CN102790576A - 一种无轴承永磁同步电机解耦控制器的构造方法 - Google Patents

一种无轴承永磁同步电机解耦控制器的构造方法 Download PDF

Info

Publication number
CN102790576A
CN102790576A CN2012102754019A CN201210275401A CN102790576A CN 102790576 A CN102790576 A CN 102790576A CN 2012102754019 A CN2012102754019 A CN 2012102754019A CN 201210275401 A CN201210275401 A CN 201210275401A CN 102790576 A CN102790576 A CN 102790576A
Authority
CN
China
Prior art keywords
svms
input
bearing
synchronous motor
magnet synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102754019A
Other languages
English (en)
Other versions
CN102790576B (zh
Inventor
孙晓东
陈龙
李可
杨泽斌
朱熀秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hongguang Meter Factory Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201210275401.9A priority Critical patent/CN102790576B/zh
Publication of CN102790576A publication Critical patent/CN102790576A/zh
Application granted granted Critical
Publication of CN102790576B publication Critical patent/CN102790576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种无轴承永磁同步电机解耦控制器的构造方法,是由两个Clark逆变换、两个电流跟踪型逆变器、无轴承永磁同步电机及其负载作为一个整体组成复合被控对象,用支持向量机加积分器构成支持向量机逆,将支持向量机逆串接在复合被控对象之前,复合成由两个位移子系统和一个转速子系统组成的伪线性系统;再依据线性系统的设计方法对伪线性系统设计线性闭环控制器,最后将线性闭环控制器与支持向量机逆相串接并与两个Clark逆变换、两个电流跟踪型逆变器一起形成支持向量机逆控制器,此控制器控制结构简单、控制系统性能优良,可实现无轴承永磁同步电机二自由度径向悬浮力之间及径向悬浮力和转速之间的动态解耦控制。

Description

一种无轴承永磁同步电机解耦控制器的构造方法
技术领域
本发明是一种基于支持向量机逆的无轴承永磁同步电机控制系统,具体是无轴承永磁同步电机解耦控制器的构造方法,适用于无轴承永磁同步电机的高性能控制,属于电力传动控制设备的技术领域。
背景技术
无轴承永磁同步电机是将无轴承技术应用于普通永磁同步电机的一种新型电机,在永磁同步电机基础上,将产生径向悬浮力的磁轴承绕组(线圈)和电机定子绕组叠压在一起,实现电机的无轴承化。无轴承永磁同步电机不仅具有永磁同步电机效率高、功率因数高、体积小、重量轻、控制性能好等优点,而且具有磁轴承无摩擦、无磨损、不需润滑、高转高精等优点,从而使其在生物医药、航空航天、半导体制造等特殊领域具有广泛的应用前景。然而无轴承永磁同步电机具有十分复杂的电磁关系,是一个多变量、非线性、强耦合的复杂系统,其二自由度径向悬浮力之间,以及径向悬浮力和转速之间存在着复杂的耦合关系,要实现无轴承永磁同步电机的稳定悬浮运行,以及在不同工况下的无级调速,必须对无轴承永磁同步电机进行非线性解耦控制。
目前无轴承永磁同步电机主要采用矢量控制,矢量控制是从电机电磁场理论出发,利用坐标变换,将无轴承永磁同步电机模型等效为类似于直流电机的模型来进行控制。然而,矢量控制只能实现二自由度径向悬浮力之间,以及径向悬浮力和转速之间的静态解耦控制。为提高无轴承永磁同步电机控制的动态性能,逆系统及微分几何控制方法也被用于无轴承永磁同步电机的控制,但其线性化解耦的实现,要求获得被控对象精确数学模型。而无轴承永磁同步电机作为一个复杂的非线性系统,电机参数在各种工况下变化十分显著,使逆系统和微分几何方法难以在实际中真正得到应用。神经网络逆方法虽然解决了逆系统方法中逆模型难以求取的棘手问题,但神经网络存在局部极小问题,学习速度慢,训练时间长、理想样本提取困难、网络结构不易优化等缺陷,使得基于神经网络逆方法的无轴承永磁同步电机解耦控制效果不理想。
为了从本质上提高无轴承永磁同步电机系统的适应性和鲁棒性,实现无轴承永磁同步电机的二自由度径向悬浮力之间,以及径向悬浮力和转速之间的动态解耦控制,进而提高无轴承永磁同步电机的悬浮运行性能,需采用新的控制技术和新的控制方法。
发明内容
本发明的目的是提供一种既可实现负载条件下无轴承永磁同步电机二自由度径向悬浮力之间,以及径向悬浮力和转速之间非线性解耦控制,又能有效地提高无轴承永磁同步电机的各项控制性能指标,如稳态跟踪精度、动态响应速度及参数鲁棒性的无轴承永磁同步电机支持向量机逆控制器的构造方法。
本发明的技术方案是采用如下步骤:1)先将两个Clark逆变换分别串接在相对应的两个电流跟踪型逆变器之间,再将两个电流跟踪型逆变器分别串接在与无轴承永磁同步电机及其负载模型之前,共同作为一个整体组成复合被控对象;2)用具有8个输入节点、4个输出节点的支持向量机加5个积分器s -1构造支持向量机逆,支持向量机的第一个输入为支持向量机逆的第一个输入,其经第一个积分器s -1的输出为支持向量机的第二个输入,再经第二个积分器为支持向量机的第三个输入;支持向量机的第四个输入为支持向量机逆的第二个输入,其经第三个积分器s -1的输出为支持向量机的第五个输入,再经第四个积分器为支持向量机的第六个输入;支持向量机的第七个输入为支持向量机逆的第三个输入,其经第五个积分器s -1的输出为支持向量机的第八个输入,支持向量机的输出是支持向量机逆的输出;3)调整并确定支持向量机的向量系数和阈值,将支持向量机逆置于复合被控对象之前组成伪线性系统;伪线性系统等效为两个位移二阶积分型伪线性子系统和一个速度一阶积分型伪线性子系统,对三个积分型伪线性子系统分别设计相应的两个位移调节器和一个速度调节器;由两个位移调节器和一个速度调节器构成线性闭环控制器;4)将线性闭环控制器串接在支持向量机逆之前,由线性闭环控制器、支持向量机逆和两个Clark逆变换、两个电流跟踪型逆变器共同构成无轴承永磁同步电机支持向量机逆控制器。
本发明的有益效果是:
1.通过构造支持向量机逆,将无轴承永磁同步电机这一多变量、非线性、强耦合时变系统的控制转化为对两个位移二阶积分线性子系统和一个转速一阶积分线性子系统的控制,利用PID调节器方法设计线性闭环控制器,从而实现了对二自由度径向悬浮力之间,以及径向悬浮力和转速之间的动态解耦,因而可以实现独立地对无轴承永磁同步电机的二自由度位移系统和转速的控制,获得无轴承永磁同步电机的高性能运行控制。
2.用支持向量机加积分器来实现复合被控对象的逆系统,构造支持向量机逆控制器来实现对无轴承永磁同步电机的控制,完全摆脱了传统的逆系统和微分几何控制方法对数学模型的依赖性,弥补了基于逆系统和微分几何控制方法中对无轴承永磁同步电机的数学模型要求严格以及系统参数的不稳定所带来的系统控制存在误差的不足,能更好地实现二自由度径向悬浮力之间,以及径向悬浮力和转速之间的动态解耦控制,有效减小负载扰动与电机参数变化对无轴承永磁同步电机性能的影响,显著地提高了无轴承永磁同步电机的性能指标。
3、本发明所构造的基于支持向量机逆的无轴承永磁同步电机解耦控制器,控制结构简单,控制系统性能优良,并且同样适用于其它类型的无轴承电机控制系统,以及适用于磁轴承支承的各类电机控制系统。
附图说明
图1是由两个Clark逆变换11、12、两个电流型跟踪逆变器13、14和无轴承永磁同步电机及其负载模型15组成的复合被控对象16的示意图及其等效图;
图2是支持向量机逆22的构成图;
图3是支持向量机逆22与复合被控对象16复合构成的伪线性系统31的示意图及其等效图;
图4由线性闭环控制器41与伪线性系统31的连接原理图;
图5是线性闭环控制器41、支持向量机逆22和复合被控对象16的连接原理图;
图6是无轴承永磁同步电机支持向量机逆控制器51的构成原理框图。
具体实施方式
本发明的实施方案是:首先由两个Clark逆变换、两个电流跟踪型逆变器和无轴承永磁同步电机负载作为一个整体组成复合被控对象,该复合被控对象等效为一个5阶微分方程模型,系统向量的相对阶为{2,2,1}。采用8个输入节点、4个输出节点的支持向量机加5个积分器s -1构成具有8个输入节点、4个输出节点的复合被控对象的支持向量机逆。再将支持向量机逆串接在复合被控对象之前,支持向量机逆与复合被控对象合成为两个位移二阶积分子系统和一个转速一阶积分子系统,从而将一个复杂的多变量、非线性、强耦合的控制系统转化为两个二阶积分子系统和一个一阶积分子系统的控制。对于已经线性化解耦的两个二阶积分子系统和一个一阶积分子系统,采用PID调节器设计方法,分别设计两个位移调节器和一个转速控制器,由位移调节器和转速调节器共同组成线性闭环控制器。最终构成由线性闭环控制器、支持向量机逆、两个Clark逆变换、两个电流跟踪逆变器组成的支持向量机逆控制器,对无轴承永磁同步电机进行非线性动态解耦控制。
具体实施分以下7步:
1. 先将两个Clark逆变换11、12分别串接在相对应的两个电流跟踪型逆变器13、14之间,再将两个电流跟踪型逆变器13、14分别串接在与无轴承永磁同步电机及其负载模型15之前,由两个Clark逆变换11、12、两个电流跟踪逆变器13、14以及无轴承永磁同步电机负载模型15作为整体组成复合被控对象16,如图1所示。该复合被控对象16以                                               
Figure 2012102754019100002DEST_PATH_IMAGE001
四个电流信号作为输入,以位移xy,以及转速
Figure 2012102754019100002DEST_PATH_IMAGE002
作为输出。
2. 通过分析、等效与推导,为支持向量机逆的构造与学习训练提供方法上的根据。首先建立复合被控对象16的数学模型,基于无轴承永磁同步电机工作原理,建立无轴承永磁同步电机数学模型,经过Clark变换和线性放大,得到复合被控对象16的数学模型,即一个5阶微分方程,其向量相对阶为{2,2,1}。经推导可以证明该5阶微分方程可逆,即逆系统存在,并可确定其逆系统的三个输入为两个位移的二阶导数和一个转速的一阶导数,四个输出分别为复合被控系统的四个输入。从而可以构造出支持向量机逆,如图2所示。为学习训练提供了方法上的根据。
3. 采用支持向量机21加5个积分器构造支持向量机逆22。其中支持向量机21的输入节点数为8,输出层节点数为4,支持向量机的向量系数和阈值将在下一步的离线学习中确定。接着采用具有8个输入节点、4个输出节点的支持向量机21加5个积分器s -1构成支持向量机逆22,其中:支持向量机21的第一个输入为支持向量机逆22的第一个输入,其经第一个积分器s -1的输出为支持向量机21的第二个输入,再经第二个积分器为支持向量机21的第三个输入;支持向量机21的第四个输入为支持向量机逆22的第二个输入,其经第三个积分器s -1的输出为支持向量机21的第五个输入,再经第四个积分器为支持向量机21的第六个输入;支持向量机21的第七个输入为支持向量机逆22的第三个输入,其经第五个积分器s -1的输出为支持向量机21的第八个输入。支持向量机21与5个积分器一道组成支持向量机逆22,支持向量机21的输出就是支持向量机逆22的输出。
4. 按以下方法调整并确定支持向量机21的向量系数和阈值:1) 将阶跃激励信号加到复合被控对象16的输入端,采集无轴承永磁同步电机的位移xy;转子的转速
Figure 160194DEST_PATH_IMAGE002
。2) 将位移xy离线分别求其一阶和二阶导数,转速
Figure 343526DEST_PATH_IMAGE002
求其一阶导数,并对信号做规范化处理,组成支持向量机21的训练样本集{
Figure 2012102754019100002DEST_PATH_IMAGE004
,
Figure 2012102754019100002DEST_PATH_IMAGE006
,
Figure 2012102754019100002DEST_PATH_IMAGE008
,
Figure 2012102754019100002DEST_PATH_IMAGE010
,
Figure 2012102754019100002DEST_PATH_IMAGE012
,
Figure 2012102754019100002DEST_PATH_IMAGE014
,
Figure 2012102754019100002DEST_PATH_IMAGE016
,
Figure 2012102754019100002DEST_PATH_IMAGE018
,
Figure 2012102754019100002DEST_PATH_IMAGE020
,
Figure 2012102754019100002DEST_PATH_IMAGE022
,
Figure 2012102754019100002DEST_PATH_IMAGE024
,
Figure 2012102754019100002DEST_PATH_IMAGE026
}。3)选取高斯核函数为支持向量机21的核函数,并且支持向量机21的正则化参数设定为620,核宽度为1.35,从而离线调整支持向量机21的向量系数和阈值。
5. 形成两个位移子系统和一个转速子系统。由支持向量机21与5个积分器构成支持向量机逆22,支持向量机逆22与复合被控对象16串连组成伪线性系统31,该伪线性系统31由两个位移二阶积分型伪线性子系统和一个转速一阶积分型伪线性子系统。从而实现二自由度径向悬浮力之间、以及径向悬浮力和转速之间的非线性动态解耦,把复杂非线性系统控制转化为简单的三个单变量线性系统的控制,如图3所示。
6. 设计线性闭环控制器。对两个位移子系统和一个转速子系统分别设计调节器,对两个位移子系统分别设计相对应的两个位移调节器42、43,对一个转速子系统设计一个速度调节器44,由两个位移调节器42、43和一个速度调节器44构成线性闭环控制器41,如图4所示。在本发明实施过程中,根据无轴承永磁同步电机参数来选择和调整调节器参数,两个位移调节器42、43均选用了PD调节器,速度调节器44选用了PI调节器。如整定后两个位移调节器42、43传递函数为:
Figure 2012102754019100002DEST_PATH_IMAGE028
,速度调节器44传递函数为
Figure 2012102754019100002DEST_PATH_IMAGE030
,整个控制系统如图5、图6所示。
7. 构成支持向量机逆控制器。将线性闭环控制器41串接在支持向量机逆22之前,由线性闭环控制器41、支持向量机逆22和两个Clark逆变换11、12、两个电流跟踪型逆变器13、14共同构成无轴承永磁同步电机支持向量机逆控制器51,如图6所示。
根据以上所述,便可实现本发明。

Claims (2)

1.一种无轴承永磁同步电机解耦控制器的构造方法,其特征在于采用如下步骤:
1)先将两个Clark逆变换(11、12)分别串接在相对应的两个电流跟踪型逆变器(13、14)之间,再将两个电流跟踪型逆变器(13、14)分别串接在与无轴承永磁同步电机及其负载模型(15)之前,共同作为一个整体组成复合被控对象(16);
2)用具有8个输入节点、4个输出节点的支持向量机(21)加5个积分器s -1构造支持向量机逆(22),支持向量机(21)的第一个输入为支持向量机逆(22)的第一个输入,其经第一个积分器s -1的输出为支持向量机(21)的第二个输入,再经第二个积分器为支持向量机(21)的第三个输入;支持向量机(21)的第四个输入为支持向量机逆(22)的第二个输入,其经第三个积分器s -1的输出为支持向量机(21)的第五个输入,再经第四个积分器为支持向量机(21)的第六个输入;支持向量机(21)的第七个输入为支持向量机逆(22)的第三个输入,其经第五个积分器s -1的输出为支持向量机(21)的第八个输入,支持向量机(21)的输出是支持向量机逆(22)的输出;
3)调整并确定支持向量机(21)的向量系数和阈值,将支持向量机逆(22)置于复合被控对象(16)之前组成伪线性系统(31);伪线性系统(31)等效为两个位移二阶积分型伪线性子系统和一个速度一阶积分型伪线性子系统,对三个积分型伪线性子系统分别设计相对应的两个位移调节器(42、43)和一个速度调节器(44);由两个位移调节器(42、43)和一个速度调节器(44)构成线性闭环控制器(41);
4)将线性闭环控制器(41)串接在支持向量机逆(22)之前,由线性闭环控制器(41)、支持向量机逆(22)和两个Clark逆变换(11、12)、两个电流跟踪型逆变器(13、14)共同构成无轴承永磁同步电机支持向量机逆控制器(51)。
2.根据权利要求1所述的构造方法,其特征在于:步骤3)中支持向量机(21)的向量系数和阈值的确定方法为:将阶跃激励信号                                               
Figure 2012102754019100001DEST_PATH_IMAGE001
加到复合被控对象(16)的输入端;采集无轴承永磁同步电机的径向位移xy以及转速
Figure 2012102754019100001DEST_PATH_IMAGE002
,将位移xy离线分别求其二阶导数,转速
Figure 742825DEST_PATH_IMAGE002
求其一阶导数,并对信号做规范化处理,组成支持向量机(21)的训练样本集{
Figure 2012102754019100001DEST_PATH_IMAGE004
,,,,
Figure 2012102754019100001DEST_PATH_IMAGE012
,,
Figure 2012102754019100001DEST_PATH_IMAGE016
,
Figure 2012102754019100001DEST_PATH_IMAGE018
,
Figure 2012102754019100001DEST_PATH_IMAGE020
,
Figure 2012102754019100001DEST_PATH_IMAGE022
,,
Figure 2012102754019100001DEST_PATH_IMAGE026
};选取高斯核函数作为支持向量机(21)的核函数,设定正则化参数为620,核宽度为1.35,对支持向量机(21)进行训练确定向量系数和阈值。
CN201210275401.9A 2012-08-06 2012-08-06 一种无轴承永磁同步电机解耦控制器的构造方法 Active CN102790576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210275401.9A CN102790576B (zh) 2012-08-06 2012-08-06 一种无轴承永磁同步电机解耦控制器的构造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210275401.9A CN102790576B (zh) 2012-08-06 2012-08-06 一种无轴承永磁同步电机解耦控制器的构造方法

Publications (2)

Publication Number Publication Date
CN102790576A true CN102790576A (zh) 2012-11-21
CN102790576B CN102790576B (zh) 2015-09-02

Family

ID=47155890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210275401.9A Active CN102790576B (zh) 2012-08-06 2012-08-06 一种无轴承永磁同步电机解耦控制器的构造方法

Country Status (1)

Country Link
CN (1) CN102790576B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051275A (zh) * 2012-11-27 2013-04-17 江苏大学 电动汽车感应电机磁链观测器的构造方法
CN113037157A (zh) * 2021-02-22 2021-06-25 江苏大学 一种无铁心外转子无轴承永磁电机解耦控制器的构造方法
CN113054881A (zh) * 2021-02-22 2021-06-29 江苏大学 外转子定子无铁心无轴承永磁同步电动机控制器构造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007995A1 (en) * 2002-07-11 2004-01-15 Visteon Global Technologies, Inc. Vector control system for permanent magnet sychronous machines using an open-loop parameter observer
CN1845449A (zh) * 2006-03-08 2006-10-11 江苏大学 无轴承交流异步电机神经网络逆解耦控制器的控制方法
CN202043069U (zh) * 2011-04-12 2011-11-16 江苏大学 一种五自由度无轴承同步磁阻电机解耦控制器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007995A1 (en) * 2002-07-11 2004-01-15 Visteon Global Technologies, Inc. Vector control system for permanent magnet sychronous machines using an open-loop parameter observer
CN1845449A (zh) * 2006-03-08 2006-10-11 江苏大学 无轴承交流异步电机神经网络逆解耦控制器的控制方法
CN202043069U (zh) * 2011-04-12 2011-11-16 江苏大学 一种五自由度无轴承同步磁阻电机解耦控制器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051275A (zh) * 2012-11-27 2013-04-17 江苏大学 电动汽车感应电机磁链观测器的构造方法
CN103051275B (zh) * 2012-11-27 2015-07-08 江苏大学 电动汽车感应电机磁链观测器的构造方法
CN113037157A (zh) * 2021-02-22 2021-06-25 江苏大学 一种无铁心外转子无轴承永磁电机解耦控制器的构造方法
CN113054881A (zh) * 2021-02-22 2021-06-29 江苏大学 外转子定子无铁心无轴承永磁同步电动机控制器构造方法

Also Published As

Publication number Publication date
CN102790576B (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
CN100536311C (zh) 神经网络广义逆无轴承永磁同步电机解耦控制器构造方法
CN101814892B (zh) 无轴承同步磁阻电机基于支持向量机逆系统复合控制器
CN100433537C (zh) 无轴承交流异步电机神经网络逆解耦控制器的控制方法
CN102790580A (zh) 无轴承异步电机支持向量机逆解耦控制器的构造方法
CN102790581B (zh) 一种无轴承异步电机径向位置鲁棒控制器的构造方法
Bu et al. Sliding mode variable structure control strategy of bearingless induction motor based on inverse system decoupling
CN102136822B (zh) 一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
Yang et al. Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer
CN102790577B (zh) 一种无轴承永磁同步电机悬浮子系统控制器的构造方法
CN103414428B (zh) 无轴承同步磁阻电机转子偏心位移控制器及其构造方法
CN102097986A (zh) 无轴承同步磁阻电机神经网络广义逆解耦控制器构造方法
CN202043069U (zh) 一种五自由度无轴承同步磁阻电机解耦控制器
CN102510253A (zh) 一种无轴承同步磁阻电机无传感器控制器及其控制方法
CN101958685B (zh) 无轴承同步磁阻电机非线性逆解耦控制器及其构造方法
Sun et al. Neuron PID control for a BPMSM based on RBF neural network on‐line identification
CN103486134B (zh) 一种交流混合磁轴承解耦控制器的构造方法
CN102790576A (zh) 一种无轴承永磁同步电机解耦控制器的构造方法
CN103595321A (zh) 一种五自由度交流主动磁轴承解耦控制器的构造方法
CN102790578B (zh) 无轴承异步电机神经网络广义逆解耦控制器的构造方法
CN202004708U (zh) 一种无轴承无刷直流电机神经网络α阶逆控制器
CN201928221U (zh) 一种无轴承同步磁阻电机神经网络广义逆解耦控制器
CN103427754B (zh) 无轴承异步电机转子径向位移直接控制器
CN102790579B (zh) 一种五自由度无轴承永磁同步电机解耦控制器的构造方法
CN102790583A (zh) 无轴承永磁同步电机径向广义逆内模控制器的构造方法
CN102801382B (zh) 五自由度无轴承异步电机支持向量机逆控制器的构造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190816

Address after: 211600 No. 161 Jinhu West Road, Jinhu Economic Development Zone, Huaian City, Jiangsu Province

Patentee after: Jiangsu Hongguang Meter Factory Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: Jiangsu University