述容器32,移到所述下传递管62中,并且移到所述上升管58中。在一些实施方式中,水的更强烈的循环是所期望的。在这种实施方式中,喷头或空气入口65被设置在所述上升管58的底部附近以将空气引入到位于所述上升管58内的水中。将空气引入到所述上升管58的底部中使得所述上升管58内的水更快地上升,因此使水以更快的速度循环通过所述上升管58和所述容器32。在一些实施方式中,过滤器可以提供在所述上和下传递管61、61与所述容器壳体76的连接处以防止藻类进入所述上升管58并且潜在地减少流动性能或者完全阻塞所述上升管58。
参考图84,示出了容器32和代表性的流体管理系统28的一部分。在所示的代表性的实施方式中,所述流体管理系统28包括溢水管676、混合罐678、气体注射器或扩散器680、PH注射器682、泵684、第一组阀686、额外的处理管道688、过滤器690、杀菌器692和PH传感器484。所述溢水管676设置在所述容器32的顶部附近并且从所述容器32的顶部接收上升到所述溢水管676的高度之上的水。来自所述溢水管676的水被引入到所述混合罐678中并且气体经由所述气体扩散器680被引入到存在于所述混合罐678中的水中。板696布置在所述混合罐678中在所述气体扩散器680之上以帮助将脱离水向上上升的气体引导回水并且引导到所述流体管理系统28的下游管。引入的气体通常被称作气体进给流并且可以包括体积比为大约12%的二氧化碳。可替换地,所述进给流可以包括其它百分比的二氧化碳。
所述泵684将水和气泡的组合移动通过所述管并且在所述管中形成压差以有助于所述移动。在通过所述泵684向下泵送所述水和气泡的组合时水压增加。这个增加的水压使得气泡穿过所述水并且将气泡转换成水内的碳酸氢(bicarbonate)。藻类从水中的碳酸氢吸收二氧化碳的时间比从水中的气泡吸收二氧化碳的时间短得多。水和碳酸氢的混合物现在可以被泵送到所述容器32的底部中或者可以被转移用于进一步的处理。选择性地控制所述第一组阀686以如同所期望的那样地转移所述水和碳酸氢的混合物。在一些例子中,可能期望将所有的水和碳酸氢的混合物都泵送到所述容器32中。在其它例子中,可能期望不将任何水泵送到所述容器中并且泵送所有的水用于进一步的处理。在再其它例子中,可能期望将一些水和碳酸氢的混合物泵送到所述容器32中并且泵送一些混合物用于进一步的处理。在期望所述容器32中的水的体积不变的情形中,从所述容器32的顶部溢出的水的量应当等于泵送回到所述容器32的底部中的水的量。
泵送到所述容器32中的水和碳酸氢的混合物在所述容器32的底部附近进入所述容器32并且与已经存在于所述容器32中的水混合。这种新引入的混合物为藻类提供新的碳酸氢源,因此促进容器32内的藻类的培养。
未转移到所述容器32中的水可以转移到下游的多种额外的处理。所述液体管理系统28的额外的处理管道688在图84中大体上被示出了并且为了适应多种水处理过程可以呈现任何构造。例如,额外的处理管道688可以将水转移通过水净化器、热交换器、固体去除设备、超滤器和/或其它膜过滤器,离心机等等。其它的处理和相关的管道是可能的并且在本发明的旨在的精神和范围之内。
所述水也可以被转移通过过滤器690,诸如碳过滤器,用以从水中去除掉杂质和污染物。代表性的杂质和污染物可以包括对藻类的生长可能有负面作用的侵害性微生物诸如细菌和病毒感染以及捕食者。所述液体管理系统28可以包括单个过滤器或多个过滤器并且可以包括与代表性的碳过滤器不同的类型的过滤器。
所述水可以进一步被转移通过杀菌器692,诸如紫外线杀菌器,其也从水中去除掉杂质和污染物。所述液体管理系统28可以包括单个杀菌器或多个杀菌器并且可以包括与代表性的紫外线杀菌器不同的类型的杀菌器。
额外地,可以通过PH传感器484转移所述水用以确定水的PH。如果水具有比期望的PH更高的PH,将水的PH降低到所期望的程度。相反,如果水具有比期望的PH更低的PH,将水的PH升高到所期望的程度。可以以多种不同的方式调节水的PH。这里将仅仅描述调节水的PH的多种方式中的一些。调节PH的这些代表性的方式的描述不旨在是限定性的。在第一个例子中,所述PH注射器682用来调节水的PH。在这个例子中,所述PH注射器682布置在所述混合罐678和所述泵684之间的管中。可替换地,所述PH注射器682可以布置在所述液体管理系统28中的其它位置中。所述PH注射器682将合适类型和数量的物质注入到穿过所述管的水流中以将水的PH改变到所期望的程度。在另一例子中,所述气体扩散器680可以用来调节水的PH水平。存在于水中的二氧化碳的数量确定水的PH。通常,存在于水中的二氧化碳越多,水的PH水平越低。这样,可以控制经由所述气体扩散器680引入到所述水中的二氧化碳的数量以如同所期望的那样地升高或降低所述PH水平。更具体地,当所述PH传感器484得到PH读数并且确定水的PH水平比所期望的高时,所述气体扩散器680可以增加将二氧化碳引入到水中的速率。相反,当水的PH水平比所期望的低时,所述气体扩散器680可以降低将二氧化碳引入到水中的速率。在进一步的例子中,除了通过所述气体扩散器680引入的二氧化碳之外,所述PH注射器682可以用来将二氧化碳注射到水中。在这种方式中,所述PH注射器682和气体扩散器680相互合作以维持所期望地PH值。
在水被转移通过水处理过程诸如这里所描述的那些之后,水被泵送回到所述混合罐678中,在那里水与从所述溢水管676引入到所述混合罐678中的新水混合。所述水然后如同上面所描述的那样地向下游流动。可替换地,所述水可以被直接转移到所述容器32中而不是转移到所述混合罐678中。
应当理解,用于从水中去除掉杂质和污染物的水处理过程降低了这种杂质和污染物在藻类培养上的不利影响并且提高了水的清澈度。提高的水的清澈度允许光更好地穿透水,因此增加藻类暴露到光并且提高藻类的培养。
也应当理解,所述容器的在培养处理期间将藻类支撑在所述媒介110上的能力和维持水中的藻类的低浓度的能力,增加上面所描述的和在图84中示出的水处理过程的效率。更具体地,将其内具有低浓度的藻类的水移动通过图84中所示的液体管理系统28的部件以防止所述部件被藻类弄脏和阻塞。换句话说,存在于水中以弄脏或阻塞所述管、气体扩散器、泵、过滤器等的藻类非常少。此外,水中的低浓度的藻类防止过滤器和杀菌器去除掉或杀死大量的藻类,而去除掉或杀死大量的藻类将最终不利地影响藻类的培养。在一些代表性的实施方式中,支撑在所述媒介上的藻类的浓度与悬浮在水中的藻类的浓度的比为26∶1。在其它代表性的实施方式中,支撑在所述媒介上的藻类的浓度与悬浮在水中的藻类的浓度的比为10,000∶1。所述系统20能提供比这里所披露的代表性的比值更低和更高的藻类浓度比并且在本发明的旨在的精神和范围之内。
参考图85,示出了用于以竖直方式支撑容器32的代表性的支撑结构396。这个代表性的支撑结构396是为了示例性的目的并且不旨在是限定性的。用于以竖直方式支撑容器32的其它支撑结构是可预期得到的并且在本发明的精神和范围之内。在所示的代表性的实施方式中,所述支撑结构396包括可支撑在地面或地板表面上的基座400,从所述基座400向上延伸的竖立构件404,和被所述竖立构件404支撑并且在不同高度处从所述竖立构件404延伸以接合所述容器32的多个连接器408。所述基座400从下面支撑所述容器32和所述竖立构件404。所述竖立构件404包括一对竖直梁412和在所述垂直梁412之间延伸以给所述竖直梁412提供支撑、加强和稳定性的多个交叉梁416。在所示的代表性的实施方式中,所述支撑结构396包括四个连接器408,各连接器408包括围绕所述容器壳体76延伸的带420和布置在所述带420和所述容器壳体76之间的衬套424。所述基座400为所述容器32提供足够量的竖直支撑,同时所述竖立构件404和所述连接器408为所述容器32提供足够量的水平支撑。
参考图86和87,示出了用于以竖直和水平之间的角度支撑容器32的代表性的支撑结构1004。这个代表性的支撑结构1004是为了示例性的目的并且不旨在是限定性的。用于以竖直和水平之间的角度支撑容器32的其它支撑结构是可预期得到的并且在本发明的精神和范围之内。在所示的代表性的实施方式中,所述支撑结构1004包括支撑在地面或地板表面上的多个竖直支撑件1008,和被所述竖直支撑构件1008支撑并且接合所述容器32以给所述容器32提供支撑的支撑构件1012。
参考图88和89,示出了用于以水平方式支撑容器32的代表性的支撑结构1016。这个代表性的支撑结构1016是为了示例性的目的并且不旨在是限定性的。用于以水平方式支撑容器32的其它支撑结构1016是可预期得到的并且在本发明的精神和范围之内。在所示的代表性的实施方式中,所述支撑结构1016包括支撑在地面或地板表面上的支撑构件1020并且接合所述容器32以给其提供支撑。可替换地,为了将所述支撑构件1020和容器320提升到所述地面或地板表面之上,所述支撑结构1016可以包括布置在地面或地板表面和所述支撑构件1020之间的一个或多个竖直支撑件。
回来参考图85并且额外地参考图90-94,示出了环境控制装置(ECD)428并且其帮助维持用于在所述容器32内培养藻类的所期望的环境。所示的ECD 428是为了示例性的目的并在不旨在是限定性的。其它形状、大小和构造的ECD428是可预期得到的并且在本发明的精神和范围之内。
尤其参考图85和90,所示的代表性的ECD 428具有“蛤壳”式形状。更具体地,所述ECD 428包括第一和第二半圆形构件436、440,连接到所述第一和第二半圆形构件436、440的第一相邻端的铰链或其它枢转接头444,和连接到所述第一和第二半圆形构件436、440的第二相邻端中的每一个的密封构件448。所述铰链444允许所述第一和第二构件436、440相对于彼此围绕所述铰链444枢转并且在所述第一和第二构件436、440均完全闭合时所述密封构件448彼此邻接以提供所述第一和第二构件436、440之间的密封。
参考图85,所述ECD 428包括三组第一和第二构件436、440,在连接器408的每个之间有一组。在所示的代表性的实施方式中,所述ECD 428包括三组第一和第二构件436、440以适合使用四个连接器408。如同上面所指出的那样,所述支撑结构396可以包括任何数量的连接器408,并且因此,所述ECD 428可以包括具有任何长度的任何数量组的第一和第二构件436、440,以适应该数量的连接器408之间的间隔。例如,所述支撑结构396可以仅仅包括两个连接器408,底部连接器408和顶部连接器408,并且所述ECD428可以仅仅需要一组高的第一和第二构件436、440以基本上沿着它的在所述顶部连接器和底部连接器408之间的整个长度围绕所述容器32。
继续参考图85和90,所述ECD 428包括用于打开和闭合所述第一和第二构件436、440的马达432,连接到所述马达432的驱动轴452,和连接到所述驱动轴452以及所述第一和第二构件436、440中的相关联的一个的多个联接臂456。所述马达432启动以驱动所述驱动轴452,其将力施加在所述联接臂456上以打开或闭合所述第一和第二构件436、440。所述马达432连接到控制器40并且是可由所述控制器40控制的。在所示的代表性的实施方式中,单个马达432用来打开和闭合所有组的第一和第二构件436、440。可替换地,所述ECD428可以每组第一和第二构件436、440具有一个马达432以独立地打开和关闭各组第一和第二构件436、440,或者一个马达432用于各第一构件436且一个马达432用于各第二构件440以彼此独立地驱动所述第一和第二构件436、440,或者包括任何数量的马达432以驱动任何数量的第一和第二构件436、440或者任何数量组的第一和第二构件436、440。对于包括的每个马达432,单独的驱动轴452将与各马达432相关联以输出各马达432的驱动力。可替换地,各马达432可以包括多个驱动轴452。例如,一马达432可以包括两个驱动轴452,用于打开和闭合第一构件436的第一驱动轴452和用于打开和闭合第二构件440的第二驱动轴452。
现在参考图90-93,所述第一和第二构件436、440是可移动到多个不同位置的并且可以一起移动或者可以彼此独立地移动。所述第一和第二构件436、440可以被定位在完全闭合位置(参见图90)、完全打开位置(参见图91)、第一构件436完全打开并且第二构件440完全闭合的半打开位置(参见图92),第二构件440完全打开并且第一构件436完全闭合的另一半打开位置(参见图93),或者所述完全打开和完全闭合位置之间的多种其它位置中的任一种。
继续参考图90-93,所述第一和第二构件436、440各包括外表面460、内表面464、和在所述外和内表面460、464之间的芯部468。所述外表面460可以由多种材料制成,诸如不锈钢、铝、纤维增强塑料(FRP)、聚丙烯、PVC、聚乙烯、聚碳酸酯、碳纤维等。所述外表面460可以是白色的或者浅色的并且能反射光。所述外表面460也可以是光滑的以阻止污垢和其它碎屑附连到其上。所述芯部468可以由多种材料制成,诸如闭孔氯丁橡胶垫层、封装绝热材料(encapsulated insulation)、成形绝热材料、模制泡沫等等。所述芯部468优选为具有使所述容器与热和冷状况隔绝的性能,如同所期望的那样。所述内表面464可以由多种材料制成,诸如不锈钢、铝、纤维增强塑料(FRP)、聚丙烯、PVC、聚乙烯、聚碳酸酯、碳纤维等等。在一些实施方式中,所述外和内表面460、464可以由相同的材料制成并且具有相同的性能。所述内表面464优选为具有反光性能从而以所期望的方式(在下面更详细地描述)反射光线。为了提供这种反光性能,所述内表面464可以由反光材料制成或者可以涂覆有反光物质。例如,所述内表面464可以包括反射材料薄层、MYLAR注入有和嵌有玻璃珠的镀银铝板,反光油漆等等。
如同上面所指出的那样,所述ECD428能帮助控制环境,用于在所述容器32内培养藻类。更具体地,所述ECD428能影响所述容器32内的温度和影响照射到所述容器32的太阳光的量。
关于温度控制,所述ECD428具有选择性地使所述容器32绝热的能力。在所述第一和第二构件436、440处于完全闭合位置(参见图85和90)的情况下,所述第一和第二构件436、440沿着所述容器32的大部分高度围绕所述容器32。当外部的环境温度低于所述容器32内的期望温度时,可以将所述第一和第二构件436、440移动到它们的完全闭合位置以使所述容器32绝热并且帮助阻止更冷的周围空气冷却所述容器32内的温度。当外部的环境温度高于所述容器32内的期望温度时,可以再次将所述第一和第二构件436、440移动到它们的完全闭合位置以反射强烈的太阳光线并且阻止太阳光线照射到所述容器32。可替换地,当外部的环境温度高于所述容器32内的期望温度时,可以将所述第一和第二构件436、440移动到它们的完全打开位置(参见图91)以将所述绝热的第一和第二构件436、440移动至远离所述容器32并且允许冷却所述容器32(举例来说,通过对流冷却)。可以将所述第一和第二构件436、440移动到任何所期望的位置以帮助将所述容器32内的温度维持在所期望的温度。
关于影响照射到所述容器32的太阳光的量,可以将所述第一和第二构件436、440移动到任何所期望的位置以允许所期望量的太阳光照射到所述容器32。可以将所述第一和第二构件436、440移动到它们的完全闭合位置以阻止太阳光72照射到所述容器32(参见图90),可以将所述第一和第二构件436、440移动到它们的完全打开位置以致于不妨碍照射到所述容器32的太阳光72的量(也就是说,允许全部量的太阳光照射到所述容器-参见图91),或者可以将所述第一和第二构件436、440移动到所述完全闭合和完全打开位置之间的任何位置以允许所期望量的太阳光照射到所述容器32(参见图92和93)。
如同上面所指出的那样,所述ECD 428的内表面464由能反射太阳光72的反光材料制成。所述内表面464的反光性能可以改进所述太阳光72照射所述容器32的效率。更具体地,朝向所述容器32发射的太阳光72可以照射所述容器32和其内的藻类;在没有照射到藻类的情况下穿过所述容器32;或者完全错过所述容器32和藻类。对于后两种情形,所述ECD428可以帮助将没有照射到藻类的太阳光反射到与藻类相接触。
参考图92和93,示出了太阳光72可以沿着其反射回到与藻类相接触的两个代表性的反射路径472。这些所示的代表性的反射路径472仅仅是太阳光72可以沿着其被所述ECD428的内表面464反射的多个路径中的两个路径。这些反射路径472被示出是为了示例性的目的并且不旨在是限定性的。许多其它反射路径472是可能的并且在本发明的旨在的精神和范围之内。参考所示的代表性的反射路径472,太阳光72可以如同由路径的第一部分472A表示的那样地穿过所述容器32而没有接触所述容器32内的藻类,并且接触所述ECD428的第一和第二构件436、440的内表面464。所述内表面464如同由路径的第二部分472B所表示的那样地在第二方向上反射所述太阳光472。如同能看到的那样,所述路径的第二部分472B穿过所述容器32。这个太阳光72中的一些将接触所述容器32内的藻类,同时一些太阳光72将在没有接触藻类的情况下再次穿过所述容器32。穿过所述容器32的这个太阳光72将接合另一构件436、440的内表面464并且如同由路径的第三部分472C所表示的那样地朝向所述容器32反射回来。反射的太阳光72再次穿过所述容器32并且一些太阳光72接触所述容器32内的藻类,同时一些太阳光72在没有接触藻类的情况下再次穿过所述容器32。穿过所述容器32的这个太阳光72接合所述构件436、440的最初被太阳光72接合的内表面464,并且如同由路径的第四部分472D所表示的那样地再次反射通过所述容器32。这个太阳光72中的一些接触所述容器32内的藻类,同时一些太阳光72仍然在没有接触藻类的情况下穿过。太阳光的反射可以继续进行直到所述太阳光72接触藻类或者直到太阳光72被反射的远离所述容器32和所述第一和第二构件436、440的内表面464。如同能看到的那样,所述第一和第二构件436、440的反光的内表面464提供太阳光72接触所述容器32内的藻类的额外的机会并促进光合作用。在所述ECD428没有反光性能的情况下,穿过或者经过所述容器32的太阳光72将不具有接触所述容器32内的藻类的另一个机会。
现在参考图94,在一整天中,所述ECD428可以用来优化所述容器32内的温度和优化接触所述容器32和藻类的太阳光72的量。所述ECD428的图表示在一天的不同时间期间被所述ECD428占据的代表性的位置。图94也示出了在一整天中太阳路径的示意性的表示。图94中所示的ECD428的方位是为了示例性的目的并且不旨在是限定性的。图94中所示的ECD428的方位是所述ECD428能占据的多种方位中的代表性的一部分。许多其它方位是可预期得到的并且在本发明的精神和范围之内。
所述ECD 428的顶部图示出了所述ECD428处于在夜间期间或者在寒冷天气期间为了使所述容器32绝热并且维持所述容器32内的所期望的温度可以占据的代表性的方位。从顶部数的第二个图示出了所述ECD428处于在早上期间可占据的代表性的方位。在早上,太阳大体上位于所述容器32的一侧,并且理想地,使朝向所述太阳侧的其中一个构件是打开的(如同所示的是第一构件436)以允许太阳光72接触所述容器32并且使朝向所述太阳的相反侧的另一构件(如同所示的是第二构件440)保持闭合以提供如同上面所描述的那样的反射性。从顶部数的第三个图示出了所述ECD 428处于在中午或者一天的中间阶段期间可以占据的代表性的方位。在一天的中间阶段期间,太阳通常处于天空高处并且在所述容器32正上方(或者如同图94中所示的那样在所述容器32的前面)。在太阳处于这种位置的情况下,使所述第一和第二构件436、440都打开以允许最大量的太阳光472接触所述容器32可能是所期望的。所述第一和第二构件436、440也可以提供如同上面所描述的那样的反射性能用以朝向所述容器32反射太阳光72。从顶部数的第四个图示出了所述ECD处于在下午期间可以占据的代表性的方位。在下午,太阳通常位于所述容器32的一侧(与早上的太阳相反的一侧)并且使朝向太阳的其中一个构件是打开的(如同所示是第二构件440)以允许太阳光72接触所述容器32并且使朝向太阳的相反侧的另一构件保持闭合(如同所示是第一构件436)以提供如同上面所描述的那样的反射性能可能是所期望的。底部图示出了所述ECD428再次处于在夜间或者寒冷天气期间占据的代表性的方位。如同上面所指出的那样,图94中所示的所述ECD428的方位仅仅是在一天期间可以占据的代表性的方位。由于多种原因,诸如,围绕所述容器32的环境条件,所述容器32内的藻类的类型,所述容器32的所期望的性能等等,在一整天的不同时间期间所述ECD428可以占据不同的方位。
图85和90-94中所示的ECD428包括大小被设置成与所述容器32的大小紧密相一致的第一和第二构件436、440。更具体地,在所述第一和第二构件436、440的内表面和所述容器壳体76的外表面196之间仅仅存在一小间隙。所述第一和第二构件436、440的所示的大小是为了示例的目的并且不旨在是限定性的。应当理解,所述第一和第二构件436、440可以具有相对于所述容器32的大小的任何大小。例如,图95示出了具有类似于图90-93中所示的容器32的大小的容器32并且示出了显著地大于图90-93中所示的那些的第一和第二构件436、440。可以以与图90-93中所示的第一和第二构件相类似的方式操作所述更大的第一和第二构件436、440,然而,可以打开所述更大的第一和第二构件436、440以提供用于朝向所述容器32反射更大量的太阳光的更大的反光面积。
图85和90-94中所示的ECD428也包括具有与所述容器32的形状相类似的形状的第一和第二构件436、440。更具体地,所述容器32具有基本上圆柱形的形状并且具有圆形的水平横截面,并且所述第一和第二构件436、440在闭合时形成围绕所述容器32的基本上圆形的水平横截面。应当理解,所述第一和第二构件436、440可以具有与所述容器32不同的水平横截面形状。例如,所述容器32可以具有圆形的水平横截面形状并且所述第一和第二构件436、440可以具有非圆形的横截面形状,诸如,任何多边形形状或任何弧形周边形状。此外,只要它们彼此具有不同的形状,所述容器32可以具有任何多边形形状或任何弧形周边形状并且所述第一和第二构件436、440可以具有任何多边形形状或者任何弧形周边形状。
也应当理解,所述ECD428能具有与所示的代表性的蛤壳构造不同的构造。例如,所述ECD428可以包括多个半圆形构件476,它们一起同心地围绕所述容器32并且可围绕所述容器32滑动,使得当移动到它们的打开位置时所述构件476彼此交叠或者嵌套在彼此之内(参见图96-99)。在所示的例子中,所述第一和第二构件476A、476B相对于彼此和所述容器32移动以如同所期望的那样地暴露所述容器32。第三构件476C布置在所述容器32的后面,典型地在所述容器32的背对着太阳的位置的一侧上,并且可以是固定的或可移动的。
现在参考图100和101,所述ECD 428可以包括人造光系统37。用相同的附图标记表示先前描述的容器、人造光系统和ECD与图100和102中所示的容器、人造光系统和ECD之间的相似部件。
在所示的代表性的实施方式中,所述人造光系统37包括光源41,所述光源41由连接到所述第一和第二构件436、440(仅仅示出了一个构件)的内表面464的一排LEDs阵列构成。可替换地,其它类型的光源41可以连接到所述构件436、440的内表面464,诸如荧光灯、白炽灯、高压钠灯、金属卤化物灯、量子点、光纤、电致发光灯、频闪灯、激光等等。所述LEDs 41电连接到电源和控制器40。所述LEDs 41操作并且可以以与这里所描述的其它人造光系统37相同的方式控制所述LEDs 41以将光发射到所述容器32和藻类上。在一些实施方式中,所述LEDs 41可以嵌入在所述内表面464中,使得所述LEDs 41与所述内表面464平齐。在这种实施方式中,所述内表面464可以冲压有孔,所述孔匹配所期望的LED阵列结构以接收所述LEDs 41和将所述LEDs定位成与所述内表面464平齐。
参考图102和103,所述ECD428包括另一实施方式的人造光系统37。用相同的附图标记表示先前所披露的容器、人造光系统、和ECD与图102和103中所示的容器、人造光系统和ECD之间的相似部件。
在这个所示的代表性的实施方式中,所述人造光系统37包括光源41,所述光源41由埋在所述第一和第二构件436、440(仅仅示出了一个构件)的内表面464中的多个光纤光通道构成。所述光纤光通道41可以接收多种方式的光,包括LEDs和其它光发射装置或者来自定向成接收太阳光72并且经由光纤缆线将收集的太阳光72传递到所述光通道41的太阳光收集设备。如同所期望的那样,可以由控制器40控制所述光通道41。
现在参考图104和105,示出了容器32的另一代表性的实施方式。在这个所示的代表性的实施方式中,所述壳体76由不允许大量光穿透所述壳体76的不透明材料制成。所述壳体76可以由多种不同材料制成,诸如金属、不透明塑料、混凝土、玻璃纤维、衬里结构等等。所述容器32也包括围绕所述壳体76用以使所述容器32绝热的绝热层700和设置在所述绝热层700的外面并且围绕所述绝热层700用以保护所述绝热层700的外层704。所述绝热层700可以由多种不同材料构成,诸如塑料、玻璃纤维、石棉、闭孔和开孔聚苯乙烯、聚氨酯泡沫、纤维素纤维等等,并且所述外层704可以由多种不同材料构成,诸如,塑料、玻璃纤维、金属、油漆、密封剂等等。应当理解,在其中所述绝热层700和所述外层704中的至少一个由不透明材料构成的一些代表性的实施方式中,所述容器32的壳体76可以是半透明的或透明的。
继续参考图104和105,为了在其内培养藻类,所述容器32进一步包括多个光元件708用以将光从所述容器32的外部传送到所述容器32的内部。在一些代表性的实施方式中,构成所述光元件708的材料可以包括应用到所述光元件708或者包含在所述光元件材料的合成物中的红外线抑制材料或红外线过滤材料以在光从其穿过时减少或限制发生在所述光元件708中的热聚集。在所示的代表性的实施方式中,所述光元件708设置在限定通过所述壳体76、所述绝热层700和所述外层704的孔中。各光元件708在它的端部处与所述壳体76的内表面196和所述外层704的外表面712平齐。所述光元件708被以不漏水和不漏气的方式密封在所述孔内以防止所述容器32内的水泄漏到所述孔中。在其它代表性的实施方式中,所述光元件708邻接或者被布置成邻近所述壳体76的外表面并且将光发射的通过所述透明或半透明壳体76。在这种可选实施方式中,不需要在所述壳体76中钻用于容纳所述光元件708的孔。为了在所述容器32内培养藻类的目的,所述光元件708可以由多种光传输材料(light transmitting material)制成,诸如,玻璃纤维,光纤,塑料诸如丙烯酸酯等,以从所述容器32的外部接收光并且朝向所述容器32的内部传输所收集的光。而且,所述光元件708可以由不会因为暴露到布置在所述容器32之内或外侧的光或液体而退化或以其它方式不利地影响的材料制成。在所示的代表性的实施方式中,所述光元件708适于从太阳接收自然光。而且,在所示的代表性的实施方式中,每个所述光元件708的邻近所述外层704的端部(也就是,外端)与所述外层704的外表面712平齐。
参考图106,每个所述光元件708的外端可以延伸超过所述外层704的外表面712。在这种实施方式中,所述光元件708的外端可以朝向太阳倾斜以使所述外端与所述太阳最佳地对准。
在以上面所描述的和图104-106中所示的方式构造容器32的情况下,所述容器32可以由不昂贵的、更耐用的以及更耐热和环境条件的材料制成。这些容器32可以消除采用第二结构围绕所述容器32以提供对于热和环境条件的保护的需求。在以参考图104-106描述的方式构造所述容器32时,结合有所述光元件708以有助于光传输到所述容器32中。
现在参考图107,示出了容器32的另一可选的代表性的实施方式。图107中所示的容器32具有许多与图104-106中所示的容器32相类似的元件并且这种相类似的元件由类似的附图标记表示。在图107中,人造光系统37布置在所述容器32的外部并且朝向所述容器32发射光。在所示的代表性的实施方式,所述人造光系统37完全围绕所述容器32的周边。在其它代表性的实施方式中,所述人造光系统37可以不完全围绕所述容器32的周边。在再其它代表性的实施方式中,多个人造光系统37可以布置在围绕所述容器32的多个位置处。不论哪一个实施方式,所述人造光系统37都是用来给所述光元件708提供光的,所述光元件708接收光并且朝向所述容器32的内部传送光。所述人造光系统37可以是提供给所述容器32的唯一光源,或者所述人造光系统37可以与自然太阳光结合使用以满足所述容器32的光需求。
已经描述了藻类培养系统20的结构,这里将描述所述系统20的操作。下面的涉及所述藻类培养系统20的操作的描述仅仅作为操作所述系统20的多种可能方式的例子。下面的描述不旨在限定所述藻类培养系统20以及操作方式。
回来参考图1和2,从多个不同的二氧化碳源44中的一个或多个收集二氧化碳。从作为制造或工业过程的副产品产生的排放物收集二氧化碳通过减少排放到环境中的二氧化碳的量对于环境是尤其有帮助的。也能通过未示出的但是大体上由第N个框表示的多个不同源44提供二氧化碳。最终的二氧化碳经由气体处理部件诸如所述气体管理系统24的二氧化碳冷却系统,以及有毒气体和化合物净化系统,以及管网48从所述一个或多个二氧化碳源44输送到所述容器32。在将二氧化碳输送到所述容器32之前,所述容器32应当填充有足够程度的水和初始量的藻类(也被认为是种藻类)。经由所述液体管理系统28的水进入管56将水提供到所述容器32并且能以多种方式将藻类引入到所述容器32中。如果所述容器32是“新的”容器(也就是说,在所述容器中没有发生先前的藻类培养或者已经清洁所述容器以完全去除掉藻类的存在),藻类能被引入到所述液体管理系统28中并且被输送到具有水源的所述容器32。可替换地,如果所述容器32先前已经被用于藻类培养了,来自先前的培养处理的藻类可能已经在所述容器32中了。在这种例子中,仅仅水需要被供应到所述容器32。在所述容器32被充分地供应了水和藻类之后,经由所述气体管理系统24将二氧化碳供应到所述容器32。如同在图1和2中所示的那样,所述气体和液体管理系统24、28电连接到所述控制器40并且被所述控制器40控制。
由于多种原因,用在所述藻类培养系统20中的媒介110有助于多产性的藻类培养。第一,所述媒介110由适于藻类生长的材料构成。换句话说,所述媒介110不是由阻碍藻类的生长和杀死藻类的材料构成。第二,所述媒介110由在它的生长期间所述藻类能附连到其上并且藻类能置于其上的材料组成。第三,所述媒介110提供藻类能在其上生长的大量密集表面区域。大量可用的媒介表面区域诱使藻类在所述媒介110上生长而不是悬浮在水中,因此有助于大量的藻类支撑在所述媒介110上并且仅少量藻类保持悬浮在水中。换句话说,存在于所述容器32中的总藻类中的较高浓度的藻类支撑在所述媒介110上而不是悬浮在水中。悬浮在水中的少量藻类不会显著地抑制太阳光72穿透到所述壳体76中,因此提高所述容器32中发生的光合作用的效率。第四,所述壳体76的腔84内的大量媒介110用来抑制和减缓二氧化碳上升到所述壳体76的顶部,因此增加二氧化碳在支撑于所述媒介110上的藻类附近的水中驻留的时间。增加二氧化碳在藻类附近驻留的时间将增加藻类吸收二氧化碳并且增强藻类的生长率。第五,正好在从所述容器32抽出藻类和水之前和在所述抽出期间(下面更详细地描述),所述媒介110为支撑在其上的藻类提供保护。尽管这里描述了所述媒介110的多种益处,这个所列出的益处不是排他性的并且不意味着是限定性的。所述媒介110可以为藻类培养提供其它益处。
继续参考图1和2并且额外地参考图3,所述框架108是可在所述容器32内相对于它们各自的壳体76转动的。在所示的代表性的实施方式中,单个马达224连接到多个框架108以相对于它们各自的壳体76转动所述多个框架108。可替换地,单独的马达224能用来驱动各框架108或者多个马达224能用来驱动多个框架108。不论所述马达224的数量是多少或者不论所述马达224驱动所述框架108的方式是什么样的,所述马达224都电连接到所述控制器40并且是可由所述控制器40控制的以相应启动和停止所述马达224。在下面的描述中,将仅仅参考单个马达224。如同上面所指出的那样,所述马达224是驱动机构的组成部分,所述驱动机构也包括连接在所述马达224和连接到所述轴120的端部的齿轮220之间的带或链228。当期望所述框架108转动时,所述控制器40启动所述马达224以驱动所述带228、齿轮220和轴120,因此相对于所述壳体76转动所述框架108和附连到所述框架108的媒介110。在一些代表性的实施方式中,所述框架108可以在单个方向上转动。在其它代表性的实施方式中,所述框架108可以在两个方向上转动。
由于几个原因,所述框架108和媒介110的转动是所期望的。首先,转动所述框架108和媒介110以如同所期望的那样地将支撑在所述媒介110上的藻类暴露到太阳光72和/或所述人造光系统37。所述框架108以这种方式转动以基本上成比例的方式或者以对于藻类的培养来说最有效的方式将所有的媒介110和所有的藻类暴露到所述光37、72。此外,所述框架108以这种方式转动也将所述媒介110和藻类移出所述光37、72并且移到所述容器32的阴暗或暗部分,因此提供所需要的暗阶段以有助于光合作用过程。能用多种方法和速度转动所述框架108和媒介110。在一些实施方式中,所述框架108的转动能是增量式的(incremental),从而以所期望的时间增量和所期望的距离增量开始和停止所述转动。在其它实施方式中,所述框架108以连续的不中断的方式转动使得在所述藻类的培养处理期间所述框架108总是转动的。这样,最外面的媒介绳110连续地擦拭所述壳体76的内表面196。在上面所描述的任一实施方式中,所述框架108的转动是相对缓慢的,使得支撑在所述媒介110上的藻类不从所述媒介110被逐走。
所述框架108的转动,如同上面所讨论的那样,也为所述藻类培养系统20提供另一益处。在限定于所述上和下连接板112、116中的凹进132之间延伸的最外面的媒介绳110接触所述壳体76的内表面196。当所述框架108转动时,最外面的媒介绳110擦靠在所述壳体76的内表面196上并且逐出附连到所述内表面196的藻类。附连到所述壳体76的内表面196的藻类显著地减少穿透所述壳体76并且进入所述腔84的光37、72的量,因此负面地影响光合作用和藻类生长。因此,所述内表面196的这种擦拭提高光37、72穿透所述壳体76并且穿到所述腔84中以维持所期望的藻类培养水平。例如,在藻类培养期间,在大约每几个小时一圈360°和大约小于一分钟一圈360°之间的速度转动所述框架108。这些代表性的转动是为了示例性的目的并且不旨在是限定性的。所述框架108能以多种其它速度转动,其仍然在本发明的精神和范围之内。
所述框架108的转动,如同上面所讨论的那样,也为所述藻类培养系统20提供再另一益处。所述框架108的转动使得在水内并且附着在所述媒介110或藻类上的氧气泡朝向所述容器32的顶部移动和上升。然后经由所述气体排出管52从所述容器32排出所述氧气。所述容器32内的高氧含量可以抑制藻类的光合作用过程,因此降低所述系统20的产量。所述框架108以上面所描述的第一种方式转动可能是足以从所述媒介110和藻类逐走氧气的。可替换地,可以快速地轻摇、步进地转动、或者快速地转动所述框架108以逐走氧气。
可以收集经由所述气体排出管52排出的氧气用以转售或者用在其它应用中。期望所收集的氧气具有高氧含量且其它成分诸如二氧化碳、氮气等含量低。在一些实施方式中,可以控制所述系统20以优化氧气含量和使其它成分含量最小化。用于优化氧气含量的这种方式的一个例子包括:关闭将二氧化碳引入到所述容器32中的引入,允许适量的时间经过,以所期望的方式转动所述框架108从而在所述适量的时间已经过去之后逐出氧,打开所述气体排出管52(或者其它排出阀/管/等等),通过所述气体排出管52排出氧气,将排出的氧气发送到存储容器或下游用以进一步处理。在这种例子中,所述系统20可以包括与引入二氧化碳的部件连通的阀或电磁阀以选择性地控制二氧化碳的引入,与所述气体排出管52连通的阀或电磁阀以选择性地控制从所述容器32排出氧气,和用于将从所述容器32排出的氧气移到所述存储容器和/或下游用以进一步处理的吹风机或其它移动装置。通过关闭所述气体排出管52并且重新将二氧化碳引入到所述容器32中继续进行藻类培养循环。
为了另一目的,所述框架108也是可以第二种方式转动的。更具体地,仅仅在从所述容器32去除掉水和藻类之前转动所述框架108以从所述媒介110逐出藻类。从所述媒介110去除掉藻类是所期望的以致于能从所述容器32去除掉藻类并且收获所述藻类用以燃料生产。所述框架108的这种转动是相对快速的以形成足够的离心力从而从所述媒介110逐出藻类,但是不太快到可能损害藻类的程度。所述框架108和媒介110在这种方式中的代表性的转动速率是大约一转每秒。可替换地,所述框架108和媒介110能以其它速度转动,只要以所期望的方式从所述媒介110逐出藻类。所述框架108和媒介110的转动速度可能取决于在所述容器32内生长的藻类的类型。例如,对于第一种类的藻类,所述框架108和媒介110可以以第一速度转动,并且对于第二种类的藻类可以以第二速度转动。由于藻类种类的特性,对于从所述媒介110逐出藻类来说不同的转动速率可能是必需的。一些藻类种类可能以比其它藻类种类更大程度地附着或粘附到所述媒介110。在一些实施方式中,控制所述框架108的转动以从所述媒介110逐出大部分藻类,但是将少量的藻类维持在所述媒介110上以用作下一个培养处理的种藻。在这种实施方式中,在开始下一个培养处理之前不需要将藻类引入到所述容器32中。在其它实施方式中,控制所述框架108的转动以从所述媒介110逐出所有的藻类。在这种实施方式中,在开始下一个培养处理之前必需将藻类引入到所述容器32中。可以经由所述液体管理系统28将藻类引入到具有水的容器32中。
如同上面所指出的那样,在从所述容器32取出水和藻类组合之前从所述媒介110逐出藻类是所期望的。为了这一点,所述控制器40发动所述马达224从而以相对快的速度转动所述框架108。这种快速的转动也将最外面的媒介绳110擦靠在所述壳体76的内表面196上以清扫掉可能积聚在所述壳体76的内表面196上的任何藻类。在现在足够量的藻类置于水中的情况下,可以从所述容器32取走水和藻类的组合。所述控制器40与所述液体管理系统28连通以开始通过所述水出口100从所述容器32取走水和藻类。所述液体管理系统28的泵将所述水和藻类的组合引导到下游用以进一步的处理。
在一些实施方式中,所述藻类培养系统20包括超声设备,所述超声设备用于相对于所述壳体76移动所述媒介110从而使所述媒介110擦靠在所述壳体76的内表面196上,因此从所述壳体76的内表面196清扫掉任何积聚的藻类。所述超声设备由所述控制器40控制并且能以多种频率级操作。例如,所述超声设备可以以相对低的频率和以相对高的频率操作。所述超声设备以低频率的操作可能引起所述媒介110的移动,用于擦拭所述壳体76的内表面196,但是是足够低的以不从所述媒介110逐出藻类。所述超声设备以高频率的操作可能引起所述媒介110的显著的或更紊乱的移动,其用于在从所述容器32取走水和藻类之前从所述媒介110逐出藻类。然而,以高频率操作所述超声设备不损害藻类。例如,所述超声设备可以以在大约40KHz到大约72KHz之间的低频率操作并且可以以在大约104KHz到大约400KHz之间的高频率操作。这些频率范围仅仅是代表性的范围并且不旨在是限定性的。这样,所述超声设备能以多种其它频率操作。所述藻类培养系统20可以包括用于移动所有容器32内的媒介110的单个超声设备,所述系统20可以包括用于所述容器32中的每一个的单独的超声设备,或者所述系统20可以包括用于移动多个容器32中的媒介110的多个超声设备。
在其它实施方式中,所述藻类培养系统20包括能移动所述媒介110和/或所述框架108以使得所述媒介110擦靠在所述容器32的内表面196上并且在准备从所述容器32取出水和藻类时从所述媒介110逐出藻类的其它类型的装置。例如,所述藻类培养系统20可以包括以上下的线性方式移动所述框架108和媒介110的线性平移器。在这种例子中,所述线性平移器以包括慢速度和快速度的至少两种速度操作,当以所述慢速度操作时所述框架108和媒介110的平移速度足以使得所述媒介110擦靠在所述内表面196上但是不使藻类从所述媒介110被逐出,当以所述快速度操作时所述框架108和媒介110的平移速率足以从所述媒介110逐出所述藻类而不损害所述媒介110。作为另一例子,所述藻类培养系统20可以包括振动装置,所述振动装置振动所述框架108和媒介110,并且是可以包括慢速度和快速度的至少两种速度操作的,当以所述慢速度操作时所述框架108和媒介110的振动足以擦靠在所述内表面196上并且不从所述媒介110逐出藻类,当以所述快速度操作时所述框架108和媒介110的振动足以从所述媒介110逐出藻类。所述藻类培养系统20可以包括用以移动所有容器32内的媒介110的单个振动装置,所述系统20可以包括用于所述容器32中的每一个的单独的振动装置,或者所述系统20可以包括用于移动任何数量的容器32中的媒介110的任何数量的振动装置。
在再其它实施方式中,所述藻类培养系统20能利用所述气体管理系统24移动所述媒介110和/或所述框架108以使得所述媒介110擦靠在所述容器32的内表面196上和在准备从所述容器32取出水和藻类时从所述媒介110逐出藻类。在这种实施方式中,所述气体管理系统24是可由所述控制器40控制的从而以至少三种方式将二氧化碳和伴随气体释放到所述容器32中。第一种方式包括以相对低的量和速率将气体释放到所述容器32中。在期望正常地培养藻类的时期期间,以这种第一种方式释放气体。所述第二种方式包括中等地将气体释放到所述容器32中。当期望足够地移动所述媒介110以使得所述媒介110擦靠在所述壳体76的内表面196上但是不使得藻类从所述媒介110逐出时以这种第二方式释放气体。所述第三种方式包括快速或汹涌地将气体释放到所述容器32中。当期望足够地移动所述媒介110以从所述媒介110逐出藻类时以这种第三种方式释放气体。
回来参考图81,将描述所述冲洗系统38的操作。如同上面所指出的那样,所述冲洗系统38帮助从所述媒介110去除掉藻类。可以在所述容器32充满水时或者在已经从所述容器32排出水之后启动所述冲洗系统38。当期望时,所述控制器40启动所述喷嘴43以从所述喷嘴43喷射加压水并且喷射到所述容器32中。所述喷嘴43可以是可操作的从而以大约20psi的压力喷射水。可替换地,所述喷嘴43可以以大约5psi和大约35psi之间的压力喷射水。加压水喷射到所述媒介110上并且从所述媒介110逐走藻类。在一些实施方式中,当所述喷嘴43正在喷射加压水时所述框架108和媒介110可以转动。所述框架108和媒介110的转动在所述喷嘴43的前面移动所述容器32内的所有媒介110以在启动时期提供从所有媒介110并且不仅仅是从在所述喷嘴43正前方的媒介110去除掉藻类的机会。
可以以其它方式使用所述冲洗系统38,诸如,在侵害性物种或其它污染物已经进入所述容器32的情况下清洁所述容器32的内部。例如,所述容器32可以被排干存在其内的任何水和藻类,可以启动所述冲洗系统38以将水喷射到所述容器32中直到所述容器32充满了水,通过使用氢氧化钠(sodiumhydroxite)或其它物质将水的PH值升高到大约12或13以最终杀死所述容器32中的任何侵害性物种或其它污染物,所述框架108和媒介110在一个或两个方向上转动以引起所述容器32中的湍流并且擦靠在所述容器32的内侧上,并且然后排干所述容器32。这些步骤可以重复进行直到清除掉了所有的侵害性物种或污染物。接下来,所述冲洗系统38通过将清洁水引入到所述容器32中直到它充分地装满而清洗容器32,所述框架108和媒介110再次转动以形成湍流并且擦靠在所述容器32的内部上,检测水的PH,并且排干水。在一些实施方式中,当所述水达到大约7的PH时,所述容器32准备好再次用于藻类培养。所述容器32可能需要清洗几次以获得7的PH值。在其它代表性的实施方式中,取决于所培养的藻种类,其它PH可能是所期望的。在所述冲洗系统38的这个代表性的操作中,在不需要拆卸所述容器32或所述系统20的其它部件的情况下清洁所述容器32,因此在所述容器32被污染的情况下能节省时间。
在其它代表性的实施方式中,所述冲洗系统38可以不包括多个喷嘴并且相反可以包括一个或多个水入口以将水引入到所述容器32中用以清洁和清洗。
在再其它代表性的实施方式中,已经存在于所述容器32中的水进入管56和水入口96可以用于将水引入到所述容器32中用以清洁和清洗。
无论用来从所述媒介110逐出藻类的方式是什么样的,在逐出所述藻类之后所述藻类培养系统20准备从所述容器32取走水和藻类的组合物。为此,所述控制器40启动所述液体管理系统28,以经由所述水出口100从所述容器32泵送水和藻类的组合物。可替换地,可以通过所述容器32的底部中的开口88排干水。所述水和藻类从所述开口88和/或所述水出口100经由管向下游传送以被处理成燃料诸如生物柴油。处理的最初步骤可以包括用过滤器从水过滤藻类。额外的步骤可以包括在已经从所述容器32提取藻类之后净化和沉淀藻类。在从所述容器32取走水和藻类组合物之后,通过将水引入回到所述容器32中,所述藻类培养系统20能开始另一个藻类培养处理用以进一步的培养。
上面所描述的藻类培养处理能被认为是循环培养处理。循环的特征能在于用水完全充满所述容器32,在所述容器32内进行整个培养循环,和从所述容器32完全或基本上完全排干水。在一些实施方式中,所述藻类培养系统20能执行其它类型的处理,诸如,连续的藻类培养处理。连续处理在许多方面是与循环藻类培养处理类似的,但是具有一些不同,这里将描述这些不同。在连续处理中,所述容器32不被完全排干以去除掉水和藻类组合物。相反,连续地、基本上连续地、或者周期地从所述容器32虹吸或排出水和藻类的一部分。在一些实施方式中,所述控制器40控制所述液体管理系统28以通过入口56将足够量的水添加到所述容器32中,从而使所述容器32内的水位升高到所述容器32中的出口60之上。通过所述出口60自然地排出水和容纳在所述水中的藻类并且所述水和容纳在所述水中的藻类向下游行进用于处理。引入足够的水以引起水和藻类的通过所述出口40的这个溢流能以所期望的增量方式进行或者能以连续的方式进行(也就是说,水位总是足够高的以引起通过所述容器32中的出口60的溢流)。在其它实施方式中,所述控制器40控制所述液体管理系统28以从所述容器32取走水和藻类组合物的一部分并且将基本上等于取走的量的水引入到所述容器32中从而替换取走的水。水的这种取走和补充能以特定期望的增量的方式进行或者能以连续的方式进行。控制所述系统的其它方式可以用来执行连续地处理藻类。所述藻类培养系统20以这些连续方式中的任一方式的操作减少如循环过程中发生的当从所述容器32取走所有的水和藻类时所经历的的藻类生产停止时间。在连续过程中,水总是存在于所述容器32中并且藻类在所述水中连续地生长。在一些实施方式中,所述框架108和媒介110以所期望的增量相对高的速度转动以将藻类引入到水中,从而能以上面所描述的溢流方式或者以也如同上面所描述的那样的增量方式取走水的方式从所述容器32排出藻类。
无论用来在所述容器32内培养藻类的方式或过程是什么样的,在培养处理期间能过滤所述容器32内的水以去除掉培养期间藻类产生的新陈代谢的废物。水中的高含量的新陈代谢的废物对于藻类的培养是有害的。因此,从水去除掉新陈代谢的废物改进了藻类的培养。
可以以多种方式从水去除掉新陈代谢的废物。一种代表性的方式包括从所述容器32取走水,从所述水过滤所述新陈代谢的废物,和将水返回到所述容器32。本发明的系统20有助于为了去除掉所述新陈代谢的废物的目的的水过滤。如同上面所指出的那样,存在于所述容器32中的大量藻类位于存在于所述容器32中的媒介110上或者附着在其上,因此导致少量的藻类漂浮在所述容器32内的水中。在少量的藻类漂浮在水中的情况下,能容易地从所述容器32取走水而无需从水过滤大量藻类,并且在过滤过程期间对藻类的疏松(loosing)、浪费或过早收获的的潜在可能性被最小化。而且,在大量的藻类位于所述媒介110上或者附着到所述媒介110的情况下,在取走、过滤和再引入水时藻类保持在所述容器32中以继续培养。应当理解,水过滤的这种代表性的方式仅仅是多种可以用于从水过滤新陈代谢的废物的方式中的一种并且不旨在是限定性的。因此,水过滤的其它方式在本发明的旨在的精神和范围之内。
现在参考图108-119,示出了容器32的另一代表性的实施方式。在这个所示的代表性的实施方式中,所述容器32明显大于其它所披露的容器32。例如,这个所示的容器可以具有大约125英尺的直径,大约30英尺的高度并且可以容纳直到大约2,750,214加仑的水。可替换地,这个所示的容器32可以具有其它大小并且在本发明的精神和范围之内。这个容器32可以设置在地面之上、地面之下,或者具有与地面水平的顶表面。
尤其参考图108和109,容器32包括壳体1024、盖1028、底部1032、多个可转动的框架1036、布置在所述壳体1024中用于支撑框架1036的支撑结构1040,用于在顺时针方向和逆时针方向上转动框架1036的驱动机构1044,和多个光元件356。在所示的代表性的实施方式中,壳体1024由不透明材料制成并且通过所述透明或半透明的盖1028并通过人造光源诸如光元件356将光提供到所述容器32中(下面更详细地描述)。可替换地,盖1028可以由不透明的材料制成并且可以单独通过人造光将光提供到所述容器32的内部。在一些代表性的实施方式中,壳体1024可以由透明或半透明的材料制成以允许光穿透其并且穿到所述容器32的内部。
支撑结构1040包括上支撑构件1052和下支撑构件1056,所述上支撑构件1052和下支撑构件1056都连接到所述壳体1024并且给所述可转动的框架1036提供支撑。上和下支撑构件1052、1056各提供多个连接器1060,所述多个连接器1060分别连接到所述框架1036的上部部分和下部部分以及独立的光元件356。
参考图110,底部1032布置在下支撑构件1056的下面并且能接收落入到它内的藻类和水用以将藻类和水从所述容器32转移到下游处理。在所示的代表性的实施方式中,单个大底部1032设置在所述容器32的下面以接收所述容器32内的所有藻类和水。可替换地,多个更小的底部可以布置在所述容器的下面以接收所述容器内的藻类和水。在这种实施方式中,例如,在各可转动的框架下面可以分别设置一个底部以接收从它的对应框架落下的藻类。应当理解,所述容器可以包括任何数量的底部并且在本发明的精神和范围之内。管道1064连接到所述底部1032并且与这里所披露的其它管道相类似地执行。例如,管道1064可以形成吸压力以帮助从所述容器32取走水和藻类。
尤其参考图109,为了清楚,已经去除掉了盖1028和上支撑构件1052并且能看到所述多个框架1036和驱动机构1044。在所示的代表性的实施方式中,容器32包括七个框架1036并且驱动机构1044包括连接到所述七个框架1036以在任一方向上驱动所述框架1036的多个带或链1068。应当理解,容器32可以包括其它数量的框架1036并且所述驱动机构1044可以包括其它构造的带和链1068并且仍然在本发明的旨在的精神和范围之内。而且,在所示的代表性的实施方式中,容器32包括布置在可转动的框架1036之间的间距中的六个独立的光元件356。光元件356将额外的人造光提供到所述容器32的内部。应当理解,容器32可以包括其它数量的光元件356并且仍然在本发明的旨在的精神和范围之内。也应当理解,所述光元件356可以是这里所披露的任何类型的光元件356或者在本发明的精神和范围内的其它类型的光元件。
现在参考图109、111和112,将描述可转动的框架1036。多个框架1036是基本上相同的,并且为了简短,这里将仅仅描述一个框架1036。各框架1036包括上和下连接板112、116,连接到所述上和下连接板112、116并且在所述上和下连接板112、116之间延伸的媒介110,中心光管320,底部支撑件668,上部和下部连接器1072,以及多个擦拭件1076。
在所示的代表性的实施方式中,以简化的方式表示媒介110,然而,媒介110可以是这里所披露的任何类型的媒介110或者在本发明的精神和范围内的其它类型的媒介。而且,在所示的代表性的实施方式中,中心管320布置在所述框架1036的中心处用于从所述框架1036的中心发射人造光。应当理解,这里所披露的任何人造照亮方式或者本发明的精神和范围内的其它类型的人造照亮方式可以设置在所述中心管320内以发射人造光。也应当理解,光元件356可以设置在所述框架1036的中心,而不是设置在中心管320内,并且这种光元件356可以是这里所披露的任何类型的光元件356或者本发明的精神和范围内的其它类型的光元件。
尤其参考图112,底部支撑件668类似于上面所描述的底部支撑件668。在底部支撑件668的这个所示的代表性的实施方式中,底部支撑件668包括中心插座608、从所述中心插座608延伸的多个臂612,和由所述臂612支撑的多个辊装置616。中心管320刚性地固定到所述中心插座608以抑止所述管320和所述插座608之间的移动。从所述容器32排水可以使得框架1036在所述容器32中下降直到所述下连接板116搁置在所述辊装置616上。如果在从所述容器32排出水后期望所述框架1036转动,所述辊装置616有助于这种转动。所述底部支撑件668可以由不锈钢或其它相对密实的材料制成以给所述底部支撑件668提供相对重的重量,其抵抗当所述容器32填充有水时向上施加到所述框架1036的浮力。
所述框架的上和下连接器1060分别与限定在所述上和下支撑构件中的连接器1052、1056相连接。连接器1052、1056、1060可以以压配合或干涉配合的方式,主动锁定的方式,结合的方式诸如焊接、粘接等,或者任何其它类型的合适方式相互作用。
现在参考图109、111和112,擦拭件1076连接到上和下连接板112、116并且在上和下连接板112、116之间延伸。擦拭件1076延伸超过上和下连接板112、116的外周并且被定向成接合和擦拭独立的光元件356的外部,从而维持所述外部是无碎屑的或基本上无碎屑的。在所示的代表性的实施方式中,各框架1036包括四个擦拭件1076。可替换地,各框架1036可以包括任何数量的擦拭件1076并且在本发明的精神和范围内。擦拭件1076由挠性材料制成,该挠性材料在接触所述光元件356时允许变形、但是当它们脱离所述光元件356时允许擦拭件1076返回到它们的原始状态。代表性的擦拭件材料包括,但不限于,乙烯树脂、塑料、橡胶、金属网、挠性材料的复合物、涂有橡胶的和/或化学处理过的帆布等等。
参考图113-119,在在整个过程的多个阶段处示出了擦拭光元件356的代表性的过程。图113示出了两个相邻框架1036朝向光元件356转动(左框架1036顺时针转动并且右框架1036逆时针转动)并且框架各自的擦拭件1076开始与所述光元件356的表面接触。图114示出了所述框架1036通过它们的转动前进并且擦拭件1076也前进以开始擦拭所述光元件356。图115示出了所述框架1056的进一步的前进和通过所述擦拭件1076进一步擦拭所述光元件356。图116示出了所述框架1036的再进一步的前进和通过所述擦拭件1076进一步擦拭所述光元件356。在图116中,擦拭件1076在所述框架1036在这个第一方向上转动的情况下已经到达了它们几乎准备脱离光元件356并且完成它们的对所述光元件356的擦拭的点。从图113-116,能看到擦拭件1076围绕所述光元件356的圆周擦拭多于180度。图117示出了在它们已经脱离了光元件356之后的擦拭件1076。如同上面所指出的那样,驱动机构1044可以在两个方向上转动框架1036。这样,参考图118,所述框架1036被示为在与图113-117中所示的相反的方向上转动(左框架1036现在逆时针转动并且右框架1036现在顺时针转动)。图118示出了相同的两个擦拭件1076接合与图113中所接合的相反的表面并且开始擦拭所述相反的表面。图119示出了所述框架1036的进一步的前进和通过所述擦拭件1076进一步擦拭所述光元件356。框架1036继续转动并且擦拭件1076继续以与图116和117中所示的相类似的方式擦拭,只是方向相反。图113-119示出了当以上面所描述的方式转动框架1036和擦拭件1076时擦拭所述光元件356的所有360度的圆周。这样,在藻类培养过程期间可以清扫掉光元件356的整个外周的碎屑,以优化从所述光元件356发射光。
现在参考图120和121,示出了框架1036和连接板1080、1084的另一代表性的实施方式。用相同的附图标记表示这里所描述的其它框架和连接板与图120和121中所示的框架1036和连接板1080、1084之间的相似部件。
在所示的代表性的实施方式中,所述框架1036包括网眼式构造的上和下连接板1080、1084。因为所述上和下网眼连接板1080、1084是基本上相同,这里将仅仅详细描述一个。更具体地,所述网眼连接板1080、1084包括外圆形边沿1088、多个第一交叉构件1092、和多个第二交叉构件1096。所述第一和第二交叉构件1092、1096是以所示的方式基本上彼此垂直的并且是彼此交叉的。在这种方式中,多个孔1100限定在所述连接板1080、1084中。这种孔1100允许光从所述连接板1080、1084的上面和下面(取决于所述连接板是上连接板还是下连接板)穿过所述连接板1080、1084并且进入所述容器32。具有更少孔或没有孔的和具有更实心材料的其它连接板可以阻碍源自于所述连接板的上面和下面的光并且这种被阻碍的光将不进入所述容器。当藻类培养过程所需要的光源自于所述容器32的上面或下面时,包括网眼连接板1080、1084是尤其重要的。在所述容器32的特定的所示的实施方式中,自然太阳光通过所述盖1028进入容器32并且能穿过所述上网眼连接板1080并且进入到所述容器32中。所述网眼连接板1080、1084的所示的代表性的实施方式仅仅是包括从其穿过的孔以允许光穿过所述连接板的连接板的多种构造中的一种。许多其它网眼连接板构造是可能的并且在本发明的旨在的精神和范围之内。
应当理解,网眼连接板1080、1084可以与这里所披露的任何其它框架和容器一起使用。
也应当理解,尽管未示出,但是,框架1036可以包括用于给所述框架1036提供浮力的浮动装置并且所述框架可以包括这里所披露的任何浮动装置以及在本发明的精神和范围内的任何其它浮动装置。
进一步应当理解,尽管图113-119中所示的容器32是明显大于这里所披露的其它容器的,但是可以以这里所披露的所有方式控制和操作图113-119中所示的容器32,用以培养藻类。例如,框架1036可以以不同的速度转动,可以以类似的方式引入和排出水和藻类,光元件356和中心光管320可以类似于这里所披露的其它光元件和中心光管,包含在这个容器32中的媒介110的类型可以类似于这里所披露的其它媒介的类型,在这个容器32中可以培养所有类型的微生物,这个容器32可以包括与这里所披露的其它容器相似的气体和液体管理系统24、28,这个容器32可以包括与这里所披露的其它容器相类似的控制系统,等等。
参考图122,将描述所述控制器40与所述气体管理系统24、液体管理系统28、容器32、人造光系统37和ECD428的操作。所述系统20包括能感应接触所述容器32的光的量和/或围绕所述容器32的环境中的光的量的光传感器314,诸如由德州仪器公司(Texas Instruments,Inc.)制造的数字光传感器型号TSL2550。也就是说,所述传感器314能识别所述容器32是否在接收大量的光(举例来说,在夏季的阳光充足的天),少量的光(举例来说,在一天的较早的时候,在一天的较晚的时候,在阴天的时候等等),还是不接收光(举例来说,在日落之后或者夜间)。所述传感器314将第一信号发送到所述马达控制器302,其基于所述容器32接收的光的量控制所述容器32的马达224以转动所述框架108和媒介110。例如,如果所述容器32正在接收大量的光,那么期望以相对高的速率(但是不是以从所述媒介110去除掉藻类的速率)转动所述框架108和媒介110,并且如果所述容器32正在接收少量的光,那么期望以相对慢的速率转动所述框架108和媒介110以给所述容器32中的藻类提供更多时间来吸收光。此外,所述传感器314将第二信号发送到所述人造光控制器300,其与所述ECD控制器313连通和协作以在需要时控制所述人造光系统37和所述ECD428从而将所期望量的光37、72提供给所述容器32。例如,所述人造光系统37和所述ECD428可以相互协作以启动所述人造光系统37的光源41和/或所述ECD428的光源41,因此将所期望量的光发射到所述容器32和藻类上。在少量光或者没有光的情况下,可能期望启动所述人造光系统37和/或所述ECD光源41以将光发射到所述容器32和其内的藻类上,从而在由于缺少自然太阳光72而不会自然的产生光条件(light phase)时促进光合作用的光条件。而且,例如,在周围温度可能升高并且由于导致温度升高而不期望直射太阳光72的情形中,可以完全闭合所述ECD428的第一和第二构件426、440并且可以启动所述光源41中的一个或多个以提供所期望量的光。进一步地,例如,所述ECD控制器313可以通过与所述ECD马达432连通而控制所述第一和第二构件436、440的位置,以选择性地控制所述容器32暴露给外部因素(举例来说,太阳光和周围温度)的暴露程度。
继续参考图122,所述马达控制器302的操作计时器304确定在发生于所述容器32中的藻类培养处理期间何时启动和停止所述马达224以及启动和停止所述马达224多长时间。例如,所述操作计时器304确定为了在所述容器32中培养藻类所述框架108和媒介110将转动的速率。移除计时器306确定所述马达224何时转动所述框架108和媒介110以及转动所述框架108和媒介110多长时间以从所述媒介110去除掉藻类。所述移除计时器306也确定藻类的去除掉过程期间所述框架108和媒介110的转动速率。温度传感器316布置在所述容器32内以确定所述容器32内的水的温度,并且环境温度传感器480布置在所述容器32的外面以确定所述容器32的外侧的温度。如同上面所指出的那样,正确的水温对于有效的藻类培养来说是一重要因素。由所述温度传感器316识别的水温和由所述环境温度传感器480识别的周围温度被发送到温度控制器308,其与所述ECD控制器313连通和协作以在需要时控制温度控制系统45和/或ECD428从而正确地控制所述容器32内的水温。液体控制器310控制所述液体管理系统28,其控制液体引入到所述容器32中和从所述容器32排出液体。气体控制器312控制所述气体管理系统24,其控制气体引入到所述容器32中和从所述容器32排出气体。
对于有效地培养藻类来说,水的PH也是一重要因素。为了有效地培养,不同类型的藻类需要不同的PH。所述系统20包括PH传感器484,所述PH传感器484识别所述容器32内的水的PH并且将所识别的PH传送到所述液体控制器310。对于所述容器32内的藻类培养来说,如果所述PH处于正确的水平,所述液体控制器320不采取动作。换句话说,如果水的PH在不期望的水平,所述液体控制器310与所述液体管理系统28连通以采取必要的动作从而将水的PH调节到合适的水平。在一些代表性的实施方式中,所述PH传感器484可以布置在通过其从所述容器32转移水的外部管道中(参见图84)。在其它代表性的实施方式中,所述PH传感器484可以布置在所述容器32中。所述PH传感器484可以是多种类型的传感器。在一些代表性的实施方式中,所述PH传感器484可以是离子选择电极并且与所述液体控制器310电连接,并且所述系统20可以包括酸泵、碱泵、容纳酸的酸罐、和容纳碱的碱罐。在这种实施方式中,当所述PH水平下降到所期望的水平以下时启动所述碱泵以将碱泵送到所述容器中从而将所述PH水平升高到所期望的水平,并且当所述PH水平升高到所期望的程度之上时启动所述酸泵以将酸泵送到所述容器中从而将所述PH水平降低到所期望的水平。
能以多种不同的方式使用所述系统20以获得多种不同的期望结果。下面的涉及图123-126的描述举例说明了系统20的许多不同使用和操作中的几种以获得许多不同期望结果中的几种。下面的代表性的使用和操作是为了示例性的目的并且不旨在是限定性的。许多其它类型的使用和操作是可预期得到的并且在本发明的精神和范围之内。
参考图123,示出了所述系统20的第一个代表性的操作。在这个代表性的操作中,所述系统20包括多个容器32。在步骤486处,将水,相同类型的藻类(在附图中用藻类#1表示),和任何必需的营养物(举例来说,二氧化碳,氮,磷,维生素,微量营养素,矿物质,海洋类型的硅等等)引入到各容器32中。所述容器32以所期望的方式操作以在其内培养藻类。在完成培养过程之后,在步骤488处从所有的容器32排出藻类并且组合在一起。然后在步骤490处,使组合量的相似藻类进一步处理从而形成单一类型的产品(举例来说,油,燃料,可食用的产品,等)。
参考图124,示出了所述系统20的第二个代表性的操作。在这个第二个代表性的操作中,所述系统20包括多个容器32,其中每个容器32分别包括水,不同类型的藻类(在附图中用藻类#1,#2,#3,#N表示),和用于不同类型的藻类的任何必需的营养物(参见步骤492)。因为所述系统20的这个代表性的操作包括不同类型的藻类,在需要时可以将不同类型的营养物引入到各个容器32中。所述容器32以所期望的方式操作以在其内培养藻类。由于所述容器32在其内具有不同类型的藻类,为了有效地培养特定类型的藻类各容器32的培养过程可能是不同的。在完成所述容器32的培养处理之后,在步骤494处从所有的容器32排出藻类并且组合在一起。然后在步骤496处,使组合量的不同类型的藻类进一步处理从而形成单一类型的产品。
参考图125,示出了所述系统20的第三个代表性的操作。在这个第三个代表性的操作中,所述系统20包括多个容器32,其中每个容器32分别包括水,相同类型的藻类(在附图中用藻类#1表示),和用于藻类培养的任何必需的营养物(参见步骤498)。所述容器32以所期望的方式操作以在其内培养藻类。在完成培养过程之后,在步骤500处从各容器32排出藻类并且使所述藻类与从其它容器32排出的藻类相分离。即使从各容器32排出的藻类是相同类型的藻类,然后在步骤502处,使来自所述容器32的藻类单独地进一步处理从而形成单独的产品(在附图中用产品#1,#2,#3和#N表示)。
参考图126,示出了所述系统20的第四个代表性的操作。在这个第四个代表性的操作中,所述系统20包括多个容器32,其中每个容器32包括水,不同类型的藻类(在附图中用藻类#1,#2,#3和#N表示),和用于特定类型的藻类的任何必需的营养物(参见步骤504)。因为所述系统20的这个代表性的操作包括不同类型的藻类,根据需要可以将不同类型的营养物引入到各容器32中。所述容器32以所期望的方式操作以在其内培养藻类。由于所述容器32在其内具有不同类型的藻类,为了有效地培养特定类型的藻类,各容器32的培养过程可能是不同的。在所述容器32的培养过程完成之后,在步骤506处从各容器32排出藻类并且使所述藻类与从其它容器32排出的藻类相分离。然后在步骤508处,使来自所述容器32的不同的藻类单独地进一步处理从而形成单独的产品(在附图中用产品#1,#2,#3和#N表示)。
现在参考图127-130,所述容器32能具有多种不同的形状,诸如正方形、长方形、三角形、卵形、或者任何其它的多边形或弧形周边形状并且具有互补形状的部件以与所述容器32的形状相互协作。具有这些或其它形状的容器32能以与这里所描述的圆形容器32相同的方式执行。此外,所述框架108和媒介110是可移动的以擦拭所述壳体76的内表面196。例如,可以沿着线性路径前后移动所述框架108和媒介110以擦拭所述内表面196。这种线性移动可以平行于所述容器32的纵轴线(也就是,上下地),垂直于所述纵轴线(也就是,左右地),或者相对于所述容器32的纵轴线成一些其它角度。可以由在循环期间能转换极性以提供前后移动的DC循环马达执行所述框架108和媒介110的这些方式的移动。可替换地,马达可以连接到有助于所述前后移动的机械联动装置。
下面是代表性的生产方案以示出所述藻类培养系统20的代表性的性能。提供这些例子是为了示例性的目的并且不旨在以任何方式限定所述系统20的性能或者所述系统20能用来培养藻类的方式。其它代表性的生产方案是可预期得到的并且在本发明的旨在的范围之内。
高为6英尺并且直径为3英寸的容器容纳大约100英尺的媒介并且填充大约8.32升(2.19加仑)播种有小球藻(Chlorella Vulgaris)的水。所述容器以及相关联的部件操作大约7天。快速地转动所述框架和媒介以从所述媒介逐出小球藻并且从所述容器排出所述藻。在2天内从所述8.32升(2.19加仑)培养水沉淀出大约400ml的浓缩藻。重新用8.32升(2.19加仑)新鲜水填充所述容器并且允许保留在所述容器中的藻(种藻)培养6天。6天之后,快速地转动所述框架和媒介以逐出所述藻,并且从所述容器排出所述藻和水。这次,所述8.32升(2.19加仑)培养水产生550ml的浓缩藻。通过这些数据,可以估算出,一百个8.32升(2.19加仑)的容器每6天可以产生55升(14.5加仑)的浓缩藻。
另一个代表性的生产方案包括三十(30)个容器,每个所述容器的高是30英尺并且直径是6英尺,具有28.3平方英尺的占地区(footprint)和850立方英尺的容积。这样,所有三十个容器提供总共大约25,500立方英尺的容积并且覆盖大约17,000平方英尺(或者大约0.40英亩)的区域。以包括体积比为大约12%的二氧化碳的进给流将二氧化碳引入到所述容器中。对于这个代表性的方式藻类产量是每升每天4克藻,其导致大约1000吨藻的年产量(假定所述三十个容器90%的利用率)并且每年消耗大约2000吨二氧化碳。
现在参考图131和132,示出了另一代表性的微生物培养系统1104。所示的系统1104在工业中通常被称作跑道1104并且将以这里的方式介绍所述系统1104。
所述跑道1104包括第一底部1108、第二底部1112和保持壁1116。第一底部1108是所述跑道1104中典型地接合地板或地表面的最下面的底部。第二底部1112与所述第一底部1108向上间隔开并且定向成大体上平行于所述第一底部1108。保持壁1116大体上竖直地延伸并且大体上垂直于所述第一和第二底部1108、1112。第一和第二底部1108、1112也接合所述保持壁1116的内表面1120以限定在所述第二底部1112上的上部腔1124和在所述第二底部1112下面的下部腔1128。上部腔1124和下部腔1128彼此间隔开并且彼此独立,并且因此,流体是不可从一个腔转移到另一个腔的。在其它代表性的实施方式中,所述上部和下部腔1124、1128可以流体连接,使得液体可以从一个腔流到另一个腔。液体,诸如,水,可以布置在所述上部和下部腔1124、1128中的一个或两个。藻类在所述上部腔1124中培养,同时所述下部腔1128可以用来帮助去除掉藻类(下面更详细地描述)。
在所示的代表性的实施方式中,跑道1104包括两个部分,右部部分1104A和左部部分1104B。可替换地,所述跑道1104可以包括任何数量的部分,包括一个,并且在本发明的精神和范围之内。图131和132中所示的所述跑道1104的所示的形状和构造是为了代表性的目的并且不旨在是限定性的。跑道1104能具有在本发明的旨在的精神和范围内的许多其它形状。
而且,在所示的代表性的实施方式中,跑道1104也包括液体移动组件1132,布置在各部分1104A、1104B中的多个框架1136,和多个隔板1140。液体移动组件1132包括马达1144,连接到所述马达1144并且可由所述马达1144转动的马达输出轴1148,和连接到所述马达输出轴1148并可与所述马达输出轴1148一起转动的转子1152。跑道1104限定内通道1156和两个外通道1160。转子1152设置在所述内通道1156中以在所期望的方向上驱动液体。
两组框架1136A、1136B布置在两个平行的、间隔开的排中,其中在各部分1104A、1104B中分别有一组框架。在所示的代表性的实施方式中,各组框架包括五个框架1136。可替换地,在各排中可以布置任何数量的框架1136并且在本发明的精神和范围之内。内通道1156被限定在所述框架组1136A、1136B之间并且外通道1160被限定在所述框架1136A、1136B和所述保持壁1116之间。隔板1140被布置在所述框架1136之间的间隔中并且被布置在所述排的框架的端部以帮助限定所述内和外通道1156、1160并且帮助以所期望的方式移动水。
多个框架1136是基本上相同的,并且为了简化的目的,这里将描述一个框架1136。各框架1136包括光收集器1164,中心光管320,上和下连接板1168、1172,串在连接板1168、1172之间的媒介110(未示出),侧向支撑板1176,在所述上和下连接板1168、1172之间延伸的第一组支撑杆1180,在所述上连接板1168和所述侧向支撑板1176之间延伸的第二组支撑杆1184,浮动装置1188,多个翼片1192,类似于上面所描述的底部支撑件668的底部支撑件668,截头圆锥形基底1196,从所述跑道1104转移藻类和液体的管道1200,和下部腔支撑构件1204。
在所示的代表性的实施方式中,光收集器1164能经由收集部分1164A收集光并且沿着传输部分1164B将光传输到沿着所述中心光管320的高度布置的发射器(未示出)以将光发射到所述跑道1104中。将光提供给所述跑道1104的内部的这个代表性的方式仅仅是用于照亮所述跑道1104的内部的多种不同类型的方式中的一种。例如,前面所描述的提供光的方式中的任一种,无论它是自然光还是人造光,可以单独地或者组合地结合到所述跑道1104中。此外,照亮所述跑道1104的其它方式旨在在本发明的精神和范围之内。跑道1104的所示的代表性的实施方式具有开口的顶部,其允许额外的自然太阳光通过所述开口的顶部进入所述跑道1104。可替换地,透明或半透明的盖可以覆盖所述跑道1104的顶部并且仍然允许自然太阳光穿透。
在所示的代表性的实施方式中,浮动装置1188被定向在所述下连接板1172和所述侧向支撑板1176之间。通过将所述浮动装置1188设置在所述框架1136的底部附近,所述浮动装置1188不阻碍自然太阳光穿透到所述上部腔1124中。在其它代表性的实施方式中,所述浮动装置1188可以设置在沿着所述框架1136的其它位置处,包括但不限于,紧邻在所述上连接板1168的下面,在所述上连接板1168的上面,所述上和下连接板1168、1172之间的任何位置,等等。所述浮动装置1188也可以具有多种不同构造,诸如,上面所描述的那些构造,或者任何其它合适的构造,并且在本发明的精神和范围之内。
翼片1192连接到上和下连接板1168、1172并且在上和下连接板1168、1172之间延伸。翼片1192从所述连接板1168、1172向外延伸并且从所述框架1136的纵向中心转动轴线径向延伸。可替换地,翼片1192可以以多种不同的方式连接到所述上和下连接板1168、1172和相对于所述上和下连接板1168、1172设置,并且在本发明的旨在的精神和范围之内。
如同上面所指出的那样,底部支撑件668类似于上面所描述的底部支撑件668。在所述底部支撑件668的这个所示的代表性的实施方式中,所述底部支撑件668包括外边沿1208,中心插座608和由外边沿1208支撑的多个辊装置616。所述中心光管320穿过中心插座608,其固定到所述中心插座608并且抑止所述管320的侧向移动。所述管320的底端最终固定到底部插座1212,其由所述底部1196支撑。因为由于所述浮动装置1188的浮力所述框架1136在所述跑道1104内上升,所以从所述跑道1104排出水使得所述框架1136在所述跑道1104中下降直到所述侧向支撑板1175搁置在所述辊装置616上。如果在从所述跑道1104排出水之后期望所述框架1136转动,所述辊装置616有助于这种转动。所述底部支撑件668可以包括任何数量的辊装置616以适应所述框架1136的转动。在所述底部支撑件668的外边沿1208和中心插座608之间限定空间或间隔1216以允许藻类和液体通过所述底部支撑件668滴下并且滴到所述截头圆锥形基底1196中。
截头圆锥形基底1196设置在所述框架1136的底部处,在所述跑道1104的下部腔1128中。在所示的代表性的实施方式中,底部1196由刚性、不可弯曲的材料制成。底部1196的顶部是开口的并且与所述跑道1104的上部腔1124流体连通以从所述上部腔1124接收藻类和液体。底部1196的底部也是开口的并且与管道1200流体连通以从所述跑道1104排出藻类和液体。底部1196包括给中心光管320的底端提供支撑的底部板1220和底部插座1212。在底部板1220中限定空间或间隔1224以允许藻类和液体通过所述底部板1220并且朝向所述底部1196的开口的底部滴下。
在所示的代表性的实施方式中,下部腔支撑构件1204设置在所述下部腔1128中,在第一和第二底部1108、1112之间延伸,并且连接到第一和第二底部1108、1112以为所述框架1136和所述第二底部1112提供竖直支撑。下部腔支撑构件1204可以具有不同的构造并且可以以不同的方式支撑所述框架1136,并且仍然在本发明的旨在的精神和范围之内。因此,框架1136可以包括除了下部腔支撑构件之外的支撑构件,用于为其提供支撑。换句话说,框架1136可以以多种不同的方式支撑在所述跑道1104中并且仍然在本发明的精神和范围内。
进一步参考图131和132,现在将描述所述跑道1104的操作。可以用液体诸如水将上部腔1124填充到所期望的水平1228并且可以将种藻类引入到上部腔1124中。可以选择性地启动液体移动组件1132以如同所期望的那样地在所述跑道1104内移动水。例如,可以启动马达1144以转动转子1152,其进而在一个方向上在所述内通道1156内移动所述水(如同在图131中所示的那样在向下的方向上)。水到达所述内通道1156的第一端1232并分开,其中一些水移动到其中一个外通道1160中并且一些水移动到另一个外通道1160中。水然后继续移动通过所述外通道1160直到水到达内通道1156的第二端1236。在内通道1156的第二端1236处,来自所述两个外通道1160的水混合并且通过所述内通道1156朝向所述转子1152移动。当启动液体移动组件1132时所述水的这个移动继续进行。所述液体移动组件1132的去启动停止在所述跑道1104内主动地移动水并且水最终将走向停滞状态。隔板1140设置在框架1136之间的间距内以更清楚地限定所述内和外通道1156、1160并且帮助水在所述内和外通道1156、1160中有组织的流动。在没有隔板的情况下,水可以以更随机的方式移动通过所述跑道。翼片1192从所述框架1136延伸足够的距离以通过在所述内和外通道1156、1160中移动水而使它们能被接合,在所述内和外通道1156、1160中移动水导致所述框架1136的转动。因此,当期望转动所述框架1136时,启动液体移动组件1132。相反,当期望所述框架1136不转动时,去启动液体移动组件1132。为了与上面结合设置在所述容器32内的框架108所描述的那些相类似的原因,可以以多种速度转动框架1136。例如,可以以第一相对慢的速度和第二相对快的速度转动框架1136,当以第一相对慢的速度转动框架1136时支撑在所述媒介110上的藻类基本上平均地暴露到光并且不从所述媒介110逐出藻类,当以第二相对快的速度转动框架1136时,从所述媒介110逐出藻类以将所述藻类设置在水中。为了以多种速度转动所述框架1136,可以以可变的速度启动液体移动组件1132从而以可变的速度移动水。布置在水中的藻类可以落到所述上部腔1124的底部并且落到底部1196中。通过管道1200将落入到所述底部1196中的藻类转移到所述底部1196的外面。在一些实施方式中,可能期望经由所述管道1200形成吸力以促使藻类从上部腔1124移动到所述底部1196中。为了开始另一培养过程,用水再填充跑道1104并且在前的培养过程之后留下的藻类担当种藻类。可替换地,可以再次将藻类引入到所述跑道1104中。
现在参考图133,示出了另一代表性的实施方式的框架底部1240。用相同的附图标记表示图131和132中所示的跑道和框架底部与图133中所示的跑道1104和框架底部1240之间的相似部件。
在图133中所示的代表性的实施方式中,跑道1104包括布置在下部腔1128中、在所有框架1136的下面的单个框架底部1240。在这个实施方式中,在所有框架1136上培养的藻类落入到单个框架底部1240中。类似于图131和132中所示的跑道1104,可以用管道1200形成吸力以促使藻类移动到所述底部1240中。
现在参考图134,示出了进一步的代表性的实施方式的框架底部1244。用相同的附图标记表示图131-133中所示的跑道和框架底部与图134中所示的跑道1104和框架底部1244之间的相似部件。
在这个所示的代表性的实施方式中,框架底部1244是柔性的并且可以以多种方式振动从而帮助从所述底部1244排出藻类。由于所述底部的截头圆锥形的形状和在工业中被称作“鼠洞”的形式,藻类具有堆积在底部中的趋势,其中经由管道从所述底部的底部取走藻类,但是所述底部的底部之上的藻类堆积在所述底部中使得不允许堆积的藻类落入到所述底端,用以通过管道取走。在这种例子中,没有从跑道取走藻类。为了补救这种情形,所示的代表性的实施方式的柔性底部1244可以振动以逐出堆积的藻类,因此使得藻类落到所述底部1244的底端,用于通过管道1200取走。柔性底部1244包括柔性壁1248,壁支撑构件1252,和可支撑在跑道1104的第一底部1108上的支撑架1256。柔性壁1248由足够柔性,但是也足够耐用以经得住正常操作状况期间的振动的材料制成。代表性的柔性材料包括,但不限于,乙烯树脂、橡胶、涂有橡胶的和/或化学处理的帆布,复合夹层材料,交替柔性材料带等等。壁支撑构件1252为所述柔性壁1248提供必须的支撑以维持所述柔性壁1248的所期望的形状并且确保所述柔性壁1248不破坏。支撑架1256为壁支撑构件1252提供支撑并且是可与所述第一底部1108接合的。
如同上面所指出的那样,柔性底部1244可以以多种方式振动。在一些代表性的实施方式中,液体,诸如水可以引入到下部腔1128中并且在下部腔1128中搅动,其将导致所述柔性壁1248的搅动或振动。下部腔1128内的水可以如同所期望的那样地搅动以振动柔性壁1248。在其它代表性的实施方式中,可以使用其它类型的振动装置,诸如,一个或多个机械振动构件,超声波振动构件等等,并且可以连接到所述柔性壁1248、壁支撑构件1252、或所述底部1244的一些其它部分以如同所期望的那样地振动所述柔性壁1248。
现在参考图135,示出了另一代表性的实施方式的框架1260和连接板1264。用相同的附图标记表示这里所描述的其它框架和连接板与图135中所示的框架1260和连接板1264之间的相似部件。
在所示的代表性的实施方式中,所述框架1260包括网眼式构造的上连接板1264。这个上网眼连接板1264可以类似于图120和121中所示的网眼连接板1080、1084或者其它所披露的可选连接板。更具体地,网眼连接板1260包括外圆形边沿1268,多个第一交叉构件1272,和多个第二交叉构件1276。所述第一和第二交叉构件1272、1276以所示的方式彼此基本上垂直并且彼此交叉。在这个方式中,多个开口1280限定在所述连接板1264中。这种开口1280允许光从所述上网眼连接板1264的上部穿过所述上连接板1264并且进入所述跑道1104。具有更少开口和更实心材料的其它连接板可阻碍源自于所述连接板的上面的光并且这种被阻碍的光可以不进入所述跑道。因为用于藻类培养过程的至少一些光可能源自于所述跑道1104的上面(举例来说,自然太阳光),包括上网眼连接板1264在跑道应用中可能是尤其重要的。所示的代表性的实施方式的上网眼连接板1264仅仅是包括通过其的开口以允许光穿透所述连接板的多种构造的连接板中的一种。许多其它网眼连接板构造是可能的并且在本发明的旨在的精神和范围之内。此外,下连接板1284也可以具有与所述上网眼连接板1264相似的或不同的网眼构造。
现在参考图136-138,示出了跑道1104和液体移动组件的多个额外的代表性的实施方式。用相同的附图标记表示图131和132中所示的跑道和液体移动组件与图136-138中所示的跑道1104和液体移动组件之间的相似部件。
参考图136,液体移动组件1288包括设置在跑道1104的外通道1160中的多个泵1292,其中在各框架1136附近分别布置一个泵1292并且各泵1292具有在所述框1136的翼片1192附近的排出口。这个实施方式形成与上面所描述的并且在图131和132中所示的相类似的水移动路径。可替换地,所述多个泵1292可以设置在内通道1156中,其中在各框架1136附近分别设置一个泵1292并且各泵1292具有邻近所述框架1136的翼片1192的排出口。
参考图137,液体移动组件1296包括单个泵1300和歧管1304,所述单个泵1300和歧管1304都设置在内通道1156中。歧管1304包括与所述泵1300的排出口和多个排出孔1312流体连通的单个入口1308,其中为每个框架1136一个排出孔1312。各排出孔1312布置在它们各自的框架1136的翼片1192附近以将水移动到与翼片1192相接合。这个实施方式形成与上面所描述的并且在图131、132和136中所示的相类似的水移动路径。可替换地,泵1300和歧管1304可以设置在其中一个外通道1160中,或者液体移动组件1296可以包括两组的泵1300和歧管1304,其中一组泵1300和歧管1304设置在一个外通道1160中,并且另一组泵1300和歧管1304设置在另一个外通道1160中。在这种实施方式中,所述歧管1304的排出孔1312被构造成对应于各自框架翼片1192的位置。也就是说,例如,各歧管1304可以包括在它的仅仅一侧中的五个排出孔1312以与它的五个各自的框架1136的翼片1192相对齐。
参考图138,液体移动组件1316可以布置成与所述框架1136间隔一段距离。在这种实施方式中,液体移动组件1316控制水从所述距离流动,但是所述跑道1104被构造成引导正在移动的水穿过所述框架1136并且与所述翼片1192相接触,从而转动框架1136。这个液体移动组件1316可以具有任何构造,只要它能以所期望的方式转动框架1136。
现在参考图139,示出了进一步的代表性的实施方式的微生物培养系统1320。所示的系统1320在工业中通常被称作跑道1320并且这里将以这种方式介绍所述系统1320。用相同的附图标记表示图131和132中所示的跑道与图139中所示的跑道1320之间的相似部件。
所示的代表性的实施方式的这个跑道1320包括多个模块化的框架单元,其是彼此相同的并且可以如同所期望的那样地单独地安装以在设计和安装跑道1320时为用户提供灵活性和多样性。各模块化框架单元包括框架1136和壳体1324。框架1136基本上类似于上面所描述的并且在图131和132中示出的框架。壳体1324包括彼此间隔开并且布置在所述框架1136的相对侧上的第一壁1328和第二壁1332。第一和第二壁1328、1332各包括朝向框架1136延伸的一对向内翻转的凸缘1336、1340。在相对的第一和第二壁1328、1332的向内翻转的凸缘1336、1340之间提供间距以将翼片1192暴露给发生在所述内和外通道1156、1160中的水移动。第一和第二壁1328、1332执行与上面所描述的并在图131和132中示出的隔板1140相类似的功能,即,所述第一和第二壁1328、1332帮助限定内和外通道1156、1160并且帮助以所期望的方式移动水。
现在参考图140,示出了更另一代表性的实施方式的微生物培养系统1344。所示的系统1344在工业中通常被称作跑道1344并且这里将以这种方式介绍所述系统1344。用相同的附图标记表示图131、132和139中所示的跑道与图140中所示的跑道1344之间的相似部件。
在所示的代表性的实施方式中,示出了多个跑道1344并且将它们设置在池塘或其它大水体1348中。各跑道1344是模块化的,并且因此,任何数量的跑道1344可以设置所述水体1348中(也就是说,任何数量将安装到所述水体),各跑道1344包括有多个间隔开的支撑构件1356支撑的保持壁1352。保持壁1352隔出所述水体1348的一部分以提供更小的、更易于管理量的水,其由液体移动组件1360控制。而且,在各跑道1344中培养的藻类比如果不存在保持壁1352更易于控制。在隔出跑道1344的情况下,液体移动组件1360可以以与上面所描述的并且在图131和132中所示的相类似的方式在所述跑道1344中移动水。在所示的代表性的实施方式中,所述水体1348提供操作所述跑道1344和培养藻类所需要的所有水。在这个实施方式中不需要单独的水源。管道可以连接到设置在所述水体1348中的各跑道1344以取走在各跑道1344中培养的藻类。可替换地,可以从隔开的跑道1344释放藻类并且允许藻类与所述隔开的跑道1344外侧的水体1348相混合。在这种可选方案中,管道连接到水体1348以从所述水体1348取走藻类。
现在参考图141,示出了进一步的代表性的实施方式的微生物培养系统1364。用相同的附图标记表示图1和2中所示的微生物培养系统与图141中所示的微生物培养系统1364之间的相似部件。
图141中所示的系统1364与图1和2中所示的系统具有许多类似之处。这里详细描述至少一些不同之处。在所示的代表性的实施方式中,系统1364利用与图1和2中所示的系统不同的化合物培养藻类。更具体地,所示的系统1364将有机碳化合物1368引入到所述容器32中用以供微生物消耗,而不是图1和2中所示的系统的二氧化碳。可以使用有机碳化合物培养某些微生物。培养这种微生物可能不需要光,因为有机碳化合物提供碳和所述微生物的培养所需要的能量。代表性的微生物包括,但不限于,蛋白核小球藻、三角褐指藻、莱茵衣藻、小球藻、海生咸胞藻(Brachiomonas Submarina)、微小小球藻(Chlorella minutisima),C.regularis,C.sorokiniana等等,以及其它类型的异养的和混合养的微生物。有机碳化合物可以是可由微生物消耗的多种形式。代表性的有机碳化合物包括,但不限于,糖,甘油,玉米糖浆,来自乙醇生产工厂的蒸馏谷物,葡萄糖,醋酸盐,TCH,循环中间体(举例来说,柠檬酸和一些氨基酸)等等。
应当理解,图141中所示的系统1364与这里所披露的其它系统具有类似的结构元件、类似的功能并且被以类似的方式控制。
呈现前面的描述是为了示例和描述的目的,并且不旨在是排它的或者将本发明限定到所披露的精确形式。选择所述描述是为了解释本发明的原理和它们的特定应用以使得本领域技术人员能以多种实施方式使用本发明并且适于特定的使用的各种修改是可预期得到的。尽管已经示出和描述了本发明的特定构造,其它可选构造对本领域技术人员而已将是显而易见的并且在本发明的旨在的范围之内。
Claims (2)
1.一种用于培养微生物的容器,包括:
适于容纳液体的壳体;
至少部分地定位在所述壳体内的多个可转动的框架,并且每个框架包括第一部分,
与所述第一部分间隔开的第二部分,
至少部分地定位在所述壳体内并且被所述第一和第二部分支撑并在所述第一和第二部分之间延伸的媒介,和
连接到所述第一部分和所述第二部分中的至少一个的翼片;
用于转动所述框架的至少一个驱动机构;和
至少部分地定位在所述壳体内并适于被所述多个框架的所述翼片中的至少一个接合的光元件。
2.一种用于培养微生物的系统,包括:
限定适于容纳液体的腔的壁;
至少部分地定位在所述腔内的多个可转动的框架,并且每个框架包括第一部分,
与所述第一部分间隔开的第二部分,
至少部分地定位在所述腔内并且被所述第一和第二部分支撑并在所述第一和第二部分之间延伸的媒介,和
连接到所述第一部分和所述第二部分中的至少一个的翼片;
用于将所述腔内的液体移动到与所述框架的所述翼片相接合以转动所述框架的液体移动组件。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17595009P | 2009-05-06 | 2009-05-06 | |
US61/175,950 | 2009-05-06 | ||
US24152009P | 2009-09-11 | 2009-09-11 | |
US61/241,520 | 2009-09-11 | ||
US12/605,121 | 2009-10-23 | ||
US12/605,121 US20100105125A1 (en) | 2008-10-24 | 2009-10-23 | Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases |
PCT/US2010/032574 WO2010129278A1 (en) | 2009-05-06 | 2010-04-27 | Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102803463A true CN102803463A (zh) | 2012-11-28 |
CN102803463B CN102803463B (zh) | 2015-09-23 |
Family
ID=43050364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080030173.8A Expired - Fee Related CN102803463B (zh) | 2009-05-06 | 2010-04-27 | 用于培养微生物和减缓气体的系统、设备和方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20100105125A1 (zh) |
EP (1) | EP2427542A4 (zh) |
JP (1) | JP5555313B2 (zh) |
KR (1) | KR101478143B1 (zh) |
CN (1) | CN102803463B (zh) |
AU (1) | AU2010245049A1 (zh) |
BR (1) | BRPI1014049A2 (zh) |
CA (1) | CA2760856A1 (zh) |
MX (1) | MX2011011731A (zh) |
WO (1) | WO2010129278A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104073422A (zh) * | 2013-03-29 | 2014-10-01 | 映宝生物能源科技有限公司 | 密闭式藻类养殖系统 |
CN104312901A (zh) * | 2014-10-20 | 2015-01-28 | 杭州鑫伟低碳技术研发有限公司 | 一种微藻培养模块及微藻大规模工厂化培养系统 |
CN113975988A (zh) * | 2015-12-29 | 2022-01-28 | 生命科技股份有限公司 | 具有侧向移位的柔性驱动线的流体混合系统及使用方法 |
US12128371B2 (en) | 2019-03-19 | 2024-10-29 | Life Technologies Corporation | Fluid mixing system with flexible drive line and foldable impeller |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8809037B2 (en) | 2008-10-24 | 2014-08-19 | Bioprocessh20 Llc | Systems, apparatuses and methods for treating wastewater |
KR20110139720A (ko) | 2009-03-09 | 2011-12-29 | 유니벤처, 인크. | 액체로부터 입자를 분리하기 위한 방법 및 장치 |
US20120156669A1 (en) | 2010-05-20 | 2012-06-21 | Pond Biofuels Inc. | Biomass Production |
US11512278B2 (en) | 2010-05-20 | 2022-11-29 | Pond Technologies Inc. | Biomass production |
US8889400B2 (en) | 2010-05-20 | 2014-11-18 | Pond Biofuels Inc. | Diluting exhaust gas being supplied to bioreactor |
US8940520B2 (en) | 2010-05-20 | 2015-01-27 | Pond Biofuels Inc. | Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply |
US8969067B2 (en) | 2010-05-20 | 2015-03-03 | Pond Biofuels Inc. | Process for growing biomass by modulating supply of gas to reaction zone |
US20130087503A1 (en) | 2010-06-17 | 2013-04-11 | Algaeventure Systems, Inc. | Low-energy system for collecting matter |
US20120024769A1 (en) | 2010-06-17 | 2012-02-02 | Algaeventure Systems, Inc. | Method for collecting matter with a matter collection unit |
WO2012006302A1 (en) * | 2010-07-06 | 2012-01-12 | Chlor Bioenergy Inc. | Cultivation of green algae chlorococcum pamirum for production of biofuel |
CN101906380B (zh) * | 2010-08-11 | 2013-07-17 | 孙以川 | 饵料微藻的封闭式管道培养装置及微藻管道培养方法 |
US20120202281A1 (en) * | 2011-02-07 | 2012-08-09 | Pond Biofuels Inc. | Light energy supply for photobioreactor system |
US20120276633A1 (en) | 2011-04-27 | 2012-11-01 | Pond Biofuels Inc. | Supplying treated exhaust gases for effecting growth of phototrophic biomass |
US20130326941A1 (en) * | 2012-04-05 | 2013-12-12 | Nanoco Technologies Ltd. | Quantum Dot LED's to Enhance Growth in Photosynthetic Organisms |
MX350337B (es) * | 2012-07-03 | 2017-09-04 | Ind Plankton Inc | Fotorreactor para cultivos liquidos. |
DE102012214493A1 (de) * | 2012-08-14 | 2014-02-20 | Air-Lng Gmbh | Photobioreaktor zur Kultivierung von phototrophen Organismen |
EP2719753B1 (de) | 2012-10-11 | 2015-02-25 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Reaktor mit Elektrolumineszenzpartikeln im Reaktionsmedium |
US9534261B2 (en) | 2012-10-24 | 2017-01-03 | Pond Biofuels Inc. | Recovering off-gas from photobioreactor |
WO2015056302A1 (ja) | 2013-10-15 | 2015-04-23 | 株式会社日立製作所 | 細胞培養装置 |
IL247984B (en) * | 2016-09-22 | 2020-06-30 | Avivi Netanel | Domestic water heating system |
DE102017104439A1 (de) | 2017-03-03 | 2018-09-06 | Technische Hochschule Wildau | Vorrichtung, System und Verfahren zur Produktion phototropher Organismen |
US11240977B2 (en) * | 2017-07-24 | 2022-02-08 | Elliott A. Gruskin | Compact photobioreactor with built-in lights |
WO2019101948A1 (de) | 2017-11-24 | 2019-05-31 | Ralf Steeg | Abwasserreinigungssystem und verfahren zur abwasserreinigung |
IT201900002641A1 (it) * | 2019-02-25 | 2020-08-25 | Milano Politecnico | Kit modulare per integrazione e installazione di uno o più bioreattori per la coltivazione di microalghe |
US20200318142A1 (en) * | 2019-04-04 | 2020-10-08 | Exxonmobil Research And Engineering Company | Algal biofuel production as an air separation unit for syngas, hydrogen, or power production |
CN111575166B (zh) * | 2020-04-23 | 2021-08-06 | 南开大学 | 一种利用小球藻吸收二硫化钼反应装置 |
EP4053259A1 (en) * | 2021-03-02 | 2022-09-07 | Syctom L'Agence Metropolitaine Des Dechets Menagers | Internally illuminated photo bioreactor with light pipe distributor for photo-reactive microorganism culture |
US11992483B2 (en) | 2021-03-31 | 2024-05-28 | Cali Biosciences Us, Llc | Emulsions for local anesthetics |
EP4389869A1 (de) * | 2022-12-22 | 2024-06-26 | AT-Solid GmbH | Photobioreaktor zur produktion von photosynthese betreibenden organismen |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986002944A1 (en) * | 1984-11-07 | 1986-05-22 | Albright & Wilson Limited | Improvements relating to biotransformation reactions |
JPH0787955A (ja) * | 1993-09-22 | 1995-04-04 | Toshiba Corp | 光合成によるco2固定化方法およびその装置 |
US6602703B2 (en) * | 2001-10-17 | 2003-08-05 | Co2 Solution Inc. | Photobioreactor |
JP3639007B2 (ja) * | 1995-08-22 | 2005-04-13 | 京都水研株式会社 | 攪拌槽型のバイオリアクタ |
US20060068492A1 (en) * | 2002-11-19 | 2006-03-30 | Kuiwon Choi | Hybrid bioreactor for cell culture |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US458788A (en) * | 1891-09-01 | junabluth | ||
US2732663A (en) * | 1956-01-31 | System for photosynthesis | ||
US469044A (en) * | 1892-02-16 | Johann jungblutii | ||
US681884A (en) * | 1900-12-18 | 1901-09-03 | Cleophas Monjeau | Purifying water. |
US877569A (en) * | 1906-12-29 | 1908-01-28 | Arthur I Joseph | Apparatus for treating sewage. |
US910400A (en) * | 1908-02-24 | 1909-01-19 | John W Lischer | Plant-sprinkling apparatus. |
US968015A (en) * | 1909-10-25 | 1910-08-23 | Boyd Wilkie | Apparatus for filtering sewage. |
US978889A (en) * | 1910-02-19 | 1910-12-20 | Karl Imhoff | Treating sewage. |
US1187814A (en) * | 1915-08-09 | 1916-06-20 | Clifton J Carter | Manure-conveyer. |
US1753980A (en) * | 1928-05-17 | 1930-04-08 | Baumgartner Emil | Means for utilizing the waste space in hothouses |
US2008507A (en) * | 1933-02-17 | 1935-07-16 | Filtration Equipment Corp | Apparatus and system for treating sewage |
US2141979A (en) * | 1936-09-25 | 1938-12-27 | Halvorson H Orin | Process for treating sewage to purify the same |
US2142196A (en) * | 1937-03-17 | 1939-01-03 | Pacific Flush Tank Co | System for and method of treating sewage or other waste material |
US2220859A (en) * | 1937-10-05 | 1940-11-05 | William N Bispham | Method and apparatus for treating sewage |
GB502530A (en) * | 1938-07-30 | 1939-03-20 | Cecil John Dekema | Improvements in or relating to the progressive purification of biologically impure liquids |
US2437210A (en) * | 1944-10-18 | 1948-03-02 | Walter W Riebli | Drainage system for stables |
US2580764A (en) * | 1947-10-03 | 1952-01-01 | Infilco Inc | Two stage filtration of sewage |
US2815607A (en) * | 1954-11-26 | 1957-12-10 | William E Beatty | Process and apparatus for the culture of photo-synthetic micro-organisms and macro-organisms, particularly algae |
US2854792A (en) * | 1956-09-20 | 1958-10-07 | Ionics | Method and apparatus for propagating algae culture |
US3160141A (en) * | 1963-02-15 | 1964-12-08 | Alpheus S Crutchfield | Equipment for cleaning poultry houses |
US3231490A (en) * | 1963-09-16 | 1966-01-25 | Dow Chemical Co | Secondary treatment of waste water |
US3274730A (en) * | 1964-05-08 | 1966-09-27 | Whirlpool Co | Underground gas diffusion system |
US3348922A (en) * | 1964-07-13 | 1967-10-24 | Whirlpool Co | Carbon dioxide generator |
US3275147A (en) * | 1964-07-14 | 1966-09-27 | Campbell Soup Co | Filters |
US3238124A (en) * | 1965-03-08 | 1966-03-01 | Robert E Burton | Method and apparatus for treating waste liquids |
US3398481A (en) * | 1965-05-20 | 1968-08-27 | Nat Res Dev | Method and apparatus for controlling carbon dioxide concentrations in greenhouses |
US3407935A (en) * | 1966-05-18 | 1968-10-29 | Burton Robert Edward | Liquid distribution means in apparatus for treating liquid wastes |
FR94705E (fr) * | 1966-06-01 | 1969-10-24 | Inst Francais Du Petrole | Procédé perfectionné de culture d'algues et dispositif de mise en oeuvre. |
US3465654A (en) * | 1967-07-17 | 1969-09-09 | Harry Fox | Drain device |
US3565797A (en) * | 1968-06-12 | 1971-02-23 | Paul J Gresham | Apparatus and process for treating sewage |
US3610532A (en) * | 1969-01-21 | 1971-10-05 | Henry J Modrey | Balljet tank cleaner |
US3577678A (en) * | 1969-08-14 | 1971-05-04 | Microphor Inc | Combined waste treatment and growth chamber process |
US3768200A (en) * | 1971-07-16 | 1973-10-30 | Research Corp | Apparatus for the production of algae including a filtering medium |
US3876542A (en) * | 1972-04-06 | 1975-04-08 | Neptune Microfloc Inc | Liquid wastes redistribution apparatus |
US3835039A (en) * | 1972-12-22 | 1974-09-10 | Cubic Corp | Waste water treatment system |
US4011162A (en) * | 1973-10-29 | 1977-03-08 | Robert R. Oldham, Inc. | Pivotable fluid diverter for recirculation system |
GB1495709A (en) * | 1974-01-28 | 1977-12-21 | British Petroleum Co | Method and apparatus for growing plant cells |
US4003160A (en) * | 1974-03-14 | 1977-01-18 | Mueller Hans | Process for growing chlorophyllose plants using carbon dioxide and heat generated in exothermic aerobic fermentation processes |
USRE29970E (en) * | 1974-05-02 | 1979-04-17 | Autotrol Corporation | Wastewater treatment |
US3959923A (en) * | 1974-12-04 | 1976-06-01 | Erno Raumfahrttechnik Gmbh | Equipment for growing algae |
SE397336B (sv) * | 1975-02-28 | 1977-10-31 | Arbman Dev Ab | Forfarande och anordning for biologisk rening av vetskeformigt avfall |
US4041640A (en) * | 1975-12-22 | 1977-08-16 | Chlorella Industry Co., Ltd. | Chlorella-culturing apparatus |
US4093539A (en) * | 1976-05-12 | 1978-06-06 | Autotrol Corporation | Activated sludge treatment of wastewater |
US4086161A (en) * | 1976-12-13 | 1978-04-25 | Robert Edward Burton | Ecological system and method |
US4128205A (en) * | 1977-04-07 | 1978-12-05 | Reinke Manufacturing Company | Wind correction method and apparatus for irrigation systems |
US4209943A (en) * | 1977-09-02 | 1980-07-01 | Hunt James P | Process and apparatus for commercial farming of marine and freshwater hydrophytes |
JPS5455781A (en) * | 1977-10-11 | 1979-05-04 | Dainippon Ink & Chem Inc | Apparatus for culturing algae |
US4181514A (en) * | 1978-02-14 | 1980-01-01 | Huyck Corporation | Stitch knitted filters for high temperature fluids and method of making them |
US4279753A (en) * | 1979-03-19 | 1981-07-21 | Arco Environmental Company | Wastewater treatment system including multiple stages of alternate aerobic-anerobic bioreactors in series |
IL57712A (en) * | 1979-07-03 | 1984-02-29 | Yissum Res Dev Co | Cultivation of halophilic algae of the dunaliella species for the production of fuel-like product |
US4320008A (en) * | 1979-11-07 | 1982-03-16 | Fumiyuki Kokubo | Apparatus for separating and conveying of animal house waste materials |
US4324067A (en) * | 1980-02-04 | 1982-04-13 | The University Of Arizona Foundation | Algal cell harvesting |
US4438591A (en) * | 1980-02-04 | 1984-03-27 | The University Of Arizona Foundation | Algal cell growth, modification and harvesting |
US4324068A (en) * | 1980-03-03 | 1982-04-13 | Sax Zzyzx, Ltd. | Production of algae |
DE3047967C2 (de) * | 1980-12-19 | 1985-12-12 | Felix Schoeller jr. GmbH & Co KG, 4500 Osnabrück | Füllmaterial für einen Tropfkörper für die biologische Abwasserreinigung |
JPS5931352Y2 (ja) * | 1981-02-19 | 1984-09-05 | 日本産業機械株式会社 | 汚水の処理装置 |
JPS5931355Y2 (ja) * | 1981-11-19 | 1984-09-05 | 日本産業機械株式会社 | 浸漬「ろ」床装置 |
US4900678A (en) * | 1981-12-03 | 1990-02-13 | Kei Mori | Apparatus for photosynthesis |
US4473970A (en) * | 1982-07-21 | 1984-10-02 | Hills Christopher B | Method for growing a biomass in a closed tubular system |
US4446236A (en) * | 1982-08-11 | 1984-05-01 | Clyde Robert A | Apparatus for a photochemical reaction |
EP0112556B1 (en) * | 1982-12-24 | 1988-04-06 | Kei Mori | Apparatus for photosynthesis |
US4679578A (en) * | 1984-03-29 | 1987-07-14 | Miller Richard M | Vehicle cleaning system incorporating novel nozzle apparatus |
US4504393A (en) * | 1984-06-08 | 1985-03-12 | Chevron Research Company | Method and apparatus for controlling a rotating biological contactor |
US4584791A (en) * | 1984-08-29 | 1986-04-29 | Brandon Woods Associates | Soiless agricultural system and components therefore |
JPS61293591A (ja) * | 1985-06-21 | 1986-12-24 | Kureha Gosen Kk | 汚水処理用接触材 |
US4857464A (en) * | 1986-02-21 | 1989-08-15 | Bio-Rational Technologies, Inc. | Mist cultivation of cells |
JPS6312274A (ja) * | 1986-07-03 | 1988-01-19 | Takashi Mori | バイオリアクタ |
DE3641960A1 (de) * | 1986-12-09 | 1988-06-16 | Norddeutsche Seekabelwerke Ag | Fuellmaterial fuer tropfkoerper zur behandlung von fluessigkeiten sowie verfahren zur herstellung und montage desselben |
US4729828A (en) * | 1986-12-29 | 1988-03-08 | Gary Miller | Modular rotating biological contactor system |
US4996791A (en) * | 1986-12-30 | 1991-03-05 | Sprung Philip D | Method and structure for improved natural lighting for plant growth |
US5001859A (en) * | 1986-12-30 | 1991-03-26 | Sprung Philip D | Method and structure for environmental control of plant growth |
US4800674A (en) * | 1986-12-30 | 1989-01-31 | Sprung Philip D | Greenhouse structure |
US4717519A (en) * | 1987-03-11 | 1988-01-05 | Koji Sagami | Method for producing a string-shaped bacteria bed for sewage or wastewater treatment |
US4952511A (en) * | 1987-06-11 | 1990-08-28 | Martek Corporation | Photobioreactor |
FR2621323B1 (fr) * | 1987-10-02 | 1990-06-15 | Commissariat Energie Atomique | Dispositif de production intensive et controlee de micro-organismes par photosynthese |
US4895645A (en) * | 1987-12-09 | 1990-01-23 | Zorich Jr Nicholas F | Anaerobic/aerobic filter plant |
US4871551A (en) * | 1988-02-08 | 1989-10-03 | Microbio Resources, Inc. | Pigmentation supplements for animal feed compositions |
US5104803A (en) * | 1988-03-03 | 1992-04-14 | Martek Corporation | Photobioreactor |
DE3807695A1 (de) * | 1988-03-09 | 1989-09-21 | Norddeutsche Seekabelwerke Ag | Fuellmaterial und verfahren zur herstellung derselben |
US4949905A (en) * | 1988-08-26 | 1990-08-21 | Gregory A. Jones | Sprinkler head mounting system |
DE8811851U1 (de) * | 1988-09-19 | 1989-07-06 | ME/BO/CO Verfahrenstechnik GmbH & Co. KG, 2807 Achim | Filter zur Reinigung von Fluiden |
DE3929510A1 (de) * | 1988-10-11 | 1990-04-19 | Envicon Luft & Wassertechnik | Klaeranlage |
US4956936A (en) * | 1988-12-07 | 1990-09-18 | Sprung Philip D | Method and system for purification of water for greenhouse structures |
US5038517A (en) * | 1989-05-19 | 1991-08-13 | Talbott Gene B | Greenhouse construction |
US5212903A (en) * | 1989-05-19 | 1993-05-25 | Talbott Gene B | Greenhouse construction and liquid distribution system |
US5162051A (en) * | 1989-11-22 | 1992-11-10 | Martek Corporation | Photobioreactor |
US5151347A (en) * | 1989-11-27 | 1992-09-29 | Martek Corporation | Closed photobioreactor and method of use |
US5122266A (en) * | 1990-03-08 | 1992-06-16 | Kent Dana M | Apparatus for advanced aquaculture life support |
JPH03262477A (ja) * | 1990-03-13 | 1991-11-22 | K F Eng Kk | 培養装置 |
US5240600A (en) * | 1990-07-03 | 1993-08-31 | International Environmental Systems, Inc., Usa | Water and wastewater treatment system |
US5232676A (en) * | 1990-08-10 | 1993-08-03 | Bayer Aktiengesellschaft | Process for the biological purification of waste air streams |
US5267695A (en) * | 1990-09-10 | 1993-12-07 | Thayer Susan S | Vertically hanging, low volume irrigation assembly and method |
JPH05153957A (ja) * | 1991-06-11 | 1993-06-22 | Ebara Res Co Ltd | 光合成微生物培養装置 |
JPH0646827A (ja) * | 1992-07-29 | 1994-02-22 | Sumitomo Heavy Ind Ltd | 培養装置 |
US5958761A (en) * | 1994-01-12 | 1999-09-28 | Yeda Research And Developement Co. Ltd. | Bioreactor and system for improved productivity of photosynthetic algae |
JP3537879B2 (ja) * | 1994-09-14 | 2004-06-14 | 株式会社エイブル | 好気性微生物処理装置 |
JPH0957058A (ja) * | 1995-08-25 | 1997-03-04 | Toshiba Corp | Co2 固定化装置 |
JP4003273B2 (ja) * | 1998-01-19 | 2007-11-07 | セイコーエプソン株式会社 | パターン形成方法および基板製造装置 |
AU5613199A (en) * | 1998-09-11 | 2000-04-03 | J. Wayne Van Toever | Fluidized radial flow bioreactor utilizing pellet media |
US6241889B1 (en) * | 1998-10-02 | 2001-06-05 | Bioprocess Technologies, Ltd. | Trickle tower filter apparatus and looped cord biomedia filter cartridge for use therein |
US6571735B1 (en) * | 2000-10-10 | 2003-06-03 | Loy Wilkinson | Non-metallic bioreactor and uses |
US8507253B2 (en) * | 2002-05-13 | 2013-08-13 | Algae Systems, LLC | Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby |
JP2004041929A (ja) * | 2002-07-11 | 2004-02-12 | Fuji Electric Holdings Co Ltd | 有機性廃棄物のメタン発酵処理装置 |
WO2004038491A2 (en) * | 2002-10-24 | 2004-05-06 | Pan Pacific Technologies, Pty Ltd | Method and system for removal of contaminants from aqueous solution |
JP5374044B2 (ja) * | 2005-11-22 | 2013-12-25 | サッポロビール株式会社 | 水素発酵装置及び水素の製造方法 |
KR20080086988A (ko) * | 2005-12-09 | 2008-09-29 | 바이오나비타스, 인크. | 바이오매스 생산을 위한 시스템, 디바이스, 및 방법들 |
-
2009
- 2009-10-23 US US12/605,121 patent/US20100105125A1/en not_active Abandoned
-
2010
- 2010-04-27 KR KR1020117029172A patent/KR101478143B1/ko not_active IP Right Cessation
- 2010-04-27 CA CA2760856A patent/CA2760856A1/en active Pending
- 2010-04-27 WO PCT/US2010/032574 patent/WO2010129278A1/en active Application Filing
- 2010-04-27 JP JP2012509839A patent/JP5555313B2/ja not_active Expired - Fee Related
- 2010-04-27 MX MX2011011731A patent/MX2011011731A/es active IP Right Grant
- 2010-04-27 EP EP10772521.0A patent/EP2427542A4/en not_active Withdrawn
- 2010-04-27 CN CN201080030173.8A patent/CN102803463B/zh not_active Expired - Fee Related
- 2010-04-27 BR BRPI1014049-2A patent/BRPI1014049A2/pt not_active IP Right Cessation
- 2010-04-27 AU AU2010245049A patent/AU2010245049A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986002944A1 (en) * | 1984-11-07 | 1986-05-22 | Albright & Wilson Limited | Improvements relating to biotransformation reactions |
JPH0787955A (ja) * | 1993-09-22 | 1995-04-04 | Toshiba Corp | 光合成によるco2固定化方法およびその装置 |
JP3639007B2 (ja) * | 1995-08-22 | 2005-04-13 | 京都水研株式会社 | 攪拌槽型のバイオリアクタ |
US6602703B2 (en) * | 2001-10-17 | 2003-08-05 | Co2 Solution Inc. | Photobioreactor |
US20060068492A1 (en) * | 2002-11-19 | 2006-03-30 | Kuiwon Choi | Hybrid bioreactor for cell culture |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104073422A (zh) * | 2013-03-29 | 2014-10-01 | 映宝生物能源科技有限公司 | 密闭式藻类养殖系统 |
CN104312901A (zh) * | 2014-10-20 | 2015-01-28 | 杭州鑫伟低碳技术研发有限公司 | 一种微藻培养模块及微藻大规模工厂化培养系统 |
CN113975988A (zh) * | 2015-12-29 | 2022-01-28 | 生命科技股份有限公司 | 具有侧向移位的柔性驱动线的流体混合系统及使用方法 |
US12077742B2 (en) | 2015-12-29 | 2024-09-03 | Life Technologies Corporation | Methods for fluid mixing systems with laterally displaced flexible drive lines |
US12128371B2 (en) | 2019-03-19 | 2024-10-29 | Life Technologies Corporation | Fluid mixing system with flexible drive line and foldable impeller |
Also Published As
Publication number | Publication date |
---|---|
EP2427542A1 (en) | 2012-03-14 |
AU2010245049A1 (en) | 2011-11-24 |
MX2011011731A (es) | 2011-12-08 |
KR20120079853A (ko) | 2012-07-13 |
CA2760856A1 (en) | 2010-11-11 |
EP2427542A4 (en) | 2013-09-25 |
CN102803463B (zh) | 2015-09-23 |
JP2012525842A (ja) | 2012-10-25 |
WO2010129278A1 (en) | 2010-11-11 |
KR101478143B1 (ko) | 2014-12-31 |
AU2010245049A2 (en) | 2012-01-19 |
BRPI1014049A2 (pt) | 2015-08-25 |
JP5555313B2 (ja) | 2014-07-23 |
US20100105125A1 (en) | 2010-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102803463B (zh) | 用于培养微生物和减缓气体的系统、设备和方法 | |
CN103221346B (zh) | 用于培养生物和减缓气体的系统、设备和方法 | |
CN102257125B (zh) | 用于培养微生物和减缓气体的系统、设备和方法 | |
US20120252105A1 (en) | Systems, apparatuses and methods of cultivating organisms and mitigation of gases | |
CN102203233B (zh) | 藻类生长系统 | |
EP3902389A1 (en) | A microalgae-based system for producing products and a process using thereof | |
WO2011099016A2 (en) | System and plant for cultivation of aquatic organisms | |
WO2010138571A1 (en) | Photobioreactor and method for culturing and harvesting microorganisms | |
ITRM20100584A1 (it) | "metodo e relativo impianto per la coltivazione di microrganismi fotosintetici" | |
MX2012004113A (es) | Sistemas, aparatos y metodos para tratar aguas residuales. | |
CN110122123A (zh) | 一种沉水植物种苗培育系统 | |
AU2014221191A1 (en) | Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases | |
AU2010202958B2 (en) | Circulatory photobioreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150923 Termination date: 20170427 |
|
CF01 | Termination of patent right due to non-payment of annual fee |