CN102775666A - 全介质自承式电力光缆高密度聚乙烯护套料及生产方法 - Google Patents

全介质自承式电力光缆高密度聚乙烯护套料及生产方法 Download PDF

Info

Publication number
CN102775666A
CN102775666A CN2012102301752A CN201210230175A CN102775666A CN 102775666 A CN102775666 A CN 102775666A CN 2012102301752 A CN2012102301752 A CN 2012102301752A CN 201210230175 A CN201210230175 A CN 201210230175A CN 102775666 A CN102775666 A CN 102775666A
Authority
CN
China
Prior art keywords
parts
weight
agent
density polyethylene
optical cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102301752A
Other languages
English (en)
Other versions
CN102775666B (zh
Inventor
汤卉
邵璇
张继鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201210230175.2A priority Critical patent/CN102775666B/zh
Publication of CN102775666A publication Critical patent/CN102775666A/zh
Application granted granted Critical
Publication of CN102775666B publication Critical patent/CN102775666B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

全介质自承式电力光缆高密度聚乙烯护套料及生产方法 高密度聚乙烯光缆护套料 高性能化的实现,不可避免地带来材料及技术成本的大幅增加。 全介质自承式电力光缆高密度聚乙烯护套料, 由下述原料按重量份数组成: 17~20 份的 基础树脂 7~10 改性树脂 6.5~8.5 填充剂 0.9~1.1 光屏蔽剂和抗老化剂 0.9~ 1.1 偶联剂 0.03~0.04 分散剂 0.1~0.2 润滑剂 0.1~0.2 主抗氧剂 0.1~0.2 所述的 辅助抗氧剂 0.1~0.3 的低分子量聚乙烯。 本产品用于 电力光缆套料。

Description

全介质自承式电力光缆高密度聚乙烯护套料及生产方法
技术领域:
本发明涉及一种全介质自承式电力光缆高密度聚乙烯护套料及生产方法。
背景技术:
聚乙烯作为光缆护套用材料,不仅具有优良的介电性能,而且具有优良的耐低温,耐应力开裂等性能。其中,高密度聚乙烯(高密度聚乙烯)料因具有良好的机械强度、韧性及其优异的耐热性、绝缘和化学稳定性,已广泛用于电线电缆和光缆的绝缘和护套材料;然而,传统的聚乙烯电线电缆和光缆护套材料,由于其原料的单一性,即护套料仅由一种聚乙烯树脂或者多种聚乙烯树脂加入抗氧剂、光屏蔽剂、润滑剂等制成,其机械性能,如护套料的强度、韧性、耐磨性、硬度等势必会收到限制,为此要实现高密度聚乙烯光缆护套料高性能化以及延长护套料的使用年限,对聚乙烯牌号的选择就提出了很高的要求,也就是说必须要选用性能非常优异的聚乙烯树脂基体,从而不可避免地带来材料及技术成本的大幅增加。
发明内容:
本发明的目的是提供一种全介质自承式电力光缆高密度聚乙烯护套料及生产方法,能够有效的降低生产成本。
上述的目的通过以下的技术方案实现:
全介质自承式电力光缆高密度聚乙烯护套,由下述原料按重量份数组成: 17~20份的基础树脂,7~10份的改性树脂, 6.5~8.5份的填充剂, 0.9~1.1份的光屏蔽剂和抗老化剂, 0.9~1.1份的偶联剂, 0.03~0.04份的分散剂, 0.1~0.2份的润滑剂,0.1~0.2份的主抗氧剂,0.1~0.2份所述的辅助抗氧剂,0.1~0.3份的低分子量聚乙烯。
所述的全介质自承式电力光缆高密度聚乙烯护套料,所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO 3 颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,该方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为0.9~1.1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min,使偶联剂与填充剂填料充分混合均匀;
(2)取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂,重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.03~0.04的所述的分散剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为0.1~0.2的所述的主抗氧剂、重量份数为0.04~0.06的所述的辅助抗氧剂以及重量份数为0.1~0.3的所述的低分子量聚乙烯,上述原料经高速混合机,混合5min;将混合均匀的原料加入MDKE~46型自动计量连续混炼造粒生产线于165℃条件下进行造粒;所制备原料颗粒经开放式混练机二次混炼20~30min后,放入以升温至150℃平板硫化机中,于12MPa压力条件下压制成1mm厚光滑片层,并用冲片机制备成待测试样。
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,所述的护套料的实验室制造方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min,使偶联剂与填充剂填料充分混合均匀;
所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO 3 颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
(2)选择加热开式炼塑机至150℃,按照下列顺序边混边投入原料:取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂、重量份数为0.1~0.3的所述的低分子量聚乙烯、重量份数为0.1~0.2的所述的主抗氧剂和重量份数为0.04~0.06的所述的辅助抗氧剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.03~0.04的所述的分散剂,混炼20~30min;加热平板硫化机至150℃,将已混炼好的产物放入平板硫化机中热压成型,压力l2Mpa,制成1mm厚的光滑片层,并用冲片机将部分产品制备成哑铃状待测试样。
有益效果:
1.采用本发明方法生产的聚乙烯光缆护套料具有高强度、高耐磨性,高耐电压性,确保光缆不受损伤;高耐寒性,使光缆在高寒区的野外敷设时,不发生低温脆裂;优异的耐环境力开裂性,保证光缆在使用环境中,其护层不因受表面活性剂的侵蚀发生表面龟裂,而降低光缆寿命;优异的抗氧化性,减缓光缆外护套在高温环境下发生光、热老化;
2.将 CaCO 3 纳米颗粒作为刚性的无机粒子填充到高密度聚乙烯聚合物材料后可以提高了聚合物材料的韧性、刚性、硬度和耐磨性等性能,降低了生产成本。
.纳米级CaCO 3 颗粒作为填充剂的增韧机理分析:当高密度聚乙烯护套料受到冲击振动时,作为填料的CaCO 3 粒子从高密度聚乙烯护套料基体中脱粘,高密度聚乙烯护套料基体产生空洞化损伤,若高密度聚乙烯护套料基体厚度小于临界基体层厚度,则基体层塑性变形大大加强,从而使高密度聚乙烯护套料材料韧性大大提高。另一方面由于CaCO 3 纳米颗粒具有较大的比表面积,CaCO 3 纳米颗粒在高密度聚乙烯聚合物基体中形成大量细裂纹,这些微细的断裂可分散冲击能量,同时,CaCO 3 纳米颗粒空间中的基体可经受冲击而产生的变形,这也分散了外部冲击力,从而提高韧性。CaCO 3 纳米颗粒作为刚性的无机粒子填充到高密度聚乙烯聚合物材料后可以提高聚合物材料的刚性、硬度和耐磨性等性能,但普通的无机粉体填料填充改性聚合材料时在增强这些性能的同时大都会降低聚合物材料的强度和韧性。而纳米无机材料由于粒径小、比表面积大,与聚合物材料复合后,与高密度聚乙烯基体材料间有很强的结合力,不仅能提高材料的刚性和硬度,还可起到增强增韧效果。使用纳米CaCO 3 提高高密度聚乙烯韧性的关键,是将纳米CaCO 3 颗粒较好地分散到高密度聚乙烯聚合物基体中。纳米颗粒有很高的表面活性,这些颗粒倾向于聚结。纳米CaCO 3 颗粒特定表面的改进可采用常规技术通过制备纳米CaCO 3 主体来实现,从而可有效地将纳米CaCO 3 颗粒分散到高密度聚乙烯聚合物基体中。
为了增加纳米CaCO 3 与聚合物的界面结合力,提高纳米CaCO 3 的分散能力,需对其表面进行改性,主要是降低粒子表面能态,消除颗粒的表面电荷,提高纳米颗粒有机相的亲和力,减弱粒子的表面极性等,从而增加高聚物制品的物理性能。
所述的全介质自承式电力光缆高密度聚乙烯护套料的性能测试:
1.测试标准
电气性能按GB1410规定测试体积电阻率,按GB1408规定测试介电强度。按GB1409规定测介电常数、介质损耗。
老化性能按GB2951.7规定进行空气烘箱热老化测试,老化温度100±2℃,时间10天。
力学性能按GB1040的规定进行,试样为Ⅲ型,厚度为1.0±0.1mm。
流变性能按GB3682规定进行。
高密度聚乙烯光缆护套料性能指标如表1所示。
表1  高密度聚乙烯光缆护套料性能指标(国家标准值)
熔体流动速率 ≤0.5 介电强度 ≥25
拉伸强度 >20 体积电阻率 >1×10 14
拉伸屈服强度 ≥16.0 介电常数 ≤2.75
断裂伸长率 ≥650 介质损耗角正切 ≤0.005
碳黑含量 2.60±0.25 熔融指数 ≤0.3
性能测试结果(中试产品)
(1)力学性能测试
添加纳米CaCO 3 对聚乙烯护套料有很好的增韧作用。由于纳米碳酸钙可以和钛酸脂之间形成牢固的物理化学结合,并和基体树脂之间形成较厚的力学作用层,有效地促进基体树脂使之发生屈服和塑性形变,因而极大地促进了基体韧性的提高,添加结果随碳酸钙含量增加拉伸强度则有一定程度的下降.表5。
表2  力学性能测试结果
Figure 735789DEST_PATH_IMAGE002
(2)体积电阻率测定
中试试样体积电阻率下降,原因是添加纳米CaCO 3 未完全分散均匀,导致通过电流增大,但与标准值对比可知此试样符合国标要求值。
表3 体积电阻率测试结果
试样编号 电压 体积电阻率
标准试样 1000V 4×10 18
CaCO 3 试样 1000V 1.5×10 18
(3)介电性能测试
护套材料的介电常数和介质损耗角是决定电力电缆及电力光缆的一个重要因素,所以电力电缆料和电力光缆料的ε r 和介质损耗角正切(tgδ)越小越好。相比标准试样,中试试样的介质损耗角增大,相对介电常数减小,原因是一方面由于添加的无机粒子分散不均匀,另一方面无机粒子具有良好的
绝缘特性,介电强度、介质损耗角测试结果如表4所示,介质损耗角、相对介电常数如表5所示。根据公式  (1~1)  计算得到介电常数。
Figure 934689DEST_PATH_IMAGE003
Figure 728202DEST_PATH_IMAGE004
Figure 580021DEST_PATH_IMAGE006
Figure 317033DEST_PATH_IMAGE007
Figure 840418DEST_PATH_IMAGE008
介电强度测试结果:
实测:32.62KV (厚度:1.27mm ) ,得到介电强度25.6MV/m,作为电力光缆和电力电缆护套料必须具有高的介电强度,在高压下不至于被击穿,测试结果可满足要求。
表4 介电强度、介质损耗角测试结果
试样编号 C 4 ,uF R 3 ,Ω
标准试样 0.0023 7683.9
CaCO 3 试样 0.0042 7033.4
表5 介质损耗角、相对介电常数(ε r 计算所得)
试样编号 δ(介质损耗角) ε r (相对介电常数)
标准试样 0.0023 2.20
CaCO 3 试样 0.0042 1.96
(4)热老化测试
由热老化测试结果可以看出,试样经过热老化后,其断裂强度和断裂伸长率均有一定程度的下降,热老化试样拉伸性能测试结果如表6所示。由DSC曲线(图1)可以测得中试试样:
熔融温度126.164℃,总吸热量295.75mJ,ΔH=50.993J/g。
表6 热老化试样拉伸性能测试结果
△   
Figure 2012102301752100002DEST_PATH_IMAGE009
△   由(5)流变性能测试
流变性能测试结果如表7所示:
表7 流变性能测试结果
Figure 394896DEST_PATH_IMAGE010
结论:在高密度聚乙烯中添加7.5%的纳米级CaCO 3 颗粒, 可以得到满足国家标准要求指标的电力光缆护套料,由于纳米CaCO 3 的使用,降低了护套料的生产成本,该配方可用于电力光缆护套料的生产。
附图说明:
附图1是热性能测试曲线图。
具体实施方式:
实施例1:
一种全介质自承式电力光缆高密度聚乙烯护套料,其组成包括: 17~20份的基础树脂,7~10份的改性树脂, 6.5~8.5份的填充剂, 0.9~1.1份的光屏蔽剂和抗老化剂, 0.9~1.1份的偶联剂, 0.03~0.04份的分散剂, 0.1~0.2份的润滑剂,0.1~0.2份的主抗氧剂,0.1~0.2份所述的辅助抗氧剂,0.1~0.3份的低分子量聚乙烯。
所述的全介质自承式电力光缆高密度聚乙烯护套料,所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO 3 颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
实施例2:
全介质自承式电力光缆高密度聚乙烯护套料,由下述重量份数的原料组成:重量份数为17的高密度聚乙烯,重量份数为7的线性低密度聚乙烯,重量份数为6.5的纳米级CaCO 3 颗粒,重量份数为0.9的中级色素炭黑,重量份数为0.9的肽酸脂,重量份数为0.03的硬脂酸,重量份数为0.1的液蜡,重量份数为0.1的四季戊四醇酯,所述的硫代二丙酸二月桂脂,重量份数为0.1的低分子量聚乙烯。
实施例3:
全介质自承式电力光缆高密度聚乙烯护套料,由下述重量份数的原料组成:重量份数为20的高密度聚乙烯,重量份数为10的线性低密度聚乙烯,重量份数为8.5的纳米级CaCO 3 颗粒,重量份数为1.1的中级色素炭黑,重量份数为1.1的肽酸脂,重量份数为0.04的硬脂酸,重量份数为0.2的液蜡,重量份数为0.2的四季戊四醇酯,所述的硫代二丙酸二月桂脂,重量份数为0.3的低分子量聚乙烯。
实施例4:
全介质自承式电力光缆高密度聚乙烯护套料,由下述重量份数的原料组成:重量份数为19的高密度聚乙烯,重量份数为9的线性低密度聚乙烯,重量份数为7.5的纳米级CaCO 3 颗粒,重量份数为1.0的中级色素炭黑,重量份数为1.0的肽酸脂,重量份数为0.025的硬脂酸,重量份数为0.015的液蜡,重量份数为0.015的四季戊四醇酯,所述的硫代二丙酸二月桂脂,重量份数为0.2的低分子量聚乙烯。
实施例5:
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,该方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为0.9~1.1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min,使偶联剂与填充剂填料充分混合均匀;
(2)取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂,重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.03~0.04的所述的分散剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为0.1~0.2的所述的主抗氧剂、重量份数为0.04~0.06的所述的辅助抗氧剂以及重量份数为0.1~0.3的所述的低分子量聚乙烯,上述原料经高速混合机,混合5min;将混合均匀的原料加入MDKE~46型自动计量连续混炼造粒生产线于165℃条件下进行造粒;所制备原料颗粒经开放式混练机二次混炼20~30min后,放入以升温至150℃平板硫化机中,于12MPa压力条件下压制成1mm厚光滑片层,并用冲片机制备成待测试样。
实施例6:
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,该方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的纳米级CaCO 3 颗粒进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为0.9~1.1的所述的肽酸脂滴入高速搅拌的所述的纳米级CaCO 3 颗粒填料中,滴完,继续搅拌10 min,使钛酸脂与CaCO 3 填料充分混合均匀;
(2)取重量份数为17~20的所述的高密度聚乙烯、重量份数为7~10的所述的线性低密度聚乙烯,重量份数为6.5~8.5的经过表面改性处理的所述的纳米级CaCO 3 颗粒、重量份数为0.9~1.1的所述的中级色素炭黑、重量份数为0.03~0.04的所述的硬脂酸、重量份数为0.1~0.2的所述的液蜡、重量份数为0.1~0.2的所述的四季戊四醇酯、重量份数为0.04~0.06的所述的硫代二丙酸二月桂脂、重量份数为0.1~0.3的所述的低分子量聚乙烯,上述原料经高速混合机,混合5min;将混合均匀的原料加入MDKE~46型自动计量连续混炼造粒生产线于165℃条件下进行造粒;所制备原料颗粒经开放式混练机二次混炼20~30min后,放入以升温至150℃平板硫化机中,于12MPa压力条件下压制成1mm厚光滑片层,并用冲片机制备成待测试样。
实施例7:
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,其特征是:所述的护套料的实验室制造方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min,使偶联剂与填充剂填料充分混合均匀;
所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO 3 颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
(2)选择加热开式炼塑机至150℃,按照下列顺序边混边投入原料:取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂、重量份数为0.1~0.3的所述的低分子量聚乙烯、重量份数为0.1~0.2的所述的主抗氧剂和重量份数为0.04~0.06的所述的辅助抗氧剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.03~0.04的所述的分散剂,混炼20~30min;加热平板硫化机至150℃,将已混炼好的产物放入平板硫化机中热压成型,压力l2Mpa,制成1mm厚的光滑片层,并用冲片机将部分产品制备成哑铃状待测试样。
实施例8:
所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,所述的全介质自承式电力光缆高密度聚乙烯护套料的实验室制造方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的纳米级CaCO 3 颗粒进行表面改性处理,在110℃下干燥2 h,除去水分;将称量好的重量份数为1的所述的肽酸脂滴入高速搅拌的所述的纳米级CaCO3颗粒填料中,滴完,继续搅拌10 min,使钛酸脂与CaCO3填料充分混合均匀;
(2)选择加热开式炼塑机至150℃,按照下列顺序边混边投入原料:取重量份数为17~20的所述的高密度聚乙烯、重量份数为7~10的所述的线性低密度聚乙烯、重量份数为0.1~0.3的所述的低分子量聚乙烯、重量份数为0.1~0.2的所述的四季戊四醇酯和重量份数为0.04~0.06的所述的硫代二丙酸二月桂脂、重量份数为0.9~1.1的所述的中级色素炭黑、重量份数为0.1~0.2的所述的液蜡、重量份数为6.5~8.5的经过表面改性处理的所述的纳米级CaCO3颗粒、分重量份数为0.03~0.04的所述的硬脂酸,混炼20~30min;加热平板硫化机至150℃,将已混炼好的产物放入平板硫化机中热压成型,压力l2Mpa,制成1mm厚的光滑片层,并用冲片机将部分产品制备成哑铃状待测试样。

Claims (5)

1.一种全介质自承式电力光缆高密度聚乙烯护套料,其特征是:由下述原料按重量份数组成: 17~20份的基础树脂,7~10份的改性树脂, 6.5~8.5份的填充剂, 0.9~1.1份的光屏蔽剂和抗老化剂, 0.9~1.1份的偶联剂, 0.03~0.04份的分散剂, 0.1~0.2份的润滑剂,0.1~0.2份的主抗氧剂,0.1~0.2份所述的辅助抗氧剂,0.1~0.3份的低分子量聚乙烯。
2.根据权利要求1所述的全介质自承式电力光缆高密度聚乙烯护套料,其特征是:所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO3颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
3. 一种权利要求1或2所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,其特征是:该方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h, 除去水分;将称量好的重量份数为0.9~1.1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min, 使偶联剂与填充剂填料充分混合均匀;
(2)取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂,重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.03~0.04的所述的分散剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为0.1~0.2的所述的主抗氧剂、重量份数为0.04~0.06的所述的辅助抗氧剂以及重量份数为0.1~0.3的所述的低分子量聚乙烯,上述原料经高速混合机,混合5min;将混合均匀的原料加入MDKE~46型自动计量连续混炼造粒生产线于165℃条件下进行造粒;所制备原料颗粒经开放式混练机二次混炼20~30min后,放入以升温至150℃平板硫化机中,于12MPa压力条件下压制成1mm厚光滑片层,并用冲片机制备成待测试样。
4. 一种权利要求1或2所述的全介质自承式电力光缆高密度聚乙烯护套料生产方法,其特征是:所述的护套料的实验室制造方法包括如下步骤:
(1)对所述的重量份数为6.5~8.5的所述的填充剂进行表面改性处理,在110℃下干燥2 h, 除去水分;将称量好的重量份数为1的所述的偶联剂滴入高速搅拌的所述的填充剂填料中,滴完,继续搅拌10 min, 使偶联剂与填充剂填料充分混合均匀;
所述的基础树脂为高密度聚乙烯,所述的改性树脂为线性低密度聚乙烯,所述的填充剂为纳米级CaCO3颗粒,所述的光屏蔽剂和抗老化剂为中级色素炭黑,所述的偶联剂为肽酸脂,所述的分散剂为硬脂酸,所述的润滑剂为液蜡,所述的主抗氧剂为四季戊四醇酯,所述的辅助抗氧剂为硫代二丙酸二月桂脂。
5.(2)选择加热开式炼塑机至150℃,按照下列顺序边混边投入原料:取重量份数为17~20的所述的基础树脂、重量份数为7~10的所述的改性树脂、重量份数为0.1~0.3的所述的低分子量聚乙烯、重量份数为0.1~0.2的所述的主抗氧剂和重量份数为0.04~0.06的所述的辅助抗氧剂、重量份数为0.9~1.1的所述的光屏蔽剂和抗老化剂、重量份数为0.1~0.2的所述的润滑剂、重量份数为6.5~8.5的经过表面改性处理的所述的填充剂、重量份数为0.03~0.04的所述的分散剂,混炼20~30min;加热平板硫化机至150℃,将已混炼好的产物放入平板硫化机中热压成型,压力l2Mpa,制成1mm厚的光滑片层,并用冲片机将部分产品制备成哑铃状待测试样。
CN201210230175.2A 2012-07-05 2012-07-05 全介质自承式电力光缆高密度聚乙烯护套料及生产方法 Expired - Fee Related CN102775666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210230175.2A CN102775666B (zh) 2012-07-05 2012-07-05 全介质自承式电力光缆高密度聚乙烯护套料及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210230175.2A CN102775666B (zh) 2012-07-05 2012-07-05 全介质自承式电力光缆高密度聚乙烯护套料及生产方法

Publications (2)

Publication Number Publication Date
CN102775666A true CN102775666A (zh) 2012-11-14
CN102775666B CN102775666B (zh) 2016-08-10

Family

ID=47120789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210230175.2A Expired - Fee Related CN102775666B (zh) 2012-07-05 2012-07-05 全介质自承式电力光缆高密度聚乙烯护套料及生产方法

Country Status (1)

Country Link
CN (1) CN102775666B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554611A (zh) * 2013-10-30 2014-02-05 安徽国通高新管业股份有限公司 一种电力电线保护套管
CN105001495A (zh) * 2015-08-06 2015-10-28 安徽电信器材贸易工业有限责任公司 一种光纤用耐磨护套材料及其制备方法
CN105153520A (zh) * 2015-09-25 2015-12-16 国网山东省电力公司临沂供电公司 一种风力发电用电缆护套料
CN105452925A (zh) * 2013-06-28 2016-03-30 康宁光电通信有限责任公司 用于光缆的光纤组件
CN105778234A (zh) * 2016-04-20 2016-07-20 朱加尖 一种环保节约型聚乙烯护套料及其制备方法
CN108239321A (zh) * 2016-12-27 2018-07-03 上海邦中新材料有限公司 一种桥梁缆索专用护套料的制备方法
CN109627538A (zh) * 2017-10-09 2019-04-16 中广核三角洲(江苏)塑化有限公司 全介质自承式架空光缆用抗蠕变耐电痕护套料
CN109897270A (zh) * 2019-04-27 2019-06-18 盐城市贝迪塑业有限公司 一种pe护套料及其制备方法
CN112480517A (zh) * 2020-12-08 2021-03-12 湖北科普达高分子材料股份有限公司 利用废旧聚乙烯塑料生产的高密度高强度聚乙烯光缆护套专用料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234515A (zh) * 1998-04-24 1999-11-10 四川联合大学 高密度聚乙烯通信电缆、光缆护套料
CN1322773A (zh) * 2001-05-24 2001-11-21 宁波信高塑化有限公司 无机纳米粒子改性光缆护套管专用料及其制备方法
CN1431535A (zh) * 2003-01-15 2003-07-23 上海电缆研究所 全介质自承式架空光缆耐电痕护套料
CN101139451A (zh) * 2006-09-08 2008-03-12 关胜驹 光缆用聚乙烯护套材料及制备工艺
CN102504395A (zh) * 2011-11-25 2012-06-20 成都亨通光通信有限公司 一种制备护套料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234515A (zh) * 1998-04-24 1999-11-10 四川联合大学 高密度聚乙烯通信电缆、光缆护套料
CN1322773A (zh) * 2001-05-24 2001-11-21 宁波信高塑化有限公司 无机纳米粒子改性光缆护套管专用料及其制备方法
CN1431535A (zh) * 2003-01-15 2003-07-23 上海电缆研究所 全介质自承式架空光缆耐电痕护套料
CN101139451A (zh) * 2006-09-08 2008-03-12 关胜驹 光缆用聚乙烯护套材料及制备工艺
CN102504395A (zh) * 2011-11-25 2012-06-20 成都亨通光通信有限公司 一种制备护套料的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452925A (zh) * 2013-06-28 2016-03-30 康宁光电通信有限责任公司 用于光缆的光纤组件
CN103554611A (zh) * 2013-10-30 2014-02-05 安徽国通高新管业股份有限公司 一种电力电线保护套管
CN105001495A (zh) * 2015-08-06 2015-10-28 安徽电信器材贸易工业有限责任公司 一种光纤用耐磨护套材料及其制备方法
CN105153520A (zh) * 2015-09-25 2015-12-16 国网山东省电力公司临沂供电公司 一种风力发电用电缆护套料
CN105778234A (zh) * 2016-04-20 2016-07-20 朱加尖 一种环保节约型聚乙烯护套料及其制备方法
CN108239321A (zh) * 2016-12-27 2018-07-03 上海邦中新材料有限公司 一种桥梁缆索专用护套料的制备方法
CN109627538A (zh) * 2017-10-09 2019-04-16 中广核三角洲(江苏)塑化有限公司 全介质自承式架空光缆用抗蠕变耐电痕护套料
CN109897270A (zh) * 2019-04-27 2019-06-18 盐城市贝迪塑业有限公司 一种pe护套料及其制备方法
CN112480517A (zh) * 2020-12-08 2021-03-12 湖北科普达高分子材料股份有限公司 利用废旧聚乙烯塑料生产的高密度高强度聚乙烯光缆护套专用料

Also Published As

Publication number Publication date
CN102775666B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN102775666A (zh) 全介质自承式电力光缆高密度聚乙烯护套料及生产方法
Chrissafis et al. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles
Zhang et al. Elastomer nanocomposites with superior dynamic mechanical properties via trans-1, 4-poly (butadiene-co-isoprene) incorporation
Ahmed et al. Characteristics of natural rubber hybrid composites based on marble sludge/carbon black and marble sludge/rice husk derived silica
US20100022715A1 (en) Layer for cables having improved stress whitening resistance
CN1876705A (zh) 用于温度和应力传感器的聚合物导电复合材料及制备方法
CN110330750B (zh) 一种低压缩永久变形羧酸型丙烯酸酯橡胶及其制备方法
Mondragón et al. Properties and structure of cyanate ester/polysulfone/organoclay nanocomposites
CN104284935A (zh) 使用聚丁二烯交联活性助剂制备的乙烯聚合物导体涂料
Flanigan et al. Using bio-based plasticizers, alternative rubber
Ferrante Product design and testing of polymeric materials
Deshmukh et al. Effect of particle size and concentration on mechanical and electrical properties of the mica filled PVC
CN104937022A (zh) 在油田或气井中使用的密封材料用交联性橡胶组合物和密封材料
Khattak et al. Accelerated aging investigation of high voltage EPDM/silica composite insulators
KR101943224B1 (ko) 이종 고무 성분을 포함하는 전선용 폴리올레핀 수지 조성물
CN108794897A (zh) 一种聚丙烯基高压电缆绝缘层材料及其制备方法
Ganesh et al. Cure characteristics, morphology, mechanical properties, and aging characteristics of silicone rubber/ethylene vinyl acetate blends
CN104231976A (zh) 一种耐热输送带覆盖胶
Srinivas et al. The effect of nanosilica on mechanical and swelling resistance properties of ternary rubber (NR/SBR/NBR) blends nanocomposites with and without bis (triethoxysilylpropyl) tetrasulfane
CN101238157B (zh) 共聚物橡胶、橡胶组合物和橡胶成形体
Wang et al. The influence of trans-1, 4-poly (butadiene-co-isoprene) copolymer rubbers (TBIR) with different molecular weights on the NR/TBIR blends
KR20170026844A (ko) 아스팔트 개질제 및 이의 제조방법
CN110499013B (zh) 一种酚酞聚芳醚腈酮/石墨烯导热复合材料及其制备方法
CN109021342A (zh) 一种高性能的氢化丁腈基橡胶复合物及其制备方法
He et al. Reduction of the filler network interaction in novel inner liner compound based on SBR/rectorite nanocomposite by glycerin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20170705