CN102765782B - Method for preparing hierarchical porous carbon capacitive deionization electrode - Google Patents
Method for preparing hierarchical porous carbon capacitive deionization electrode Download PDFInfo
- Publication number
- CN102765782B CN102765782B CN2012102457296A CN201210245729A CN102765782B CN 102765782 B CN102765782 B CN 102765782B CN 2012102457296 A CN2012102457296 A CN 2012102457296A CN 201210245729 A CN201210245729 A CN 201210245729A CN 102765782 B CN102765782 B CN 102765782B
- Authority
- CN
- China
- Prior art keywords
- temperature
- porous carbon
- preparation
- solution
- capacitive desalination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000002242 deionisation method Methods 0.000 title description 2
- 238000010612 desalination reaction Methods 0.000 claims abstract description 57
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 22
- 238000002360 preparation method Methods 0.000 claims abstract description 20
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 7
- 239000006230 acetylene black Substances 0.000 claims abstract description 6
- 238000003763 carbonization Methods 0.000 claims abstract description 6
- 239000000839 emulsion Substances 0.000 claims abstract description 6
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 6
- 239000010439 graphite Substances 0.000 claims abstract description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 239000004005 microsphere Substances 0.000 claims description 10
- 239000005011 phenolic resin Substances 0.000 claims description 10
- 229920001568 phenolic resin Polymers 0.000 claims description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000007772 electrode material Substances 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000008098 formaldehyde solution Substances 0.000 claims description 5
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 238000000967 suction filtration Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000007039 two-step reaction Methods 0.000 claims description 2
- 238000005292 vacuum distillation Methods 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 238000005530 etching Methods 0.000 abstract 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 239000012267 brine Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000004966 Carbon aerogel Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种多级孔碳电容型脱盐电极的制备方法,属于电容型脱盐电极的制备领域。本发明将作二氧化硅模板浸渍到介孔碳材料的前驱体溶液中,通过低温挥发、高温固化及惰性气氛中碳化等过程在二氧化硅球上形成具有多级孔结构的碳材料,最终经过氢氟酸刻蚀即制得同时具有大孔、介孔以及微孔的多孔碳材料。将多孔碳材料、乙炔黑及聚四氟乙烯乳液混合均匀后涂抹于石墨纸上,过夜烘干即制得了多级孔碳电容型脱盐电极。本发明操作简单、条件易控,所得的电极具有高比表面、良好导电性和较高的脱盐性能,在低能耗、低成本、高效率的电容型脱盐方面拥有潜在的应用前景。The invention relates to a preparation method of a multi-level porous carbon capacitive desalination electrode, which belongs to the field of preparation of a capacitive desalination electrode. In the present invention, the silica template is impregnated into the precursor solution of the mesoporous carbon material, and a carbon material with a hierarchical porous structure is formed on the silica sphere through processes such as low-temperature volatilization, high-temperature curing, and carbonization in an inert atmosphere, and finally A porous carbon material with macropores, mesopores and micropores can be obtained by hydrofluoric acid etching. The porous carbon material, acetylene black and polytetrafluoroethylene emulsion were evenly mixed, spread on graphite paper, and dried overnight to prepare a hierarchical porous carbon capacitive desalination electrode. The invention has simple operation and easy control of conditions, and the obtained electrode has high specific surface area, good conductivity and high desalination performance, and has potential application prospects in low energy consumption, low cost and high efficiency capacitive desalination.
Description
技术领域 technical field
本发明涉及一种多级孔碳电容型脱盐电极的制备方法。本发明制备的脱盐电极具有高效率、低能耗的脱盐性能。属电脱盐电极制造工艺技术领域本发明可应用于海水和苦咸水的淡化,为低能耗、低成本、高性能脱盐提供了新途径。 The invention relates to a preparation method of a multi-level porous carbon capacitive desalination electrode. The desalination electrode prepared by the invention has the desalination performance of high efficiency and low energy consumption. The technical field of the invention is applicable to the desalination of seawater and brackish water, and provides a new way for desalination with low energy consumption, low cost and high performance.
背景技术 Background technique
水资源危机是本世纪全球面临的最大资源危机之一,海水与苦咸水脱盐淡化是解决该危机的重要途径。现有脱盐方法主要有蒸馏法(包括多级闪蒸、多级蒸发和压气蒸馏)和膜法(包括反渗透和电渗析)。但是蒸馏法操作温度高、锅垢危害严重、腐蚀严重;膜法对膜性能要求严格、膜损坏率高且费用昂贵。另外,这些脱盐方法均存在能耗高、成本大的缺点。所以采用新技术降低淡化成本一直是海水淡化技术最重要的发展目标。因此,研发能耗低、成本低的脱盐技术应用前景十分光明。电容型脱盐(Capacitive Deionization;CDI)是基于双电层电容原理的全新脱盐技术。与传统的脱盐方法相比,该方法具有成本低、脱盐效率高、工艺设备简单、易于实施、同时没有二次污染、对环境友好的优点,为高效率、低能、低成本脱盐技术提供了新的途径。 The water resource crisis is one of the biggest resource crises facing the world in this century, and desalination of seawater and brackish water is an important way to solve this crisis. The existing desalination methods mainly include distillation (including multi-stage flash evaporation, multi-stage evaporation and compressed air distillation) and membrane method (including reverse osmosis and electrodialysis). However, the operation temperature of the distillation method is high, the danger of boiler scale is serious, and the corrosion is serious; the membrane method has strict requirements on membrane performance, high membrane damage rate and high cost. In addition, these desalination methods all have the disadvantages of high energy consumption and high cost. Therefore, adopting new technologies to reduce desalination costs has always been the most important development goal of seawater desalination technology. Therefore, the application prospect of desalination technology with low energy consumption and low cost is very bright. Capacitive Deionization (CDI) is a new desalination technology based on the principle of electric double layer capacitance. Compared with traditional desalination methods, this method has the advantages of low cost, high desalination efficiency, simple process equipment, easy implementation, no secondary pollution, and environmental friendliness. It provides a new high-efficiency, low-energy, and low-cost desalination technology. way. the
基于CDI的原理可以看出,获得高CDI性能的关键是电极材料,要求电极材料具有比表面积大、空隙发达、导电性好等特点。多孔碳材料具有高的比表面积、良好的导电能力、独特的化学稳定性、好的成型性、价格相对低廉、原料来源丰富、生产工艺也比较成熟等优点在电极材料方面有非常广泛的应用。迄今为止,用作CDI电极的多孔碳材料主要包括活性炭、炭气凝胶、碳纳米纤维、碳纳米管、石墨烯以及介孔碳。其中活性炭因比表面积较大、制备简单、价格低廉成为目前广泛应用的电极材料,但是其脱盐效率较低,主要是由于大量微孔的存在不利于离子的渗透及吸附导致比表面积利用率较低、无序的孔结构、及较高的内阻。为了解决上述问题,介孔碳具有高的比表面积、高度均一的孔径分布、大的孔容、以及高的力学稳定性的介孔碳材料引起了研究者极大的兴趣。Zou等人研究发现具有高比表面积的有序介孔碳(Zou L, Li LX, Song HH, Morris G; Water Research, 2008, 42, 2340-2348)或者经过Ni表面修饰的介孔碳材料(Li LX, Zou L, Song HH, Morris G, Carbon 2009, 47, 775-781)相对于传统的活性炭电极均具有更高的脱盐容量。但是需要指出的是当前制备的介孔碳材料用作脱盐电极时的比电容值远远低于碳材料的理论值,主要是由于材料存在的一些缺点例如相对较高的内阻及较低的表面积利用率。因此为了解决上述问题,制备新型的更高表面积、高导电性的、空隙发达的、表面利用率较高的多级孔(大孔,介孔及微孔)碳电极材料,为高性能、高效率、低能耗的脱盐提供了新途径。 Based on the principle of CDI, it can be seen that the key to obtaining high CDI performance is the electrode material, which requires the electrode material to have the characteristics of large specific surface area, developed voids, and good conductivity. Porous carbon materials have the advantages of high specific surface area, good electrical conductivity, unique chemical stability, good formability, relatively low price, rich sources of raw materials, and relatively mature production processes, and are widely used in electrode materials. So far, porous carbon materials used as CDI electrodes mainly include activated carbon, carbon aerogel, carbon nanofibers, carbon nanotubes, graphene, and mesoporous carbon. Among them, activated carbon has become a widely used electrode material due to its large specific surface area, simple preparation, and low price, but its desalination efficiency is low, mainly because the existence of a large number of micropores is not conducive to ion penetration and adsorption, resulting in low specific surface area utilization. , disordered pore structure, and high internal resistance. In order to solve the above problems, mesoporous carbon materials with high specific surface area, highly uniform pore size distribution, large pore volume, and high mechanical stability have attracted great interest of researchers. Zou et al. found ordered mesoporous carbon with high specific surface area (Zou L, Li LX, Song HH, Morris G; Water Research, 2008, 42, 2340-2348) or mesoporous carbon materials with Ni surface modification ( Li LX, Zou L, Song HH, Morris G, Carbon 2009, 47, 775-781) have higher desalination capacity than traditional activated carbon electrodes. However, it should be pointed out that the specific capacitance value of the currently prepared mesoporous carbon materials used as desalination electrodes is far lower than the theoretical value of carbon materials, mainly due to some shortcomings of the materials such as relatively high internal resistance and low Surface area utilization. Therefore, in order to solve the above problems, a new type of multi-level porous (macropore, mesopore and microporous) carbon electrode material with higher surface area, high conductivity, well-developed voids, and high surface utilization rate is prepared. Efficient, low-energy desalination offers new avenues.
发明内容 Contents of the invention
本发明的目的是针对上述问题,提供一种应用双电层电容型脱盐法进行海水淡化处理的多级孔碳电容型脱盐电极的制备方法。将大孔,介孔以及微孔有效结合的多级孔碳材料,可以选择综合各种孔材料的优点,同时由于其巨大的比表面积、发达的孔隙结构、相互连通的孔道结构,使其在扩散、传质等方面展示了优于单一孔结构材料的特性。其中相互连通的大孔与介孔有利于离子渗透到深处的孔,提高比表面的有效利用率;同时更短的离子扩散路径也降低了电极材料的内阻。此外同时存在的微孔及介孔赋予脱盐电极更高的比表面积,有利于获得更高的CDI性能。将大孔、介孔及微孔有效结合制备的一种多级孔碳电容型脱盐电极,具有更高的比表面积、良好的导电性和更好的脱盐性能。 The object of the present invention is to solve the above problems and provide a method for preparing a multi-level porous carbon capacitive desalination electrode for seawater desalination treatment using an electric double layer capacitive desalination method. Hierarchical carbon materials that effectively combine macropores, mesopores and micropores can choose to combine the advantages of various porous materials. Diffusion, mass transfer and other aspects show characteristics superior to those of single pore structure materials. The interconnected macropores and mesopores are conducive to the penetration of ions into the deep pores, improving the effective utilization of the specific surface; at the same time, the shorter ion diffusion path also reduces the internal resistance of the electrode material. In addition, the simultaneous presence of micropores and mesopores endows the desalination electrode with a higher specific surface area, which is beneficial to obtain higher CDI performance. A hierarchical porous carbon capacitive desalination electrode prepared by effectively combining macropores, mesopores and micropores has higher specific surface area, good conductivity and better desalination performance.
本发明的目的是通过以下技术手段和措施来达到的。 The purpose of the present invention is achieved by the following technical means and measures.
本发明提供一种多级孔碳电容型脱盐电极的制备方法,其特征在于以下的制备过程和步骤: The present invention provides a method for preparing a hierarchical porous carbon capacitive desalination electrode, which is characterized by the following preparation process and steps:
(1) 电极材料的制备: (1) Preparation of electrode materials:
将单分散二氧化硅(SiO2)微球超声分散在一定量的乙醇溶液中,在15 ~ 35 oC自然沉积,然后高温烧结,得到SiO2模板;向苯酚中加入浓度为20 wt% 氢氧化钠溶液,搅拌均匀后缓慢加入浓度为37 wt% 甲醛溶液,升温至65~75 oC反应1~2.5 h,冷却至室温后用0.6 M 盐酸调节pH到中性,低温真空减压蒸馏降低水含量,然后加入乙醇搅拌10-12 h后离心除去无机盐得到浓度为20 wt% 酚醛树脂前驱体溶液;将结构导向剂的乙醇溶液(浓度为4.76 wt%)与酚醛树脂前驱体溶液搅拌混合均匀。然后SiO2模板浸渍到混合溶液中,低温挥发反应后抽滤除去过量的溶液,进一步低温挥发高温固化,然后在惰性气氛中碳化后加入浓度为10 wt% 氢氟酸溶液搅拌反应除去SiO2模板,充分洗涤干燥后即可得到多级孔碳材料;多级孔碳电容型脱盐电极的制备: Monodisperse silica (SiO 2 ) microspheres were ultrasonically dispersed in a certain amount of ethanol solution, naturally deposited at 15 ~ 35 o C, and then sintered at high temperature to obtain a SiO 2 template; adding hydrogen at a concentration of 20 wt% to phenol Sodium oxide solution, after stirring evenly, slowly add formaldehyde solution with a concentration of 37 wt%, raise the temperature to 65~75 o C and react for 1~2.5 h, after cooling to room temperature, use 0.6 M hydrochloric acid to adjust the pH to neutral, and vacuum distillation at low temperature to reduce Then add ethanol and stir for 10-12 h, then centrifuge to remove inorganic salts to obtain a phenolic resin precursor solution with a concentration of 20 wt%; stir and mix the ethanol solution of the structure directing agent (concentration: 4.76 wt%) with the phenolic resin precursor solution uniform. Then the SiO2 template is impregnated into the mixed solution, and the excess solution is removed by suction filtration after the low-temperature volatilization reaction, further low-temperature volatilization and high-temperature curing, and then carbonized in an inert atmosphere and then added with a concentration of 10 wt% hydrofluoric acid solution to stir the reaction to remove the SiO2 template After fully washing and drying, the hierarchical porous carbon material can be obtained; the preparation of the hierarchical porous carbon capacitive desalination electrode:
将步骤(1)制备的多级孔碳材料,乙炔黑及聚四氟乙烯乳液按照质量比为80:10:10~90:5:5搅拌混合均匀后涂抹到导电基底石墨纸上,随后在100~120 oC过夜烘干;最终制得多级孔碳电容型脱盐电极。 The hierarchical porous carbon material prepared in step (1), acetylene black and polytetrafluoroethylene emulsion are stirred and mixed according to the mass ratio of 80:10:10~90:5:5, and then applied to the conductive base graphite paper, and then placed on the Dry overnight at 100-120 o C; finally a multi-level porous carbon capacitive desalination electrode is produced.
上述的单分散SiO2微球的直径为100~400 nm;上述的SiO2微球的乙醇分散液中微球的固含量为1%~10%。一定粒径尺寸和密度的二氧化硅微球分散液可以形成质量较好的模板结构;尺寸过小或者密度过低时,沉积速度过慢,则分散液会以平衡的分散体系存在,会导致很难形成模板或形成时间过长;微球尺寸过大或者分散液密度过高时,沉积速度过快,集中在容器底部的胶体微球来不及经历从无序到有序的相转变导致得到的模板质量较差。 The diameter of the above-mentioned monodisperse SiO 2 microspheres is 100-400 nm; the solid content of the microspheres in the ethanol dispersion of the above-mentioned SiO 2 microspheres is 1%-10%. A dispersion of silica microspheres with a certain particle size and density can form a better quality template structure; when the size is too small or the density is too low, the deposition rate is too slow, and the dispersion will exist in a balanced dispersion system, which will lead to It is difficult to form a template or the formation time is too long; when the size of the microspheres is too large or the density of the dispersion is too high, the deposition rate is too fast, and the colloidal microspheres concentrated at the bottom of the container have no time to undergo the phase transition from disorder to order, resulting in the Template quality is poor.
上述的结构导向剂为F127(PEO106-PPO70-PEO106)、P123(PEO20-PPO70-PEO20)或者两者的混合。此外,苯酚、甲醛、氢氧化钠与结构导向剂的摩尔比为1: 2: 0.1: 0.005~0.025。三嵌段共聚物PEO-PPO-PEO两端的亲水端与酚醛树脂前驱体有较强的氢键作用,确保了良好的分散性,为进一步的聚合热解反应提供了可能;其次PEO-PPO-PEO模板具有大量的氧原子和较低的分解温度,很容易除去,是制备多孔碳材料的良好模板。 The aforementioned structure directing agent is F127 (PEO 106 -PPO 70 -PEO 106 ), P123 (PEO 20 -PPO 70 -PEO 20 ) or a mixture of both. In addition, the molar ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1: 2: 0.1: 0.005~0.025. The hydrophilic ends of the three-block copolymer PEO-PPO-PEO have strong hydrogen bonding with the phenolic resin precursor, which ensures good dispersion and provides the possibility for further polymerization and pyrolysis reactions; secondly, PEO-PPO - The PEO template has a large number of oxygen atoms and a low decomposition temperature, which is easy to remove and is a good template for the preparation of porous carbon materials.
上述的前驱体浸渍后的SiO2模板需要经过低温挥发高温固化两步反应,其中低温挥发的温度为30~60 oC;高温固化的温度为100~140 oC。低温挥发,高温固化使得酚醛树脂进一步挥发聚合后形成具有刚性的高分子骨架。温度过低酚醛树脂缩聚反应较慢,不利于完全形成刚性的高分子骨架。由于在有氧条件下固化,温度过高时,酚醛树脂氧化发黑。 The SiO 2 template impregnated with the above-mentioned precursor needs to undergo two-step reaction of low-temperature volatilization and high-temperature curing, wherein the temperature of low-temperature volatilization is 30-60 o C; the temperature of high-temperature curing is 100-140 o C. Low temperature volatilization and high temperature curing make the phenolic resin further volatilize and polymerize to form a rigid polymer skeleton. If the temperature is too low, the polycondensation reaction of phenolic resin is slow, which is not conducive to the complete formation of rigid polymer skeleton. Due to curing under aerobic conditions, when the temperature is too high, the phenolic resin is oxidized and blackened.
上述的碳化过程需要在惰性气氛中通过分段控温煅烧实现,控制升温速率为1 oC/min,首先升温至300~500 oC,在该温度下保温1-4小时,然后升温至500~1100 oC,在该温度下保温1-6小时。惰性保护气体包括氮气和氩气,气体流速为80-140 mL/min。碳化过程在惰性气体保护下进行,有利于保持碳骨架结构,若在含氧条件下焙烧,会导致碳骨架的坍塌。此外碳化过程分两段进行焙烧,是因为在低温保温一段时间有利于三嵌段共聚物完全降解;随后高温碳化形成稳定的具有一定石墨化程度的碳骨架结构。 The above-mentioned carbonization process needs to be realized by segmented temperature- controlled calcination in an inert atmosphere. The temperature increase rate is controlled at 1 o C/min. ~1100 o C, hold at this temperature for 1-6 hours. Inert protective gases include nitrogen and argon, and the gas flow rate is 80-140 mL/min. The carbonization process is carried out under the protection of inert gas, which is conducive to maintaining the carbon skeleton structure. If it is roasted under oxygen-containing conditions, it will lead to the collapse of the carbon skeleton. In addition, the carbonization process is roasted in two stages, because the low temperature for a period of time is conducive to the complete degradation of the triblock copolymer; followed by high temperature carbonization to form a stable carbon skeleton structure with a certain degree of graphitization.
本发明方法制备的新型的具有分级结构的多孔碳电容型脱盐电极具有更高的比表面积、良好的导电性和更好的脱盐性能、制备过程简单、易于操作。在电容型脱盐方面拥有潜在的应用前景。 The novel porous carbon capacitive desalination electrode with hierarchical structure prepared by the method of the invention has higher specific surface area, good conductivity and better desalination performance, simple preparation process and easy operation. It has potential application prospects in capacitive desalination.
具体实施方式 Detailed ways
现将本发明的具体实施例叙述于后。 Specific embodiments of the present invention are described below.
实施例1Example 1
将直径为150 nm的单分散二氧化硅微球超声分散在乙醇溶液中(质量分数为1 wt%),然后在20 oC沉积1-2周后600 oC烧结1.5 h,制得SiO2模板。向0.61 g熔融的苯酚中加入0.13 g 浓度为20 wt% 氢氧化钠溶液,搅拌均匀后缓慢加入1.05 g 浓度为37 wt % 甲醛溶液,升温至65 oC反应2 h,冷却至室温后用0.6 M 盐酸调节PH到中性,低温真空减压脱水至黏稠,然后加入乙醇溶液搅拌10 h,最终离心除去无机盐得到浓度为20 wt% 酚醛树脂前驱体溶液。将1 g F127(PEO106PPO70PEO106)加入到20 g乙醇中搅拌溶解后,加入前驱体溶液搅拌混合均匀。其中苯酚、甲醛、氢氧化钠与结构导向剂的摩尔比为1: 2: 0.1: 0.012。然后将0.5 g SiO2模板加入上述混合溶液中,30 oC挥发至溶液黏稠,抽滤除去过量的溶液进一步后进一步30 oC挥发自组装8 h,100 oC固化24 h后置于管式炉中,在气体流速为100 mL/min 的氮气保护下,控制升温速率为1 oC/min,首先升温至350 oC,在350 oC保温2h,然后升温至800 oC,在800 oC 保温4 h。待冷却至室温后加入浓度为10 wt% 氢氟酸溶液过夜搅拌除去SiO2模板,充分洗涤干燥后即得到多级孔碳材料。将所得的多级孔碳材料,乙炔黑和聚四氟乙烯乳液按照质量比为80:10:10混合均匀后涂抹于石墨纸上,随后在100 oC~120 oC过夜烘干。最终制得多级孔碳脱盐电极。 Monodisperse silica microspheres with a diameter of 150 nm were ultrasonically dispersed in an ethanol solution (1 wt%), and then sintered at 600 ° C for 1.5 h after deposition at 20 ° C for 1-2 weeks to obtain SiO 2 template. Add 0.13 g of 20 wt% sodium hydroxide solution to 0.61 g of molten phenol, stir well, then slowly add 1.05 g of 37 wt% formaldehyde solution, heat up to 65 o C for 2 h, cool to room temperature and use 0.6 M hydrochloric acid was used to adjust the pH to neutral, and vacuum dehydration at low temperature until viscous, then adding ethanol solution and stirring for 10 h, and finally centrifuged to remove inorganic salts to obtain a phenolic resin precursor solution with a concentration of 20 wt%. Add 1 g of F127 (PEO 106 PPO 70 PEO 106 ) into 20 g of ethanol and stir to dissolve, then add the precursor solution and stir to mix well. Wherein the molar ratio of phenol, formaldehyde, sodium hydroxide and the structure directing agent is 1: 2: 0.1: 0.012. Then add 0.5 g SiO 2 template into the above mixed solution, volatilize at 30 o C until the solution is viscous, remove the excess solution by suction filtration, further volatilize at 30 o C for 8 h, and then place it in a tube for 8 h after curing at 100 o C for 24 h. In the furnace, under the protection of nitrogen with a gas flow rate of 100 mL/min, the heating rate was controlled to be 1 o C/min. First, the temperature was raised to 350 o C, and kept at 350 o C for 2 hours, then the temperature was raised to 800 o C, and at 800 o C C for 4 h. After cooling to room temperature, 10 wt% hydrofluoric acid solution was added and stirred overnight to remove the SiO 2 template, and the hierarchically porous carbon material was obtained after thorough washing and drying. The obtained hierarchical porous carbon material, acetylene black and polytetrafluoroethylene emulsion were mixed uniformly according to the mass ratio of 80:10:10, then spread on graphite paper, and then dried overnight at 100 o C ~ 120 o C. Finally, a hierarchical porous carbon desalination electrode is prepared.
测试上述多级孔碳脱盐电极的比电容。使用CHI 660D型电化学电化学工作站,电解质为1 M 氯化钠溶液,扫描速率为10 mV/s, 电压范围为-0.5 V~0.5 V;测得该电极的比电容大于120 F/g. 上述制备的电极测试其脱盐性能,在600 ppm的盐水中,其脱盐效率大于90%。 The specific capacitance of the above-mentioned hierarchical porous carbon desalination electrode was tested. CHI 660D electrochemical workstation was used, the electrolyte was 1 M sodium chloride solution, the scan rate was 10 mV/s, and the voltage range was -0.5 V~0.5 V; the specific capacitance of the electrode was measured to be greater than 120 F/g. The electrode prepared above was tested for its desalination performance, and its desalination efficiency was greater than 90% in 600 ppm brine.
实施例2Example 2
将直径为250 nm的单分散二氧化硅微球超声分散在乙醇溶液中(质量分数为3 wt%),然后在25 oC沉积1-2周后600 oC烧结1.5 h,制得SiO2模板。向1.22 g熔融的苯酚中加入0.26 g 浓度为20 wt% 氢氧化钠溶液,搅拌均匀后缓慢加入2.1 g 浓度为37 wt % 甲醛溶液,升温至70 oC反应1.5 h,冷却至室温后用0.6 M 盐酸调节PH到中性,低温真空减压脱水至黏稠,然后加入乙醇搅拌12 h,最终离心除去无机盐得到浓度为20 wt% 酚醛树脂前驱体溶液。将1.5 g P123(PEO20-PPO70-PEO20)加入到30 g乙醇中搅拌溶解后,加入前驱体溶液搅拌混合均匀。其中苯酚、甲醛、氢氧化钠与结构导向剂的摩尔比为1: 2: 0.1: 0.02。然后将2 g SiO2模板加入上述混合溶液中,45 oC挥发至溶液黏稠,抽滤除去过量的溶液后进一步45 oC挥发自组装5 h,120 oC固化20 h后置于管式炉中,在气体流速为80 mL/min 的氮气保护下,控制升温速率为1 oC/min,首先升温至400 oC,在400 oC保温2 .5h,然后升温至600 oC,在600 oC 保温4 h。待冷却至室温后加入浓度为10 wt% 氢氟酸溶液过夜搅拌除去SiO2模板,充分洗涤干燥后即得到多级孔碳材料。将所得的多级孔碳材料,乙炔黑和聚四氟乙烯乳液按照质量比为85:10:5混合均匀后涂抹于石墨纸上,随后在100 oC~120 oC过夜烘干。最终制得多级孔碳脱盐电极。 Monodisperse silica microspheres with a diameter of 250 nm were ultrasonically dispersed in an ethanol solution (3 wt%), and then sintered at 600 ° C for 1.5 h after deposition at 25 ° C for 1-2 weeks to obtain SiO 2 template. Add 0.26 g of 20 wt% sodium hydroxide solution to 1.22 g of molten phenol, stir well, then slowly add 2.1 g of 37 wt% formaldehyde solution, heat up to 70 o C for 1.5 h, cool to room temperature and use 0.6 M hydrochloric acid was used to adjust the pH to neutral, dehydrated under vacuum at low temperature until viscous, then added ethanol and stirred for 12 h, and finally centrifuged to remove inorganic salts to obtain a phenolic resin precursor solution with a concentration of 20 wt%. Add 1.5 g of P123 (PEO 20 -PPO 70 -PEO 20 ) into 30 g of ethanol and stir to dissolve, then add the precursor solution and stir to mix evenly. Wherein the molar ratio of phenol, formaldehyde, sodium hydroxide and the structure directing agent is 1: 2: 0.1: 0.02. Then 2 g of SiO 2 template was added to the above mixed solution, volatilized at 45 o C until the solution was viscous, and the excess solution was removed by suction filtration, then volatilized at 45 o C for 5 h for self-assembly, cured at 120 o C for 20 h and placed in a tube furnace In the process, under the protection of nitrogen with a gas flow rate of 80 mL/min, the heating rate was controlled to be 1 o C/min. o C for 4 h. After cooling to room temperature, 10 wt% hydrofluoric acid solution was added and stirred overnight to remove the SiO 2 template, and the hierarchically porous carbon material was obtained after thorough washing and drying. The obtained hierarchical porous carbon material, acetylene black and polytetrafluoroethylene emulsion were mixed uniformly according to the mass ratio of 85:10:5, then spread on graphite paper, and then dried overnight at 100 o C ~ 120 o C. Finally, a hierarchical porous carbon desalination electrode is prepared.
测试上述多级孔碳脱盐电极的比电容。使用CHI 660D型电化学电化学工作站,电解质为1 M 氯化钠溶液,扫描速率为10 mV/s, 电压范围为-0.5V~0.5V;测得该电极的比电容大于95 F/g. 上述制备的电极测试其脱盐性能,在800 ppm的盐水中,其脱盐效率大于85%。 The specific capacitance of the above-mentioned hierarchical porous carbon desalination electrode was tested. CHI 660D electrochemical workstation was used, the electrolyte was 1 M sodium chloride solution, the scan rate was 10 mV/s, and the voltage range was -0.5V~0.5V; the specific capacitance of the electrode was measured to be greater than 95 F/g. The electrode prepared above was tested for its desalination performance, and its desalination efficiency was greater than 85% in 800 ppm brine.
实施例3Example 3
将直径为400 nm的单分散二氧化硅微球超声分散在乙醇溶液中(质量分数为6 wt%),然后在28 oC沉积1-2周后600 oC烧结1.5 h,制得SiO2模板。向0.61 g熔融的苯酚中加入0.13 g 浓度为20 wt% 氢氧化钠溶液,搅拌均匀后缓慢加入1.05 g 浓度为37 wt % 甲醛溶液,升温至75 oC反应1.5 h,冷却至室温后用0.6 M盐酸调节PH到中性,低温真空减压脱水至黏稠,然后加入乙醇搅拌10 h,最终离心除去无机盐得到浓度为20 wt% 酚醛树脂前驱体溶液。将0.5 g F127(PEO106PPO70PEO106)和0.5 g P123(PEO20-PPO70-PEO20)加入到20 g乙醇中搅拌溶解后,加入前驱体溶液搅拌混合均匀。其中苯酚、甲醛、氢氧化钠与结构导向剂的摩尔比为1: 2: 0.1: 0.017。然后将4 g SiO2模板加入上述混合溶液中,55 oC挥发至溶液黏稠,抽滤除去过量的溶液后进一步55 oC挥发自组装5 h,100 oC固化24 h后置于管式炉中,在气体流速为130 mL/min 的氮气保护下,控制升温速率为1 oC/min,首先升温至500 oC,在500 oC保温3 h,然后升温至1000 oC,在1000 oC 保温2 h。待冷却至室温后加入浓度为10 wt% 氢氟酸溶液过夜搅拌除去SiO2模板,充分洗涤干燥后即得到多级孔碳材料。将所得的多级孔碳材料,乙炔黑和聚四氟乙烯乳液按照质量比为90:5:5混合均匀后涂抹于石墨纸上,随后在100 oC~120 oC过夜烘干。最终制得多级孔碳脱盐电极。 Monodisperse silica microspheres with a diameter of 400 nm were ultrasonically dispersed in an ethanol solution (6 wt%), and then sintered at 600 ° C for 1.5 h after deposition at 28 ° C for 1-2 weeks to obtain SiO 2 template. Add 0.13 g of 20 wt% sodium hydroxide solution to 0.61 g of molten phenol, stir well, then slowly add 1.05 g of 37 wt% formaldehyde solution, heat up to 75 o C for 1.5 h, cool to room temperature and use 0.6 M hydrochloric acid to adjust the pH to neutral, vacuum dehydration at low temperature to viscous, then add ethanol and stir for 10 h, and finally centrifuge to remove inorganic salts to obtain a phenolic resin precursor solution with a concentration of 20 wt%. Add 0.5 g F127 (PEO 106 PPO 70 PEO 106 ) and 0.5 g P123 (PEO 20 -PPO 70 -PEO 20 ) into 20 g of ethanol and stir to dissolve, then add the precursor solution and stir to mix evenly. Wherein the molar ratio of phenol, formaldehyde, sodium hydroxide and the structure directing agent is 1: 2: 0.1: 0.017. Then 4 g of SiO 2 template was added to the above mixed solution, volatilized at 55 o C until the solution was viscous, the excess solution was removed by suction filtration, and then volatilized at 55 o C for 5 h for self-assembly, cured at 100 o C for 24 h and placed in a tube furnace In the process, under the protection of nitrogen with a gas flow rate of 130 mL/min, the heating rate was controlled to be 1 o C/min. First, the temperature was raised to 500 o C, and kept at 500 o C for 3 h, then the temperature was raised to 1000 o C, and at 1000 o C C for 2 h. After cooling to room temperature, 10 wt% hydrofluoric acid solution was added and stirred overnight to remove the SiO 2 template, and the hierarchically porous carbon material was obtained after thorough washing and drying. The obtained hierarchical porous carbon material, acetylene black and polytetrafluoroethylene emulsion were mixed uniformly according to the mass ratio of 90:5:5, then spread on graphite paper, and then dried overnight at 100 o C ~ 120 o C. Finally, a hierarchical porous carbon desalination electrode is prepared.
测试上述多级孔碳脱盐电极的比电容。使用CHI 660D型电化学电化学工作站,电解质为1 M 氯化钠溶液,扫描速率为10 mV/s, 电压范围为-0.5 V~0.5 V;测得该电极的比电容大于80 F/g. 上述制备的电极测试其脱盐性能,在300 ppm的盐水中,其脱盐效率大于80%。 The specific capacitance of the above-mentioned hierarchical porous carbon desalination electrode was tested. CHI 660D electrochemical workstation was used, the electrolyte was 1 M sodium chloride solution, the scan rate was 10 mV/s, and the voltage range was -0.5 V~0.5 V; the specific capacitance of the electrode was measured to be greater than 80 F/g. The electrode prepared above was tested for its desalination performance, and its desalination efficiency was greater than 80% in 300 ppm brine.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102457296A CN102765782B (en) | 2012-07-17 | 2012-07-17 | Method for preparing hierarchical porous carbon capacitive deionization electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102457296A CN102765782B (en) | 2012-07-17 | 2012-07-17 | Method for preparing hierarchical porous carbon capacitive deionization electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102765782A CN102765782A (en) | 2012-11-07 |
CN102765782B true CN102765782B (en) | 2013-11-20 |
Family
ID=47093400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102457296A Expired - Fee Related CN102765782B (en) | 2012-07-17 | 2012-07-17 | Method for preparing hierarchical porous carbon capacitive deionization electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102765782B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103523871B (en) * | 2013-09-29 | 2015-04-22 | 北京国环清华环境工程设计研究院有限公司 | Preparation method of mesoporous carbon electrode for electric adsorption desalination |
CN104591120A (en) * | 2013-10-31 | 2015-05-06 | 无锡华臻新能源科技有限公司 | Preparation of rough-surface microspherical manganese dioxide and application to supercapacitors |
WO2015165762A1 (en) * | 2014-04-30 | 2015-11-05 | Basf Se | Process for producing a monolithic body of a porous carbon material, monolithic bodies of special porous carbon materials and their use |
CN105731609B (en) * | 2014-12-10 | 2018-03-30 | 吉林师范大学 | A kind of porous carbon electrodes based on metal-organic framework materials and preparation method thereof |
CN105688897A (en) * | 2015-12-31 | 2016-06-22 | 北京化工大学 | Porous carbon net array Ag loaded catalyst with high catalytic activity and preparation method |
US20210047242A1 (en) * | 2018-04-20 | 2021-02-18 | Virginia Polytechnic Institute And State University | Block copolymer porous carbon fibers and uses thereof |
CN111224189A (en) * | 2020-01-16 | 2020-06-02 | 东莞理工学院 | A kind of activated carbon microsphere electrode material based on waste lithium ion battery negative electrode material and its preparation and application |
CN112357905B (en) * | 2020-10-12 | 2022-07-12 | 广东药科大学 | A nitrogen-doped mesoporous carbon nanosphere material and its preparation method and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821182A (en) * | 2006-01-26 | 2006-08-23 | 复旦大学 | A kind of preparation method of mesoporous carbon material |
CN101012057A (en) * | 2007-01-19 | 2007-08-08 | 华东师范大学 | Method of synthesizing mesoporous carbon material |
CN101054171A (en) * | 2006-04-12 | 2007-10-17 | 中国科学院金属研究所 | Layer combination controllable carbon material with nano pole of different scale, preparation method and application |
CN102295281A (en) * | 2011-06-21 | 2011-12-28 | 华东理工大学 | Method for preparing graded porous carbon with hollow mesoporous silicon spheres as templates |
CN102295325A (en) * | 2011-07-21 | 2011-12-28 | 上海大学 | Preparation method of carbon nano-tube/mesoporous-carbon composite capacitance-type desalting electrode |
CN102380334A (en) * | 2011-07-25 | 2012-03-21 | 重庆文理学院 | Mesoporous high polymer or carbon/silicon oxide nano-composite material with three-dimensional pore canal structure and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100544886B1 (en) * | 2003-08-06 | 2006-01-24 | 학교법인 대전기독학원 한남대학교 | Electrocatalyst for Fuel Cell and Manufacturing Method of Electrocatalyst Supported by HMC Carbon Capsule Structure |
US8563124B2 (en) * | 2008-02-07 | 2013-10-22 | The Regents Of The University Of California | Carbon materials with interconnected pores |
-
2012
- 2012-07-17 CN CN2012102457296A patent/CN102765782B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821182A (en) * | 2006-01-26 | 2006-08-23 | 复旦大学 | A kind of preparation method of mesoporous carbon material |
CN101054171A (en) * | 2006-04-12 | 2007-10-17 | 中国科学院金属研究所 | Layer combination controllable carbon material with nano pole of different scale, preparation method and application |
CN101012057A (en) * | 2007-01-19 | 2007-08-08 | 华东师范大学 | Method of synthesizing mesoporous carbon material |
CN102295281A (en) * | 2011-06-21 | 2011-12-28 | 华东理工大学 | Method for preparing graded porous carbon with hollow mesoporous silicon spheres as templates |
CN102295325A (en) * | 2011-07-21 | 2011-12-28 | 上海大学 | Preparation method of carbon nano-tube/mesoporous-carbon composite capacitance-type desalting electrode |
CN102380334A (en) * | 2011-07-25 | 2012-03-21 | 重庆文理学院 | Mesoporous high polymer or carbon/silicon oxide nano-composite material with three-dimensional pore canal structure and preparation method thereof |
Non-Patent Citations (5)
Title |
---|
双模板法合成介孔/大孔二级孔道碳材料;柯行飞等;《物理化学学报》;20070531;第23卷(第5期);757-760 * |
李红芳等.有序介孔碳的制备和电化学电容性能研究.《第十三次全国电化学会议论文摘要集(下集)》.2005,46-47. * |
柯行飞等.双模板法合成介孔/大孔二级孔道碳材料.《物理化学学报》.2007,第23卷(第5期),757-760. |
陈智栋等.高分散的介孔碳载Pt纳米粒子的制备及其对乙二醇的电催化氧化性能.《化学学报》.2012,第70卷(第3期),241-246. |
高分散的介孔碳载Pt纳米粒子的制备及其对乙二醇的电催化氧化性能;陈智栋等;《化学学报》;20120214;第70卷(第3期);241-246 * |
Also Published As
Publication number | Publication date |
---|---|
CN102765782A (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102765782B (en) | Method for preparing hierarchical porous carbon capacitive deionization electrode | |
CN103253740B (en) | Preparation method of three-dimensional hierarchical structure graphene/porous carbon composite capacitive desalination electrode | |
Shao et al. | In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials | |
CN110015660B (en) | A silver-doped lignin porous carbon nanosheet, its preparation method and application in supercapacitor electrode material | |
WO2020103635A1 (en) | Lignin porous carbon nano sheet, preparation method therefor, and application thereof in super capacitor electrode material | |
CN106601490B (en) | A kind of preparation method of biomass-based nitrogenous porous carbon and porous carbon and application thereof | |
Zuo et al. | Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes | |
CN105152281B (en) | The preparation method of the classifying porous carbon material structure capacitance desalination electrode of core shell structure | |
Li et al. | Frontiers of carbon materials as capacitive deionization electrodes | |
CN107572523A (en) | A kind of classifying porous carbosphere of N doping and its preparation method and application | |
CN104098091B (en) | A kind of method preparing ultracapacitor porous graphene material | |
CN102505403B (en) | Method for preparing hierarchically porous activated carbon fiber membrane | |
Gao et al. | Bifunctional 3D n-doped porous carbon materials derived from paper towel for oxygen reduction reaction and supercapacitor | |
CN106910893A (en) | A kind of rich N doping loose structure carbon material and its preparation method and application | |
CN113135568A (en) | Nitrogen-doped porous carbon material and preparation method and application thereof | |
CN105355464B (en) | A kind of ultracapacitor high specific surface area and mesoporous micropore carbon microspheres and preparation method thereof | |
CN108711518B (en) | Nitrogen-oxygen co-doped porous carbon nanoribbons, preparation method and application thereof | |
CN107746049B (en) | Synthesis of nitrogen-rich ordered mesoporous carbon material by melamine steam route | |
Liang et al. | Enhanced capacitance characteristic of microporous carbon spheres through surface modification by oxygen-containing groups | |
Mo et al. | N-doped mesoporous carbon nanosheets for supercapacitors with high performance | |
CN107089707B (en) | Core-shell structure three-dimensional graphene composite material for capacitive desalination electrode and preparation method thereof | |
CN107032321A (en) | The hollow carbon sphere material of a kind of nitrogen-phosphor codoping and shell with classification macropore meso-hole structure and its preparation method and application | |
CN108163831A (en) | Mesoporous carbon spheres of nitrogen phosphorus sulphur codope and preparation method thereof | |
CN105752960A (en) | Sulfur and phosphorus co-doped mesoporous carbon material and preparation method thereof | |
CN108059145A (en) | A kind of preparation method of multi-stage porous N doping porous carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131120 |