CN102765782A - Method for preparing hierarchical porous carbon capacitive deionization electrode - Google Patents

Method for preparing hierarchical porous carbon capacitive deionization electrode Download PDF

Info

Publication number
CN102765782A
CN102765782A CN2012102457296A CN201210245729A CN102765782A CN 102765782 A CN102765782 A CN 102765782A CN 2012102457296 A CN2012102457296 A CN 2012102457296A CN 201210245729 A CN201210245729 A CN 201210245729A CN 102765782 A CN102765782 A CN 102765782A
Authority
CN
China
Prior art keywords
preparation
hole carbon
multistage hole
capacitor type
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102457296A
Other languages
Chinese (zh)
Other versions
CN102765782B (en
Inventor
张登松
施利毅
温晓茹
颜婷婷
王慧
张剑平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN2012102457296A priority Critical patent/CN102765782B/en
Publication of CN102765782A publication Critical patent/CN102765782A/en
Application granted granted Critical
Publication of CN102765782B publication Critical patent/CN102765782B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a method for preparing a hierarchical porous carbon capacitive deionization electrode and belongs to the field of preparation of capacitive deionization electrodes. According to the method, a silica template is immersed in a precursor solution of a mesoporous carbon material, the carbon material with a hierarchical pore structure is formed on silica spheres by the processes of low temperature volatilization, high temperature curing, carbonization in inert atmosphere and the like, and the porous carbon material with macropores, meso pores and micropores is obtained by hydrofluoric acid etching. The porous carbon material, acetylene black and teflon emulsion are mixed uniformly to be smeared on graphite paper, and the graphite paper onto which a mixture of the porous carbon material, the acetylene black and the teflon emulsion is smeared is dried after the night to form the hierarchical porous carbon capacitive deionization electrode. The method is easy to operate and has potential application prospect in the aspect of capacitive deionization which is low in energy consumption and cost and high in efficiency; conditions are easy to control; and the obtained electrode is large in specific surface, high in electrical conductivity and high in deionization performance.

Description

The preparation method of multistage hole carbon capacitor type desalination electrode
Technical field
The present invention relates to a kind of preparation method of multistage hole carbon capacitor type desalination electrode.The desalination electrode of the present invention's preparation has the desalting performance of high-level efficiency, less energy-consumption.Belong to the desalination that the present invention of electric desalting electrode manufacturing process technical field can be applicable to seawater and brackish water, for less energy-consumption, low cost, high-performance desalination provide new way.
Background technology
Water resources crisis is one of maximum resource crisis that this century, the whole world faced, and seawater and brackish water desalting are the important channels that solves this crisis.Existing desalting method mainly contains distillation method (comprising MSF, multistage evaporation and the distillation of calming the anger) and embrane method (comprising r-o-and electrodialysis).But the distillation method service temperature is high, serious, the seriously corroded of bird nest harm; Embrane method is strict to film properties, film spoilage height and expensive.In addition, all there is the shortcoming that energy consumption is high, cost is big in these desalting method.Reduce desalinating cost so employ new technology is the most important developing goal of desalination technology always.Therefore, the research and development desalting technology application prospect that energy consumption is low, cost is low is very bright.Capacitor type desalination (Capacitive Deionization; CDI) be based on the brand-new desalting technology of electric double layer capacitance principle.Compare with traditional desalting method, this method has that cost is low, desalting efficiency is high, processing unit is simple, easy to implement, do not have secondary pollution, environment amenable advantage simultaneously, for high-level efficiency, low energy, low-cost desalting technology provide new approach.
Principle based on CDI can find out that the key that obtains high CDI performance is an electrode materials, requires electrode materials to have characteristics such as specific surface area is big, the space is flourishing, good conductivity.Porous carbon materials has that high specific surface area, favorable conductive ability, unique chemical stability, good formability, relative low price, raw material sources are abundant, production technique also advantage such as comparative maturity aspect electrode materials, have very widely and use.Up to now, the porous carbon materials as the CDI electrode mainly comprises gac, charcoal-aero gel, carbon nanofiber, carbon nanotube, Graphene and mesoporous carbon.Wherein gac is because of specific surface area is big, simple, the cheap electrode materials that becomes present widespread use of preparation; But its desalting efficiency is lower, mainly is because the existence of a large amount of micropores is unfavorable for that ionic permeates and absorption causes lower, the unordered pore structure of specific surface area utilization ratio, reaches higher internal resistance.In order to address the above problem, the meso-porous carbon material that mesoporous carbon has high specific surface area, highly homogeneous pore size distribution, big pore volume and high mechanical stability has caused the great interest of investigator.People such as Zou discover ordered mesopore carbon (Zou L, Li LX, Song HH, the Morris G with high-specific surface area; Water Research, 2008,42,2340-2348) or through meso-porous carbon material (the Li LX of Ni finishing; Zou L, Song HH, Morris G; Carbon 2009,47,775-781) all have higher desalination capacity with respect to traditional activated carbon electrodes.But it is to be noted that the ratio capacitance of meso-porous carbon material when the desalination electrode of current preparation well below the theoretical value of carbon material, mainly is because for example higher relatively internal resistance and the lower surface-area utilization ratio of some shortcomings that material exists.Therefore in order to address the above problem; Prepare novel more high surface area, high conductivity, multistage hole (macropore that the space is flourishing, that the surface by utilizing rate is higher; Mesoporous and micropore) carbon electrode material is for the desalination of high-performance, high-level efficiency, less energy-consumption provides new way.
Summary of the invention
The objective of the invention is to the problems referred to above, a kind of preparation method that electric double layer capacitance type desalination process carries out the multistage hole carbon capacitor type desalination electrode of sea water desaltination processing that uses is provided.With macropore; The multistage hole of the effective bonded of mesoporous and micropore carbon material; Can select the advantage of comprehensive various holes material; Owing to its huge specific surface area, flourishing pore texture, the pore passage structure that is interconnected, it has been showed at aspects such as diffusion, mass transfers be superior to single pore structure properties of materials simultaneously.Macropore that wherein is interconnected and the mesoporous hole that helps iontophoretic injection to the depths, the effective rate of utilization of raising specific surface; Shorter ion diffusion path has also reduced the internal resistance of electrode materials simultaneously.Simultaneous in addition micropore and mesoporously give the desalination electrode higher specific surface area helps obtaining higher CDI performance.Macropore, mesoporous and micropore are effectively combined a kind of multistage hole carbon capacitor type desalination electrode for preparing, have higher specific surface area, good electrical conductivity and better desalting performance.
The objective of the invention is to reach through following technique means and measure.
The present invention provides a kind of preparation method of multistage hole carbon capacitor type desalination electrode, it is characterized in that following preparation process and step:
(1) preparation of electrode materials:
With monodisperse silica (SiO 2) ultra-sonic dispersion is in a certain amount of ethanolic soln, 15 ~ 35 oC deposits naturally, and high temperature sintering obtains SiO then 2Template; In phenol, add 20 wt% sodium hydroxide solutions, the back that stirs slowly adds 37 wt% formaldehyde solutions, is warming up to 65 ~ 75 oC reacts 1 ~ 2.5 h, is cooled to after the room temperature and regulates pH to neutral with 0.6 M hydrochloric acid, and the cryogenic vacuum underpressure distillation reduces water-content, add then ethanol stir 10-12 h after the centrifugal inorganic salt of removing obtain 20 wt% novolak resin precursor liquid solutions; The ethanolic soln (4.76 wt%) of structure directing agent is mixed with the novolak resin precursor liquid solution.SiO then 2Template is impregnated in the mixing solutions, and suction filtration is removed excessive solution behind the low temperature volatiling reaction, and further low temperature volatilization hot setting adds 10 wt% hydrofluoric acid solution stirring reactions then and removes SiO after the carbonization in inert atmosphere 2Template can obtain multistage hole carbon material after the thorough washing drying; The preparation of multistage hole carbon capacitor type desalination electrode:
With the multistage hole carbon material of step (1) preparation, acetylene black and ptfe emulsion are to be applied to after 80:10:10 ~ 90:5:5 mixes on the conductive substrates graphite paper, subsequently 100 ~ 120 according to mass ratio oThe C dried over night; Finally make multistage hole carbon capacitor type desalination electrode.
Above-mentioned single SiO that disperses 2Diameter of micro ball is 100 ~ 400 nm; Above-mentioned SiO 2The solid content of microballoon is 1% ~ 10% in the alcohol dispersion liquid of microballoon.The silicon dioxide microsphere dispersion liquid of certain grain size size and density can form quality formwork structure preferably; Undersized or density is crossed when hanging down, and sedimentation velocity is slow excessively, and then dispersion liquid can exist with the equilibrated dispersion system, can cause very difficult formation template or formation time long; When oversize the or dispersion liquid density of microballoon was too high, sedimentation velocity was too fast, and it is relatively poor that the colloid micro ball that concentrates on container bottom has little time to experience the template quality that causes obtaining from changing mutually of disorder to order.
Above-mentioned structure directing agent is F127 (PEO 106-PPO 70-PEO 106), P123 (PEO 20-PPO 70-PEO 20) or both mixing.In addition, the mol ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1:2:0.1:0.005 ~ 0.025.The water-wet side at triblock copolymer PEO-PPO-PEO two ends and novolak resin precursor body have stronger hydrogen bond action, have guaranteed good dispersiveness, for further polymerization pyrolytic reaction provides possibility; Secondly the PEO-PPO-PEO template has a large amount of Sauerstoffatoms and lower decomposition temperature, is easy to remove, and is the good template of preparation porous carbon materials.
SiO behind the above-mentioned presoma dipping 2Template need be passed through low temperature volatilization hot setting two-step reaction, and wherein low temperature evaporable temperature is 30 ~ 60 oC; The temperature of hot setting is 100 ~ 140 oC.Low temperature volatilization, hot setting make resol further volatilize and form after the polymerization to have the inflexible macromolecular scaffold.It is slower that temperature is crossed low resol polycondensation, is unfavorable for being completed into the inflexible macromolecular scaffold.Since under aerobic conditions, solidify, when temperature is too high, resol oxidation blackout.
Above-mentioned carbonization process need realize through sectional temperature-controlled calcining in inert atmosphere that the control temperature rise rate is 1 oC/min at first is warming up to 300 ~ 500 oC, insulation is 1-4 hour under this temperature, is warming up to 500 ~ 1100 then oC, insulation is 1-6 hour under this temperature.Inert protective gas comprises nitrogen and argon gas, and gas flow rate is 80-140 mL/min.Carbonization process carries out under protection of inert gas, helps keeping the carbon skeleton structure, if containing roasting under the oxygen condition, can cause caving in of carbon skeleton.Carbonization process divides two sections to carry out roasting in addition, is to degrade fully because help triblock copolymer in low temperature insulation for some time; High temperature cabonization forms the stable carbon skeleton structure with certain degree of graphitization subsequently.
The novel porous carbon capacitor type desalination electrode with hierarchy of the inventive method preparation has higher specific surface area, good electrical conductivity and better desalting performance, simple, the easy handling of preparation process.Having the potential application prospect aspect the capacitor type desalination.
Embodiment
After specific embodiment of the present invention being described at present.
Embodiment 1
With diameter is the monodisperse silica ultra-sonic dispersion (massfraction is 1 wt%) in ethanolic soln of 150 nm, then 20 oC deposition 1-2 is after week 600 oC sintering 1.5 h make SiO 2Template.In 0.61 g fused phenol, add 0.13 g, 20 wt% sodium hydroxide solutions, the back that stirs slowly adds 1.05 g, 37 wt % formaldehyde solutions, is warming up to 65 oC reacts 2 h, is cooled to after the room temperature and regulates PH to neutral with 0.6 M hydrochloric acid, and the cryogenic vacuum decompression dehydration adds ethanolic soln then and stirs 10 h to sticky, and the final centrifugal inorganic salt of removing obtain 20 wt% novolak resin precursor liquid solutions.With 1 g F127 (PEO 106PPO 70PEO 106) join in the 20 g ethanol after the stirring and dissolving, add precursor solution and mix.Wherein the mol ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1:2:0.1:0.012.Then with 0.5 g SiO 2Template adds in the above-mentioned mixing solutions, and 30 oIt is sticky that C evaporates into solution, and suction filtration is removed further back further 30 of excessive solution oC volatilization self-assembly 8 h, 100 oC solidifies 24 h and is placed in the tube furnace, is under the nitrogen protection of 100 mL/min at gas flow rate, and the control temperature rise rate is 1 oC/min at first is warming up to 350 oC is 350 oC is incubated 2h, is warming up to 800 then oC is 800 oC is incubated 4 h.The 10 wt% hydrofluoric acid solution stirred overnight that add to the room temperature to be cooled are removed SiO 2Template promptly obtains multistage hole carbon material after the thorough washing drying.With the multistage hole carbon material of gained, acetylene black and ptfe emulsion are to be applied on the graphite paper after 80:10:10 mixes according to mass ratio, subsequently 100 oC ~ 120 oThe C dried over night.Finally make multistage hole carbon desalination electrode.
Test the ratio electric capacity of above-mentioned multistage hole carbon desalination electrode.Use CHI 660D type electrochemistry electrochemical workstation, ionogen is 1 M sodium chloride solution, and scanning speed is 10 mV/s, and voltage range is-0.5 V ~ 0.5 V; Record the ratio electric capacity of this electrode its desalting performance of electrode test greater than the above-mentioned preparation of 120 F/g., in the salt solution of 600 ppm, its desalting efficiency is greater than 90%.
Embodiment 2
With diameter is the monodisperse silica ultra-sonic dispersion (massfraction is 3 wt%) in ethanolic soln of 250 nm, then 25 oC deposition 1-2 is after week 600 oC sintering 1.5 h make SiO 2Template.In 1.22 g fused phenol, add 0.26 g, 20 wt% sodium hydroxide solutions, the back that stirs slowly adds 2.1 g, 37 wt % formaldehyde solutions, is warming up to 70 oC reacts 1.5 h, is cooled to after the room temperature and regulates PH to neutral with 0.6 M hydrochloric acid, and the cryogenic vacuum decompression dehydration adds ethanol then and stirs 12 h to sticky, and the final centrifugal inorganic salt of removing obtain 20 wt% novolak resin precursor liquid solutions.With 1.5 g P123 (PEO 20-PPO 70-PEO 20) join in the 30 g ethanol after the stirring and dissolving, add precursor solution and mix.Wherein the mol ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1:2:0.1:0.02.Then with 2 g SiO 2Template adds in the above-mentioned mixing solutions, and 45 oIt is sticky that C evaporates into solution, and suction filtration removes behind the excessive solution further 45 oC volatilization self-assembly 5 h, 120 oC solidifies 20 h and is placed in the tube furnace, is under the nitrogen protection of 80 mL/min at gas flow rate, and the control temperature rise rate is 1 oC/min at first is warming up to 400 oC is 400 oC is incubated 2 .5h, is warming up to 600 then oC is 600 oC is incubated 4 h.The 10 wt% hydrofluoric acid solution stirred overnight that add to the room temperature to be cooled are removed SiO 2Template promptly obtains multistage hole carbon material after the thorough washing drying.With the multistage hole carbon material of gained, acetylene black and ptfe emulsion are to be applied on the graphite paper after 85:10:5 mixes according to mass ratio, subsequently 100 oC ~ 120 oThe C dried over night.Finally make multistage hole carbon desalination electrode.
Test the ratio electric capacity of above-mentioned multistage hole carbon desalination electrode.Use CHI 660D type electrochemistry electrochemical workstation, ionogen is 1 M sodium chloride solution, and scanning speed is 10 mV/s, and voltage range is-0.5V ~ 0.5V; Record the ratio electric capacity of this electrode its desalting performance of electrode test greater than the above-mentioned preparation of 95 F/g., in the salt solution of 800 ppm, its desalting efficiency is greater than 85%.
Embodiment 3
With diameter is the monodisperse silica ultra-sonic dispersion (massfraction is 6 wt%) in ethanolic soln of 400 nm, then 28 oC deposition 1-2 is after week 600 oC sintering 1.5 h make SiO 2Template.In 0.61 g fused phenol, add 0.13 g, 20 wt% sodium hydroxide solutions, the back that stirs slowly adds 1.05 g, 37 wt % formaldehyde solutions, is warming up to 75 oC reacts 1.5 h, is cooled to after the room temperature and regulates PH to neutral with 0.6 M hydrochloric acid, and the cryogenic vacuum decompression dehydration adds ethanol then and stirs 10 h to sticky, and the final centrifugal inorganic salt of removing obtain 20 wt% novolak resin precursor liquid solutions.With 0.5 g F127 (PEO 106PPO 70PEO 106) and 0.5 g P123 (PEO 20-PPO 70-PEO 20) join in the 20 g ethanol after the stirring and dissolving, add precursor solution and mix.Wherein the mol ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1:2:0.1:0.017.Then with 4 g SiO 2Template adds in the above-mentioned mixing solutions, and 55 oIt is sticky that C evaporates into solution, and suction filtration removes behind the excessive solution further 55 oC volatilization self-assembly 5 h, 100 oC solidifies 24 h and is placed in the tube furnace, is under the nitrogen protection of 130 mL/min at gas flow rate, and the control temperature rise rate is 1 oC/min at first is warming up to 500 oC is 500 oC is incubated 3 h, is warming up to 1000 then oC is 1000 oC is incubated 2 h.The 10 wt% hydrofluoric acid solution stirred overnight that add to the room temperature to be cooled are removed SiO 2Template promptly obtains multistage hole carbon material after the thorough washing drying.With the multistage hole carbon material of gained, acetylene black and ptfe emulsion are to be applied on the graphite paper after 90:5:5 mixes according to mass ratio, subsequently 100 oC ~ 120 oThe C dried over night.Finally make multistage hole carbon desalination electrode.
Test the ratio electric capacity of above-mentioned multistage hole carbon desalination electrode.Use CHI 660D type electrochemistry electrochemical workstation, ionogen is 1 M sodium chloride solution, and scanning speed is 10 mV/s, and voltage range is-0.5 V ~ 0.5 V; Record the ratio electric capacity of this electrode its desalting performance of electrode test greater than the above-mentioned preparation of 80 F/g., in the salt solution of 300 ppm, its desalting efficiency is greater than 80%.

Claims (7)

1. the preparation method of multistage hole carbon capacitor type desalination electrode is characterized in that may further comprise the steps:
(1) preparation of electrode materials: with monodisperse silica (SiO 2) ultra-sonic dispersion is in a certain amount of ethanolic soln, 15 ~ 35 oC deposits naturally, and high temperature sintering obtains SiO then 2Template; In phenol, add 20 wt% sodium hydroxide solutions, the back that stirs slowly adds 37 wt% formaldehyde solutions, is warming up to 65 ~ 75 oC reacts 1 ~ 2.5 h, is cooled to after the room temperature and regulates pH to neutral with 0.6 M hydrochloric acid, and the cryogenic vacuum underpressure distillation reduces water-content, add then ethanol stir 10-12 h after the centrifugal inorganic salt of removing obtain 20 wt% novolak resin precursor liquid solutions; The ethanolic soln and the novolak resin precursor liquid solution of 4.76 wt% structure directing agents are mixed; SiO then 2Template is impregnated in the mixing solutions, and suction filtration is removed excessive solution behind the low temperature volatiling reaction, and further low temperature volatilization hot setting adds 10 wt% hydrofluoric acid solution stirring reactions then and removes SiO after the carbonization in inert atmosphere 2Template can obtain multistage hole carbon material after the thorough washing drying;
(2) preparation of capacitor type desalination electrode: with the multistage hole carbon material of step (1) preparation, acetylene black and ptfe emulsion are to be applied to after 80:10:10 ~ 90:5:5 mixes on the conductive substrates graphite paper, subsequently 100 ~ 120 according to mass ratio oThe C dried over night; Finally make multistage hole carbon capacitor type desalination electrode.
2. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that described single SiO of dispersion 2Diameter of micro ball is 100 ~ 400 nm.
3. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that described SiO 2The massfraction of microballoon is 1 ~ 10% in the ethanolic soln of microballoon.
4. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that described structure directing agent comprises F127 (PEO 106-PPO 70-PEO 106) and P123 (PEO 20-PPO 70-PEO 20) in a kind of or both mixing.
5. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that in the described preparation process, the mol ratio of phenol, formaldehyde, sodium hydroxide and structure directing agent is 1:2:0.1:0.005 ~ 0.025.
6. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that the SiO that described presoma floods 2Template need be passed through low temperature volatilization and hot setting two-step reaction, and wherein low temperature evaporable temperature is 30 ~ 60 oC; The temperature of hot setting is 100 ~ 140 oC.
7. the preparation method of multistage hole carbon capacitor type desalination electrode according to claim 1 is characterized in that the carbonization process in the described inert atmosphere need be realized through sectional temperature-controlled calcining, and the control temperature rise rate is 1 oC/min at first is warming up to 300 ~ 500 oC, insulation 1-4 h is warming up to 500 ~ 1100 then under this temperature oC, insulation 1-6 h under this temperature; Inert protective gas comprises nitrogen and argon gas, and gas flow rate is 80-140 mL/min.
CN2012102457296A 2012-07-17 2012-07-17 Method for preparing hierarchical porous carbon capacitive deionization electrode Expired - Fee Related CN102765782B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102457296A CN102765782B (en) 2012-07-17 2012-07-17 Method for preparing hierarchical porous carbon capacitive deionization electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102457296A CN102765782B (en) 2012-07-17 2012-07-17 Method for preparing hierarchical porous carbon capacitive deionization electrode

Publications (2)

Publication Number Publication Date
CN102765782A true CN102765782A (en) 2012-11-07
CN102765782B CN102765782B (en) 2013-11-20

Family

ID=47093400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102457296A Expired - Fee Related CN102765782B (en) 2012-07-17 2012-07-17 Method for preparing hierarchical porous carbon capacitive deionization electrode

Country Status (1)

Country Link
CN (1) CN102765782B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103523871A (en) * 2013-09-29 2014-01-22 北京国环清华环境工程设计研究院有限公司 Preparation method of mesoporous carbon electrode for electric adsorption desalination
CN104591120A (en) * 2013-10-31 2015-05-06 无锡华臻新能源科技有限公司 Preparation of rough-surface microspherical manganese dioxide and application to supercapacitors
WO2015165762A1 (en) * 2014-04-30 2015-11-05 Basf Se Process for producing a monolithic body of a porous carbon material, monolithic bodies of special porous carbon materials and their use
CN105688897A (en) * 2015-12-31 2016-06-22 北京化工大学 Porous carbon net array Ag loaded catalyst with high catalytic activity and preparation method
CN105731609A (en) * 2014-12-10 2016-07-06 吉林师范大学 Porous carbon electrode based on metal organic framework material, and preparation method thereof
CN111224189A (en) * 2020-01-16 2020-06-02 东莞理工学院 Activated carbon microsphere electrode material based on waste lithium ion battery negative electrode material and preparation and application thereof
CN112357905A (en) * 2020-10-12 2021-02-12 广东药科大学 Nitrogen-doped mesoporous carbon nanosphere material and preparation method and application thereof
US20210047242A1 (en) * 2018-04-20 2021-02-18 Virginia Polytechnic Institute And State University Block copolymer porous carbon fibers and uses thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032635A1 (en) * 2003-08-06 2005-02-10 Yu Jong Sung HCMS carbon capsule, electrocatalysts for fuel cell supported by HCMS carbon capsule, and method of preparing the same
CN1821182A (en) * 2006-01-26 2006-08-23 复旦大学 Method for preparing mesoporous carbon material
CN101012057A (en) * 2007-01-19 2007-08-08 华东师范大学 Method of synthesizing mesoporous carbon material
CN101054171A (en) * 2006-04-12 2007-10-17 中国科学院金属研究所 Layer combination controllable carbon material with nano pole of different scale, preparation method and application
US20090258213A1 (en) * 2008-02-07 2009-10-15 The Regents Of The University Of California Carbon materials with interconnected pores
CN102295325A (en) * 2011-07-21 2011-12-28 上海大学 Preparation method of carbon nano-tube/mesoporous-carbon composite capacitance-type desalting electrode
CN102295281A (en) * 2011-06-21 2011-12-28 华东理工大学 Method for preparing graded porous carbon with hollow mesoporous silicon spheres as templates
CN102380334A (en) * 2011-07-25 2012-03-21 重庆文理学院 Mesoporous high polymer or carbon/silicon oxide nano-composite material with three-dimensional pore canal structure and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032635A1 (en) * 2003-08-06 2005-02-10 Yu Jong Sung HCMS carbon capsule, electrocatalysts for fuel cell supported by HCMS carbon capsule, and method of preparing the same
CN1821182A (en) * 2006-01-26 2006-08-23 复旦大学 Method for preparing mesoporous carbon material
CN101054171A (en) * 2006-04-12 2007-10-17 中国科学院金属研究所 Layer combination controllable carbon material with nano pole of different scale, preparation method and application
CN101012057A (en) * 2007-01-19 2007-08-08 华东师范大学 Method of synthesizing mesoporous carbon material
US20090258213A1 (en) * 2008-02-07 2009-10-15 The Regents Of The University Of California Carbon materials with interconnected pores
CN102295281A (en) * 2011-06-21 2011-12-28 华东理工大学 Method for preparing graded porous carbon with hollow mesoporous silicon spheres as templates
CN102295325A (en) * 2011-07-21 2011-12-28 上海大学 Preparation method of carbon nano-tube/mesoporous-carbon composite capacitance-type desalting electrode
CN102380334A (en) * 2011-07-25 2012-03-21 重庆文理学院 Mesoporous high polymer or carbon/silicon oxide nano-composite material with three-dimensional pore canal structure and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李红芳等: "有序介孔碳的制备和电化学电容性能研究", 《第十三次全国电化学会议论文摘要集(下集)》, 31 December 2005 (2005-12-31), pages 46 - 47 *
柯行飞等: "双模板法合成介孔/大孔二级孔道碳材料", 《物理化学学报》, vol. 23, no. 5, 31 May 2007 (2007-05-31), pages 757 - 760 *
陈智栋等: "高分散的介孔碳载Pt纳米粒子的制备及其对乙二醇的电催化氧化性能", 《化学学报》, vol. 70, no. 3, 14 February 2012 (2012-02-14), pages 241 - 246 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103523871A (en) * 2013-09-29 2014-01-22 北京国环清华环境工程设计研究院有限公司 Preparation method of mesoporous carbon electrode for electric adsorption desalination
CN103523871B (en) * 2013-09-29 2015-04-22 北京国环清华环境工程设计研究院有限公司 Preparation method of mesoporous carbon electrode for electric adsorption desalination
CN104591120A (en) * 2013-10-31 2015-05-06 无锡华臻新能源科技有限公司 Preparation of rough-surface microspherical manganese dioxide and application to supercapacitors
WO2015165762A1 (en) * 2014-04-30 2015-11-05 Basf Se Process for producing a monolithic body of a porous carbon material, monolithic bodies of special porous carbon materials and their use
CN105731609A (en) * 2014-12-10 2016-07-06 吉林师范大学 Porous carbon electrode based on metal organic framework material, and preparation method thereof
CN105731609B (en) * 2014-12-10 2018-03-30 吉林师范大学 A kind of porous carbon electrodes based on metal-organic framework materials and preparation method thereof
CN105688897A (en) * 2015-12-31 2016-06-22 北京化工大学 Porous carbon net array Ag loaded catalyst with high catalytic activity and preparation method
US20210047242A1 (en) * 2018-04-20 2021-02-18 Virginia Polytechnic Institute And State University Block copolymer porous carbon fibers and uses thereof
CN111224189A (en) * 2020-01-16 2020-06-02 东莞理工学院 Activated carbon microsphere electrode material based on waste lithium ion battery negative electrode material and preparation and application thereof
CN112357905A (en) * 2020-10-12 2021-02-12 广东药科大学 Nitrogen-doped mesoporous carbon nanosphere material and preparation method and application thereof
CN112357905B (en) * 2020-10-12 2022-07-12 广东药科大学 Nitrogen-doped mesoporous carbon nanosphere material as well as preparation method and application thereof

Also Published As

Publication number Publication date
CN102765782B (en) 2013-11-20

Similar Documents

Publication Publication Date Title
CN102765782B (en) Method for preparing hierarchical porous carbon capacitive deionization electrode
Huang et al. Carbon electrodes for capacitive deionization
Zhao et al. Electrode materials for capacitive deionization: A review
CN103253740B (en) Preparation method of three-dimensional hierarchical graphene/porous carbon composite capacitive type desalination electrode
Wang et al. Polymer-derived heteroatom-doped porous carbon materials
CN109671576B (en) Carbon nano tube-MXene composite three-dimensional porous carbon material and preparation method thereof
Jia et al. Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review
Ahmed et al. Capacitive deionization: Processes, materials and state of the technology
Liu et al. Graphene-based materials for capacitive deionization
Han et al. Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization
Wen et al. Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization
CN105261721B (en) A kind of asymmetry diaphragm and the application in lithium-sulfur rechargeable battery
Antonietti et al. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes
Shi et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor
Zhai et al. Carbon materials for chemical capacitive energy storage
Dutta et al. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
Li et al. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor
Wang et al. Hierarchical porous carbon from the synergistic “pore-on-pore” strategy for efficient capacitive deionization
Liang et al. Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport
Zhao et al. Nitrogen-rich mesoporous carbons derived from zeolitic imidazolate framework-8 for efficient capacitive deionization
Wei et al. Hierarchically yolk-shell porous carbon sphere as an electrode material for high-performance capacitive deionization
JP2020504453A (en) Process of manufacturing porous carbon electrode
CN107089707A (en) Structure capacitance desalination electrode core shell structure three-dimensional graphene composite material and preparation method thereof
Su et al. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal
Wang et al. Study on boron and nitrogen co-doped graphene xerogel for high-performance electrosorption application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131120