CN102789345A - 电容式触控面板感测系统的自动增益控制 - Google Patents

电容式触控面板感测系统的自动增益控制 Download PDF

Info

Publication number
CN102789345A
CN102789345A CN2012101499200A CN201210149920A CN102789345A CN 102789345 A CN102789345 A CN 102789345A CN 2012101499200 A CN2012101499200 A CN 2012101499200A CN 201210149920 A CN201210149920 A CN 201210149920A CN 102789345 A CN102789345 A CN 102789345A
Authority
CN
China
Prior art keywords
electric conductivity
circuit
output signal
multiplier
control panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101499200A
Other languages
English (en)
Other versions
CN102789345B (zh
Inventor
凱尼斯·魁戴尔
麦可·布朗斯南
杰瑞菲·史顿
汤玛士·墨菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Pixart Imaging Inc
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Publication of CN102789345A publication Critical patent/CN102789345A/zh
Application granted granted Critical
Publication of CN102789345B publication Critical patent/CN102789345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/002Control of digital or coded signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明揭示电容式触控屏幕或触控面板系统、装置及方法,其增大可在一电容式触控屏幕或触控面板上被检测的触碰的动态范围。增大的动态范围是通过利用自动增益控制方法及电路来处理与一触控屏幕或触控面板中的个别互电容单元相对应的信号而达成。该触控屏幕系统及方法可等化一触控面板感测器的每一个别单元的有效增益而不会降低感测器追踪所关心触碰的能力。

Description

电容式触控面板感测系统的自动增益控制
技术领域
本文所述各种实施例是关于触控屏幕或触控板系统、装置、组件及方法的领域,所述多个触控屏幕或触控板系统、装置、组件及方法用以使用电容感测技术来检测一触控屏幕或触控面板上的触碰。
背景技术
电容式触控面板感测器包含触控屏幕或触控面板,该等触控屏幕或触控面板包含感测单元(sensing cell)阵列。触碰会引起被触碰区域下方的一或多个单元的电容发生变化。触控屏幕控制器通过分析该等单元由于电容变化而产生的信号来检测并定位该等电容变化。该等信号被模拟放大及滤波,接着数字化,然后数字信号处理。该分析的主要结果是确定受影响的单元位置,并因此确定对应的触碰位置。
然而,任一给定阵列中的该等单元的电容值可能变化很大。因本质上的变化、模拟放大组件的特性的变化、电源的变化及其他因素,将可能导致该等单元所输出的信号振幅处于一高达20分贝(dB)的动态范围内变化。如此大的变化使对触碰位置的确定变得复杂。如今,例如应用一全局信号临界值来区分触碰状态与非触碰状态等方法也已发觉其效果有限。
发明内容
因此,需要一种触控屏幕系统及一种操作此一系统的方法,该触控屏幕系统及方法可等化一触控面板感测器的每一个别单元的有效增益而不会降低感测器追踪所关心触碰的能力。
于一实施例,提供一种电容式触控屏幕或触控面板系统,包含:一触控面板,包含多个第一导电性驱动电极以及多个第二导电性感测电极,所述多个第一导电性驱动电极排列成多个列或行,所述多个第二导电性感测电极则相对于所述多个第一导电性驱动电极的所述多个列或行以一角度排列成多个列或行,在所述多个第一导电性驱动电极与所述多个第二导电性感测电极相交而形成多个个别的单元(cell)的位置处,存在多个互电容(mutualcapacitance)于所述多个第一导电性驱动电极与所述多个第二导电性感测电极之间,当有一使用者的一或多个手指或触碰装置靠近时,所述多个互电容发生变化;一驱动电路,可操作地连接至所述多个第一导电性驱动电极;一感测电路,可操作地连接至所述多个第二导电性感测电极,并用以自所述多个第二导电性感测电极感测对应于所述多个个别的单元的输入信号;以及一控制器,可操作地连接至所述多个第一导电性驱动电极及所述多个第二导电性感测电极,所述控制器包含一中央处理装置(central processing unit;CPU)及一自动位准控制(automatic level control;ALC)电路,所述自动位准控制电路包含:至少一个倍频器及降频器电路(scaler and decimator circuit),用以接收对应于所述多个个别的单元的信号,并提供对应于所述多个个别的单元的倍频及降频后的输出信号;一乘法器电路,可操作地连接至所述倍频器及降频器电路,并用以自所述倍频器及降频器电路接收所述多个倍频及降频后的输出信号,并更将所述多个倍频及降频后的输出信号乘以一增益因数,以提供多个乘法器输出信号;一第一减法器电路,可操作地连接至所述乘法器电路,并用以自所述乘法器电路接收所述多个乘法器输出信号,并且将一预定设定点值减去所述多个乘法器输出信号,以提供多个误差输出信号;一自动位准控制回路滤波器电路,可操作地连接至所述中央处理装置及所述乘法器电路,并用以根据所述等误差输出信号计算多个更新的增益因数,以及提供所述多个更新的增益因数至所述乘法器电路;以及一第二减法器电路,用以将一所期望设定点值减去乘法输出信号,并提供对应是多个最终输出信号至所述中央处理装置;其中所述中央处理装置用以根据对应于所述使用者的所述一或多个手指或触碰装置的位置的所述多个最终输出信号来计算一触碰位置数据。
根据另一实施例,一种于一电容式触控屏幕或触控面板系统上检测触碰的方法,该系统包含:一触控面板,包含多个第一导电性驱动电极以及多个第二导电性感测电极,所述多个第一导电性驱动电极排列成多个列或行,所述多个第二导电性感测电极则相对于所述多个第一导电性驱动电极电极之所述多个列或行以一角度排列成多个列或行,在所述多个第一导电性驱动电极与所述多个第二导电性感测电极相交而形成多个个别的单元的位置处,存在多个互电容(mutual capacitance)于所述多个第一导电性驱动电极与所述多个第二导电性感测电极之间,当有一使用者的一或多个手指或触碰装置靠近时,所述多个互电容发生变化;一驱动电路,可操作地连接至所述多个第一导电性驱动电极;一感测电路,可操作地连接至所述多个第二导电性感测电极,并用以自所述多个第二导电性感测电极感测对应于所述多个个别的单元的输入信号;以及一控制器,可操作地连接至所述多个第一导电性驱动电极及所述多个第二导电性感测电极,所述控制器包含一中央处理装置(CPU)及一自动位准控制(automatic level control;ALC)电路,所述方法包含:倍频及降频对应于所述多个个别的单元的信号,以提供对应于所述多个个别的单元的倍频及降频后的输出信号;将所述多个倍频及降频后的输出信号乘以一增益因数,以提供多个乘法器输出信号;将一预定设定点值减去所述多个乘法器输出信号,以提供多个个误差输出信号;根据所述多个误差输出信号计算多个的增益因数;将一所期望设定点值减去所述多个乘法器输出信号,以提供对应的多个最终输出信号;以及根据对应于所述使用者的所述一或多个手指或触碰装置的位置的所述多个最终输出信号来计算一触碰位置数据。
本发明容许通过乘法式自适应性校正(multiplicative adaptive correction)来等化每一个别单元的增益,并适应性地控制回路频宽,以便于在忽略触碰活动的同时追踪单元增益的变化。
本文将揭示其他实施例,或于熟习此项技术者阅读并理解本说明书及附图之后,其他实施例将变得一目了然。
附图说明
图1显示一实施例中一电容式触控屏幕系统的示意性剖视图;
图2显示一电容式触控屏幕控制器的示意性方框图;
图3显示一实施例中的一电容式触控屏幕系统及一主机控制器的示意性方框图;
图4显示一实施例中一电容式触控屏幕系统的示意性方框图;
图5显示一实施例中一包含自动增益控制的触控屏幕系统的示意性方框图;
图6显示一实施例中一触控屏幕控制器的示意性方框图;以及
图7显示一实施例中一种用于控制一触控屏幕系统的方法的流程图,该触控屏幕系统采用自动增益控制。
该等附图未必按比例绘制。在所有附图中,相同编号指示相同部件或步骤。
附图标号:
90触控屏幕
95介电板
100中央处理装置(CPU)
110电容式触控屏幕系统
112LCD显示器
120主机控制器
240方波丛发产生器
250行驱动器
255放大器元件
260粗增益及模拟滤波器控制元件
265模拟滤波器
270模拟至数字转换器
272FIR带通滤波器
274复基带降频转换器
276FIR低通滤波器
278数字滤波器模块
280单极IIR低通滤波器
282自动位准控制电路
284ARM核心处理器
286演算法协处理器
288SNR统计量计算器
290触觉驱动器
292I2C及SPI驱动器/接收器介面
具体实施方式
如图1所示,一电容式触控屏幕系统110通常由以下组成:一下层的LCD(或OLED)显示器112、一上层的触控屏幕(或触碰感测面板或)90、一设置于触控屏幕90上方的介电板(或保护罩)95、以及一触控屏幕控制器(或微处理器、应用专用积体电路(application specific integrated circuit,ASIC)或中央处理装置(CPU))100。应注意,亦可于触控屏幕90下方LCD显示器或OLED显示器之外亦可设置其他影像显示器。
图2显示一触控屏幕控制器100的一实施例的方框图。在一实施例中,触控屏幕控制器100可为根据本文的教示内容而修改的一AvagoTechnologiesTM ARMI-5000ASIC或晶片100。在一实施例中,触控屏幕控制器为一低功率电容式触控面板控制器,其被设计以提供具高精确度屏幕导航的一触控屏幕系统。
图3及图4所示的电容式触控屏幕(或触控面板90)可通过对一介电板的一或多个表面涂敷例如氧化铟锡(Indium Tin Oxide,ITO)等导电材料而形成。介电板通常包含玻璃、塑胶或另一适宜的电绝缘材料且较佳地为光学透射性材料,且介电板通常被构造成呈一电极网格(grid)的形状。网格的电容保持一电荷,且当使用一手指触碰触控屏幕90时,通往使用者身体的一电路通道会引起电容的变化。
触控屏幕控制器100感测并分析具有此等电容变化的坐标。当触控屏幕90固定至具有一图形使用者介面的一显示器时,可通过追踪该等触碰坐标而达成屏幕导航。通常屏幕导航需要检测多个触碰而达成。该网格的尺寸是通过该等触碰所需的解析度而被导出。通常存在一额外罩板95来保护触控屏幕90的顶部ITO层,进而形成一完整的触控屏幕解决方案(例如图1)。
一种形成一触控屏幕90的方式是仅于一介电板或基板的一侧上涂敷一ITO网格。当触控屏幕90与一显示器配合时,将不需要一额外的保护罩。此具有形成一透射率得到改良(>90%)的更薄显示系统的益处,进而能够达成更亮且更轻的手持式装置。触控屏幕控制器100的应用包括但不限于:智慧型电话(smart phone)、可携式媒体播放器(portable media player)、行动网际网络装置(Mobile Internet Device,MID)、及全球定位系统(GPS)装置。
请参照图3及图4,在一实施例中,触控屏幕控制器100包含一模拟前端(analog front end)。该模拟前端具有9条驱动信号线及16条感测线连接至一触控屏幕上的一ITO网格。触控屏幕控制器100对该等驱动电极施加一激发(excitation),例如一方波(square wave)、一弯折线信号(meander signal)或其他适宜类型的驱动信号,该等信号的频率可选自约40千赫兹至约200千赫兹的范围。交流(AC)信号经由互电容(mutual capacitance)而耦合至该等感测线。使用一手指触碰触控屏幕(或触控面板)90会改变该触碰位置处的电容。触控屏幕控制器100可同时解析并追踪多个触碰。高的更新率(refreshrate)容许主机无明显延迟地追踪快速触碰及任何另外移动。嵌入的处理器对数据进行滤波、辨识触碰坐标并将该等触碰坐标报告至主机。嵌入的固件可经由修补程序(patch)下载来更新。当然,亦可考虑其他数目的驱动线及感测线,例如8×12阵列及12×20阵列。
触控屏幕控制器100可具有不同功耗位准的多个运作模式。举例而言,在休息模式中,控制器100可依据休息速率暂存器(register)所程式化的一速率来周期性地搜寻触碰。可具有多个休息模式,各休息模式依次地具有较小的功耗。当不存在触碰达某一时间间隔时,控制器100可自动地切换至次较小(next-lowest)功耗的模式。然而,随着功耗减小时,对触碰的响应时间可能会变长。
于一实施例中,及如图4所示,触控屏幕90上的一ITO网格或其他电极配置可包含:感测行20a至20p及驱动列10a至10i,其中感测行20a至20p系可操作地连接至对应的感测电路且驱动列10a至10i可操作地连接至对应的驱动电路。图4中显示一种将自驱动电极及感测电极的ITO线或其他线拉线至触控屏幕控制器100的配置。
在不背离本发明各实施例的范围或精神的条件下,所属技术领域中具有通常知识者可理解除了修改的ARMI-5000晶片或触控屏幕控制器100外,在触控屏幕系统110中亦可采用的其他触控屏幕控制器、微处理器、ASIC或CPU,且除本文明确所示者之外,亦可采用不同数目的驱动线及感测线、及不同数目及不同配置的驱动电极及感测电极。
图5显示一触控屏幕系统110的一实施例的示意图,触控屏幕系统110被设计,以使用自动位准控制(automatic level control,ALC)电路282来最小化因单元间变化(cell-to-cell variation)所造成的影响。各ALC电路282适应性地调整触控面板感测器中所对应的个别的单元的增益,其可使整个阵列中的各单元输出被平化(leveled out)以具有相同的“无触碰”值。
感测器面板的各该N个电容单元所输入的信号是由一对应ALC电路282的一倍频器及降频器(scaler and decimator)电路(或级)310接收,其中N通常为数百或数千。倍频器及降频器电路310倍频及降频输入信号(降低输入信号的取样频率)。倍频因数及降频因数是与实施方案相关,并决定最终样本精确度及最大频宽。ALC 282的下一级是为一乘法器315,用于控制单元信号的增益。此构成一积分控制回路中的“受控器(plant)”。
乘法器电路315的输出沿二独立的路径进行处理。一个路径是为控制回路路径,其经由元件320、325并返回至元件315。另一路径则经由减法器330。
控制回路路径
该控制回路计算一误差信号,该误差信号被定义为“受控器输出”(乘法器282的输出,其被馈入至元件320的一负端口)与一“期望设定点”(其施加至元件320的正端口)之差:
误差=期望设定点-受控器输出
(Error=Desired Set-point–Plant Output)(1)
其中该期望设定点为一固定数值,表示未被触碰的单元的所期望的受控器输出。
由元件320依上述公式(1)计算的误差输出信号被馈入至ALC控制回路滤波器电路325。ALC控制回路滤波器电路325包含一具有可控前端增益(front-end gain)的积分器。通过在该积分器之前使用一移位暂存器(shiftregister)而对该误差信号实施增益控制。若对该误差信号施加愈小的增益,则得到愈窄的回路频宽,并相应地具有愈长的自适应时间常数。该回路增益系由固件(与CPU 284相关)控制。ALC控制回路滤波器电路325中的积分器的输出被回馈至乘法器电路315来控制设备增益。负反馈驱动该受控器增益,以最小化误差信号。
控制回路滤波器电路可用以在二个模式其中之一中运作。该二模式的特征分别在于长时间常数及短时间常数,且其分别对应于慢运作与快运作,并分别具有低回路频宽与高回路频宽。通过CPU 284而起作用的系统控制器100将滤波器配置成在系统固件检测到一触碰时具有一长时间常数,该触碰是由单元电容信号降至一预定临界值以下而被指出。为使使用者的手指保持与感测器接触若干秒时,该手指触碰不会被ALC“追踪出”,长时间常数(低的回路频宽)是必须的。
经CPU 284而起作用的系统控制器100将滤波器配置成在未检测到触碰时具有一短时间常数。此容许快速地调整以确保对“无触碰”信号增益的恰当修剪(trim)。精确的无触碰增益修剪使得所有单元能够具有相同的有效增益,并使控制器100能够对所有单元使用相同的临界值以达成精确的触碰侦测。
减法器路径
如公式(2)所示,该减法器级移除来自减法器315的信号输出中的设定点偏移:
输出差量=设定点-设备输出
(Delta Output=Set-point–Plant Output)       (2)
计算出的输出差量在未检测到触碰时通常保持为零。若该输出差量为正值,则将该正值与临界值相比较,以判断可否假设在对应单元位置处存在触碰接触。
该输出差量可基于增益变化的原因通过一查表方法补偿。此举可能特别适用于具有可变厚度的罩的面板,其使得处于面板中较厚截面下的单元的差量信号变得更低。该查表方法可以一硬体或一固件来执行。表的内容是由面板90的特性决定,且此过程是由开回路控制。
触控控制器CPU 284及相关固件执行ALC初始化、ALC回路频宽调整、触碰临界值检测,以及选择性地执行差量增益补偿。最后,控制器CPU 284将所要的确定触碰导航数据输出至一主机处理器。
图6显示一实施例中具有一触控屏幕(或触控面板矩阵)90的一触控屏幕控制器ASIC 100的示意图,触控屏幕(或触控面板矩阵)90使用240个触碰单元,此240个触碰单元排列成12×20个单元(cell)的一网格。
一典型互电容量测技术通过量测驱动信号与对应信号间的电容耦合而在触控屏幕(或触控面板矩阵)90上感测电容变化。该等驱动信号是由方波丛发产生器(square wave burst generator)240经行驱动器250提供,而该等对应信号则自显示于触控面板矩阵90右手侧的感测积分可程式化增益放大器(Integrating Programmable Gain Amplifier;IPGA)的接脚输出。须注意者,尽管图中仅明确地显示一个产生器240及一个驱动器250,然而亦可考虑其他配置,例如针对阵列的每一行或每一列皆有一个产生器240及一个驱动器250。所感测的信号由放大器元件(amplifier elements)255放大并高通滤波,放大器元件255是由粗增益及模拟滤波器控制元件260控制。该等经增益调整、高通滤波的信号被模拟滤波器265低通滤波,接着被可配置的模拟至数字转换器(ADC)270数字化,然后被FIR带通滤波器(band pass filter)272滤波并被复基带降频转换器(complex baseband down-converter)274降频转换。降频转换器274输出平行的I及Q数据流,该I及Q数据流首先被馈入FIR低通滤波器(low pass filter)276中并接着被馈入至可配置的数字滤波器模块(digital filter module)278。
可配置的数字滤波器模块278的输出被单极IIR低通滤波器(one pole IIRlow pass filter)280滤波,并在被输入至进阶精简指令集机器(Advanced RISCMachine;ARM)核心处理器(core processor)284前通过经过ALC自动位准控制电路282而被平化(leveled)。可配置的设置滤波器模块278的输出亦经信号杂讯比(SNR)及统计量计算器288,而传递至处理器284。
接着,导航相关的处理是由CPU或ARM核心处理器284与演算法协处理器(algorithm coprocessor)286的组合所进行,以自触觉驱动器(haptic driver)290提供触觉输出至主机控制器120,并经由I2C及SPI驱动器/接收器介面292与主机控制器120交换SPI或TWI数据。
须注意者,尽管放大器元件255、控制元件260、模拟滤波器(低通滤波器)265、ADC 270、FIR BPF 272、降频转换器274、FIR低通滤波器276、数字滤波器模块278、IIR低通滤波器280、ALC电路282及CPU 284其中每一种仅显示一个,然而亦可考虑其他配置及其他组件,例如针对阵列90的每一列或行皆有一组该等组件。
如图6所示的具体实施例中,对于阵列90中的240个单元的每一者,皆存在一个IIR低通滤波器(low pass filter)280及一个ALC电路282,彼等单元被排列成一12×20的网格。使用20个列驱动器及12个感测放大器扫描该等电容器。每一单元皆视为一标称值为2皮法(pF)的电容器,当被触碰时该值会减小至约1.8皮法。每一信号是通过采样并处理电容值所决定,并以一介于5000至50000间的数字值提供至ALC电路282。
ALC电路282使用一反馈控制回路,以正规化表示相对于一数值16384的单元电容的信号。存在240个此种ALC回路,对于每一单元皆有一个ALC回路。该值16384为任意的,并表示与一未被触碰的单元相对应的控制回路的设定点。由于仅关注电容的变化,因此通过在一单元被触碰时自16384减去触碰信号以形成一正的差量值来获得最终输出,该触碰使电容值相对于其未被触碰的状态具显著的减小。当一单元被触碰时,差量值端视面板及手指特性而介于2000至5000之间。通过固件来设定一临界值,以确定何时出现一触碰。
可于离散的时间间隔中对执行ALC运算的该积分控制回路进行计时控制,其中在每一时钟间隔中对经滤波的触碰单元信号进行采样。在图6所示的触控屏幕控制器ASIC 100的一具体实施方案中,可由固件调节的额定时钟频率为150赫兹。输入样本为16位元无符号的成对补数(unsigned twoscomplement numbers)。此等数字对应于触碰单元电容值。ALC 282含有一29位元积分器暂存器,该积分器暂存器存有增益值。将此数字乘以该16位元输入来对该输入实施增益控制。于一实施例中,一具体实施方案的控制公式如下:
cellError=16384-fioor(cellIIRout[t]*cellIntegrator[t-1]/33554432(3)
cellIIRout[t]=cellIntegrator[t-1]+floor(cellError*33554432/Ki)(4)
其中,当cellError大于0时,Ki=2^k1,以及当cellError小于0时,Ki=2^k2,且k1与k2为10、11、12至25其中之一。
cellDeltaOut[t]=floor((cellDeltaCal/4096)*(16384-floor(cellIIRout[t]*cellIntegrator[t]/33554432)))                                                   (5)
其中,cellIntegrator:29位元无符号整数,240个其中之一(固件R/W及冻结)
cellIIRout:IIR滤波器的16位元无符号整数输出,240个其中之一
Ki:积分回路增益,基于k1及k2
k1:5位元无符号整数,触控回路增益指数全局变数(固件R/W)
k2:5位元无符号整数,反触控(anti-touch)增益指数全局变数(固件R/W)
cellDeltaCal:16位元无符号整数,对于单位增益的预设值为4096,240个其中之一(固件R/W)
cellDeltaOut:对应于触碰数据的16位元无符号整数,240个其中之一(固件R/W)
积分器在数值上将其值加至单元误差值来获得一更新的积分器值。将该积分器值(cellIntegrator)乘以输入值(cellIIRout)。该乘积经过一右移25的换算(即,除以33554432)。此数值为增益调整后的单元值。通过将设定点16384减去该数值,形成一误差值。该误差值经Ki换算,而接着导出积分器值。该Ki值控制回路频宽。愈大的Ki值会增大频宽并对应地减少回路的响应时间。
输出差量(cellDeltaOut)是通过对设定点进行减法运算及通过一列表因数(cellDeltaCal)进行最终换算得到。随后,导航固件使用最终处理的正规化单元值,以追踪触碰位置及强度。
该Ki值对于电容器单元的成功正规化而言至关重要。该误差的符号用于选择二个可能的增益值。必须通过k2而迅速地追踪出高于额定值的电容器值(称为反触碰)。k1则更缓慢地追踪出低于额定值的电容器值(正常触碰)。此外,k1的值取决于是否感测到一触碰。感测到一触碰(超过差量的临界值)时改变k1至一低很多的值来减慢单元增益调整,俾使该回路不追踪一触碰。此可变增益处理使所有单元对于未扰动必要的细微增益修剪量的触碰而言看起来皆相同。
图7显示一种用于控制一采用自动增益控制的触控屏幕系统的方法400。该方法是对每一个别单元实施,其首先在步骤305中设定如下的值:预设增益、比例因数(scaling factor)、触碰检测临界值、及无触碰设定点。在步骤310中,将回路增益设定为预设增益。在步骤315中,对单元的经滤波的输出信号进行取样。该方法在步骤320中判断该单元输出信号是否大于所设定的临界值。若该信号大于临界值,即表示已出现一真正的触碰,则该方法进入步骤330,在其中为回路频宽因数Ki选择一小的值,但若该信号S小于临界值,即表示未出现触碰,则该方法进入步骤335,在其中为回路频宽因数Ki选择一大的值。
在步骤325或步骤330之后,该方法继续进行至步骤335,在其中根据比例因数、无触碰设定点、增益及信号来计算输出差量(Delta Output)。最后在步骤340中,通过加上回路频宽因数与输出差量的乘积来更新增益值,且该方法返回至步骤315来对一个别的单元信号进行取样。
此一方法容许通过乘法式自适应性校正(multiplicative adaptivecorrection)来等化每一个别单元的增益,并适应性地控制回路频宽,以便于在忽略触碰活动的同时追踪单元增益的变化。
除上文所揭示实施例外,亦可设想出其他各种实施例。上述实施例应被视为实例,而非对各种实施例范围的限制。除上述实施例外,在阅读本详细说明及附图后将知,亦存在其他实施例。因此,本文未明确阐述的上述实施例的许多组合、排列、改变及润饰将仍然归属于本发明范围内。

Claims (18)

1.一种电容式触控面板系统,其特征是,所述电容式触控面板系统包含:
一触控面板,包含多个第一导电性驱动电极以及多个第二导电性感测电极,所述多个第一导电性驱动电极排列成多个列或行,所述多个第二导电性感测电极则相对于所述第一导电性驱动电极的所述多个列或行以一角度排列成多个列或行,在所述多个第一导电性驱动电极与所述多个第二电极相交而形成的多个个别的单元的位置处,存在多个互电容于所述多个第一导电性驱动电极与所述多个第二导电性感测电极之间,当有一使用者的至少一手指或触碰装置靠近时,所述多个互电容发生变化;
一驱动电路,可操作地连接至所述多个第一导电性驱动电极;
一感测电路,可操作地连接至所述多个第二导电性感测电极,并用以自所述多个第二导电性感测电极感测对应于所述多个个别的单元的多个输入信号,以及
一控制器,可操作地连接至所述多个第一导电性驱动电极及所述多个第二导电性感测电极,所述控制器包含一中央处理装置及一自动位准控制ALC电路,所述自动位准控制电路包含:
至少一倍频器及降频器电路,用以接收对应于所述多个个别的单元的信号,并提供对应于所述多个个别的单元的倍频及降频后的输出信号;
一乘法器电路,可操作地连接至所述倍频器及降频器电路,并用以自所述倍频器及降频器电路接收所述多个倍频及降频后的输出信号,并更将所述多个倍频及降频后的输出信号乘以一增益因数,以提供多个乘法器输出信号;
一第一减法器电路,可操作地连接至所述乘法器电路,并用以自所述乘法器电路接收所述多个乘法器输出信号,并且将一预定设定点值减去所述多个乘法器输出信号,以提供多个误差输出信号;
一自动位准控制回路滤波器电路,可操作地连接至所述中央处理装置及所述乘法器电路,并用以根据所述多个误差输出信号计算多个更新的增益因数,以及提供所述多个更新的增益因数至所述乘法器电路;以及
一第二减法器电路,用以将一期望的设定点值减去所述多个乘法器输出信号,并提供对应的多个最终输出信号至所述中央处理装置;
其中所述中央处理装置用以根据对应于所述使用者的所述至少一手指或触碰装置的位置的所述多个最终输出信号,计算一触碰位置数据。
2.如权利要求1所述的电容式触控面板系统,其特征是,所述中央处理装置更用以提供所述触碰位置数据至一主机控制器。
3.如权利要求1所述的电容式触控面板系统,其特征是,所述ALC控制回路滤波器电路包含一移位暂存器及一积分器。
4.如权利要求1所述的电容式触控面板系统,其特征是,所述ALC控制回路滤波器电路更用以提供一增益因数,且回馈所述增益因数至所述乘法器电路,以最小化所述多个误差输出信号。
5.如权利要求1所述的电容式触控面板系统,其特征是,所述控制器用以于所述电容式触控面板系统未检测到触碰时,使所述ALC控制回路滤波器电路具有一短时间常数。
6.如权利要求1所述的电容式触控面板系统,其特征是,所述控制器用以于所述电容式触控面板系统检测到一触碰时,使所述ALC控制回路滤波器电路具有一长时间常数。
7.如权利要求6所述的电容式触控面板系统,其特征是,触碰检测是由所述多个个别单元的互电容降至一预定临界值以下来决定。
8.如权利要求7所述的电容式触控面板系统,其特征是,更包含一系统固件,所述系统固件用以决定触碰检测。
9.如权利要求1所述的电容式触控面板系统,其特征是,对于所述触控面板的N个个别单元的每一者,所述控制器皆包含一ALC电路。
10.如权利要求1所述的电容式触控面板系统,其特征是,各所述N个ALC电路使用相同的预定设定点值。
11.如权利要求1所述的电容式触控面板系统,其特征是,对应于所述多个个别单元的所述多个最终输出信号为数字化的已滤波输出信号。
12.如权利要求1所述的电容式触控面板系统,其特征是,所述多个数字化的已滤波输出信号是5000至50000间的数字值。
13.如权利要求1所述的电容式触控面板系统,其特征是,所述预定设定点值是16,000至约20,000间。
14.一种于一电容式触控面板系统上检测触碰的方法,其特征是,所述系统包含:一触控面板,包含多个第一导电性驱动电极以及多个第二导电性感测电极,所述多个第一导电性驱动电极排列成多个列或行,所述多个第二导电性感测电极则相对于所述多个第一导电性驱动电极的所述多个列或行以一角度排列成多个列或行,在所述多个第一导电性驱动电极与所述多个第二导电性感测电极相交而形成的多个别的单元的位置处,存在多个互电容于所述多个第一导电性驱动电极与所述多个第二导电性感测电极之间,当有一使用者的至少一手指或触碰装置靠近时,所述多个互电容发生变化;一驱动电路,可操作地连接至所述多个第一导电性驱动电极;一感测电路,可操作地连接至所述多个第二导电性感测电极,并用以自所述多个第二导电性感测电极感测对应于所述多个个别的单元的多个输入信号;以及一控制器,可操作地连接至所述多个第一导电性驱动电极及所述第二导电性感测电极,所述控制器包含一中央处理装置及一自动位准控制ALC电路,该方法包含:
倍频及降频对应于所述多个个别的单元的信号,以提供对应于所述多个个别的单元的倍频及降频后的输出信号;
将所述多个倍频及降频后的输出信号乘以一增益因数,以提供多个乘法器输出信号;
将一预定设定点值减去所述多个乘法器输出信号,以提供多个误差输出信号;
根据所述多个误差输出信号计算多个更新的增益因数;
将一所期望设定点值减去所述多个乘法器输出信号并提供对应的多个最终输出信号;以及
根据对应于所述使用者的所述至少一手指或触碰装置的位置的所述多个最终输出信号,来计算一触碰位置数据。
15.如权利要求14所述的方法,其特征是,更包含提供触碰位置数据至一主机控制器。
16.如权利要求14所述的方法,其特征是,更包含计算及提供多个回馈增益因数,以最小化所述多个误差输出信号。
17.如权利要求14所述的方法,其特征是,更包含于个别单元的电容降至一预定临限值以下时,检测触碰。
18.如权利要求14所述的方法,其特征是,更包含采用一系统固件来检测触碰。
CN201210149920.0A 2011-05-16 2012-05-15 电容式触控面板感测系统的自动增益控制 Active CN102789345B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/108,968 2011-05-16
US13/108,968 US8487893B2 (en) 2011-05-16 2011-05-16 Automatic gain control for capacitive touch panel sensing system

Publications (2)

Publication Number Publication Date
CN102789345A true CN102789345A (zh) 2012-11-21
CN102789345B CN102789345B (zh) 2015-05-13

Family

ID=47154754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210149920.0A Active CN102789345B (zh) 2011-05-16 2012-05-15 电容式触控面板感测系统的自动增益控制

Country Status (3)

Country Link
US (1) US8487893B2 (zh)
CN (1) CN102789345B (zh)
TW (1) TWI456472B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529973A (zh) * 2012-07-03 2014-01-22 上海海尔集成电路有限公司 触摸屏控制器的增益调节方法和增益调节电路
CN104375696A (zh) * 2014-10-10 2015-02-25 长芯盛(武汉)科技有限公司 触摸屏感应值自校正的装置与方法
CN104657010A (zh) * 2013-11-21 2015-05-27 原相科技股份有限公司 电容式触控系统及其增益控制方法
CN106201128A (zh) * 2014-11-12 2016-12-07 原相科技(槟城)有限公司 电容触控系统及其选频方法
CN106293288A (zh) * 2015-06-11 2017-01-04 敦泰电子股份有限公司 避免显示噪声的触控侦测系统及方法
CN107430470A (zh) * 2015-04-21 2017-12-01 普瑞有限公司 用于空间分辨投影电容式触摸检测且具有改进型局部变形电极结构的组件
CN107894859A (zh) * 2016-10-04 2018-04-10 禾瑞亚科技股份有限公司 触控处理装置、电子系统与其触控处理方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884928B1 (en) * 2012-01-26 2014-11-11 Amazon Technologies, Inc. Correcting for parallax in electronic displays
US8810546B1 (en) 2012-09-26 2014-08-19 Cypress Semiconductor Corporation Touchscreen panel frequency response determination
KR102058437B1 (ko) * 2013-02-25 2019-12-26 삼성전자주식회사 필터 값 추출기를 포함하는 터치 감지 장치 및 필터 값 추출기
TWI511011B (zh) * 2013-07-24 2015-12-01 Himax Tech Ltd 用於偵測觸控面板雜訊以及執行訊號控制的方法及控制器
US10001884B2 (en) * 2013-07-29 2018-06-19 Atmel Corporation Voltage driven self-capacitance measurement
US9582109B2 (en) 2013-09-30 2017-02-28 Himax Technologies Limited Method for detecting touch panel noise and performing signal control and associated controller
BR112016017474A2 (pt) 2014-01-27 2018-05-08 Tactual Labs Co. estratégias dizimação para processamento de entrada de evento
EP3108344A4 (en) * 2014-02-21 2017-11-22 Northwestern University Haptic display with simultaneous sensing and actuation
KR101606404B1 (ko) * 2014-03-05 2016-03-25 주식회사 동부하이텍 터치 센서
US10156940B2 (en) 2014-03-11 2018-12-18 Apple Inc. Panel mismatch compensation for touch enabled displays
TWI612462B (zh) * 2016-06-08 2018-01-21 速博思股份有限公司 具獨立電源之電子裝置操作方法
TWI594170B (zh) 2016-06-08 2017-08-01 速博思股份有限公司 具獨立電源之電子裝置
US10408870B2 (en) * 2016-06-28 2019-09-10 Himax Technologies Limited Capacitor sensor apparatus and sensing method thereof
US11137858B2 (en) 2016-09-23 2021-10-05 Apple Inc. Location-based swing compensation for touch channel attenuation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484868A (zh) * 2006-07-06 2009-07-15 泰科电子公司 用于声学触摸系统的自动增益切换模块
US8094128B2 (en) * 2007-01-03 2012-01-10 Apple Inc. Channel scan logic

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424338B1 (en) 1999-09-30 2002-07-23 Gateway, Inc. Speed zone touchpad
US7525050B1 (en) * 2004-04-23 2009-04-28 Luidia, Inc. Interference removal in pointing device locating systems
US20070080940A1 (en) * 2005-10-07 2007-04-12 Sharp Kabushiki Kaisha Remote control system, and display device and electronic device using the remote control system
TW200905538A (en) 2007-07-31 2009-02-01 Elan Microelectronics Corp Touch position detector of capacitive touch panel and method of detecting the touch position
US8059103B2 (en) 2007-11-21 2011-11-15 3M Innovative Properties Company System and method for determining touch positions based on position-dependent electrical charges
US20090267905A1 (en) 2008-04-26 2009-10-29 Chung-Wen Hsu Cursor Input Device With Dual Input Modes
US8482545B2 (en) 2008-10-02 2013-07-09 Wacom Co., Ltd. Combination touch and transducer input system and method
JP2010108501A (ja) * 2008-10-30 2010-05-13 Samsung Electronics Co Ltd センシング感度を向上させたタッチスクリーンコントローラ、タッチスクリーンコントローラを備えるディスプレイ駆動回路、ディスプレイ装置及びシステム
US8791907B2 (en) * 2009-08-19 2014-07-29 U-Pixel Technologies Inc. Touch sensing apparatus and method using different modulated driving signals
US9805692B2 (en) * 2010-02-26 2017-10-31 Synaptics Incorporated Varying demodulation to avoid interference

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484868A (zh) * 2006-07-06 2009-07-15 泰科电子公司 用于声学触摸系统的自动增益切换模块
US8094128B2 (en) * 2007-01-03 2012-01-10 Apple Inc. Channel scan logic

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529973B (zh) * 2012-07-03 2016-07-06 上海东软载波微电子有限公司 触摸屏控制器的增益调节方法和增益调节电路
CN103529973A (zh) * 2012-07-03 2014-01-22 上海海尔集成电路有限公司 触摸屏控制器的增益调节方法和增益调节电路
CN104657010B (zh) * 2013-11-21 2017-08-25 原相科技股份有限公司 电容式触控系统及其增益控制方法
CN104657010A (zh) * 2013-11-21 2015-05-27 原相科技股份有限公司 电容式触控系统及其增益控制方法
CN104375696A (zh) * 2014-10-10 2015-02-25 长芯盛(武汉)科技有限公司 触摸屏感应值自校正的装置与方法
CN104375696B (zh) * 2014-10-10 2017-08-29 长芯盛(武汉)科技有限公司 触摸屏感应值自校正的装置与方法
CN106201128A (zh) * 2014-11-12 2016-12-07 原相科技(槟城)有限公司 电容触控系统及其选频方法
CN107430470A (zh) * 2015-04-21 2017-12-01 普瑞有限公司 用于空间分辨投影电容式触摸检测且具有改进型局部变形电极结构的组件
CN107430470B (zh) * 2015-04-21 2020-09-08 普瑞有限公司 用于空间分辨投影电容式触摸检测且具有改进型局部变形电极结构的组件
US11354003B2 (en) 2015-04-21 2022-06-07 Preh Gmbh Arrangement for spatially resolving projected-capacitive touch detection with improved locally deformed electrode structure
CN106293288A (zh) * 2015-06-11 2017-01-04 敦泰电子股份有限公司 避免显示噪声的触控侦测系统及方法
CN106293288B (zh) * 2015-06-11 2019-01-01 敦泰电子股份有限公司 避免显示噪声的触控侦测系统及方法
CN107894859A (zh) * 2016-10-04 2018-04-10 禾瑞亚科技股份有限公司 触控处理装置、电子系统与其触控处理方法
CN107894859B (zh) * 2016-10-04 2021-02-19 禾瑞亚科技股份有限公司 触控处理装置、电子系统与其触控处理方法

Also Published As

Publication number Publication date
US20120293446A1 (en) 2012-11-22
CN102789345B (zh) 2015-05-13
TWI456472B (zh) 2014-10-11
TW201248483A (en) 2012-12-01
US8487893B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
CN102789345B (zh) 电容式触控面板感测系统的自动增益控制
US9444453B2 (en) Measuring body capacitance effect in touch sensitive device
EP2975502B1 (en) Adjustment of touch sensing stimulation voltage levels based on touch performance
US9459738B2 (en) Calibration for pressure effects on touch sensor panels
US8749512B2 (en) Negative pixel compensation
EP2895943B1 (en) Noise detection and correction routines
US20140152582A1 (en) Noise correction for stylus applications on tablets and other touch devices
US20110061948A1 (en) Touch Controller with Improved Diagnostics Calibration and Communications Support
EP2613221A2 (en) Fast touch detection in a mutual capacitive touch system
US10725591B1 (en) Passive touch detection for capacitive sense array
US20110310054A1 (en) Capacitive Touchscreen Signal Acquisition without Panel Reset
CN102810034B (zh) 电容式触控面板系统及其操作方法
US9606670B2 (en) Real-time spectral noise monitoring for proximity sensing device
US20150029136A1 (en) Superheterodyne pen stimulus signal receiver
US9921668B1 (en) Touch panel controller integrated with host processor for dynamic baseline image update
US20120293445A1 (en) Noise Blanking for Capacitive Touch Displays
KR20140010859A (ko) 고속 패널 스캐닝을 위한 이득 정정
US20160062494A1 (en) Touch scan modes during device charging
CN102789344A (zh) 电容式触控屏幕或触控面板系统及其操作方法
WO2017048835A1 (en) Continuous time anti-alias filter for capacitive touch sensing
US20110128251A1 (en) Method and system for detecting a contact on a touch screen
CN102750060A (zh) 利用空间差异性的投射式电容触摸屏系统时域降噪方法
CN111176473B (zh) 触控板的按压力识别方法及系统
CN104185832B (zh) 触摸屏系统
CN103529973A (zh) 触摸屏控制器的增益调节方法和增益调节电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant