CN102762501B - 废热驱动式脱盐工艺 - Google Patents

废热驱动式脱盐工艺 Download PDF

Info

Publication number
CN102762501B
CN102762501B CN201080064646.6A CN201080064646A CN102762501B CN 102762501 B CN102762501 B CN 102762501B CN 201080064646 A CN201080064646 A CN 201080064646A CN 102762501 B CN102762501 B CN 102762501B
Authority
CN
China
Prior art keywords
steam
heat exchanger
desalination unit
unit
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080064646.6A
Other languages
English (en)
Other versions
CN102762501A (zh
Inventor
A.P.沙皮罗
N.沃拉
汤卿仁
A.J.J.哈迪
D.维斯特坎普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BL Technology Co., Ltd.
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102762501A publication Critical patent/CN102762501A/zh
Application granted granted Critical
Publication of CN102762501B publication Critical patent/CN102762501B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

公开了一种用于改进联合循环动力发生装置和脱盐单元的效率的工艺。该工艺包括供应来自用来产生电功率的燃气轮机机组的排气到热回收蒸汽发生器(HRSG),并且然后引导蒸汽从HRSG到蒸汽轮机机组。供应盐水到脱盐单元的效应器中。在脱盐单元的效应器中,利用从蒸汽轮机机组排出的蒸汽,以通过热交换而从效应器产生蒸馏蒸气和浓盐水。此外,蒸汽是从来自联合循环动力发生装置的至少一个额外的热源引入到效应器的蒸汽,以增加进入效应器的蒸汽的质量流率。在一个实施例中,额外的热源是中间冷却器热交换器。提供来自中间冷却器热交换器的被加热的水到减压闪蒸罐,并且提供闪蒸罐中闪蒸的蒸汽到效应器。

Description

废热驱动式脱盐工艺
技术领域
本发明大体涉及动力发生和盐水的同时脱盐,并且更具体地说,涉及通过使用排出蒸汽以外的其它废热源加热在盐水的脱盐中使用的水来改进热效率。
背景技术
使用蒸汽膨胀产生动力是普遍的工艺。冷凝物被馈送到锅炉且被加热。从锅炉移除蒸汽,并且蒸汽是典型地过热的。然后蒸汽穿过涡轮而膨胀,从而做功。然后蒸汽冷凝,并且再循环到锅炉。间歇性地从锅炉抽取适量的液体来防止污泥积聚。添加处理过的新鲜水到该系统来补偿材料损失。当前在使用中的双重目的的脱盐/动力装置通过将排出蒸汽用作蒸馏单元的热源来产生新鲜水。基本,动力装置的冷凝器由蒸馏单元的效应器(effect)替代。这允许高效地产生新鲜水。
当使脱盐装置集成到燃气轮机动力装置中时,它们总是被结合为利用燃气轮机和蒸汽轮机两者的联合循环动力装置。在联合循环装置中,利用高压蒸汽产生电,高压蒸汽通过与燃气轮机排气的热交换来产生,以运行涡轮,涡轮又给发电机提供动力。在典型的情况中,锅炉产生处于大约540℃(1000℉)的高压蒸汽。当这种蒸汽在涡轮中膨胀时,它的温度和能量水平被降低。蒸馏装置需要具有大约120℃(248℉)或更低的温度的蒸汽,并且这种蒸汽可以通过这样来得到:在已经使用其大部分能量来产生电之后,在涡轮的低压端处抽取较低温度的蒸汽。然后这种低压蒸汽运行通过蒸馏装置的浓盐水加热器,从而提高进入的盐水的温度。然后来自被抽取的蒸汽的冷凝物返回到锅炉再加热。
然而,在商业应用中典型的脱盐装置会减少从联合循环动力装置产生的电,因为它们仍然抽取相对高压的蒸汽,高压的蒸汽否则会在蒸汽轮机中进一步膨胀。此外,它们未有效地利用在蒸馏工艺中的其它废热源。因此,存在对增加联合循环动力装置中的脱盐的效率的工艺的需要。
发明内容
在一方面,本发明涉及一种用于改进联合循环动力发生装置和热脱盐单元的效率的工艺。该工艺包括供应来自用来产生电功率的燃气轮机机组的排气到热回收蒸汽发生器(HRSG),并且然后引导蒸汽从HRSG到蒸汽轮机机组。供应盐水到热脱盐单元中,热脱盐单元的工艺可以是单效蒸馏或多效蒸馏、多级闪蒸、膜蒸馏或正向渗透。示出的实施例考虑具有单效蒸馏的热脱盐工艺。在蒸馏单元的效应器中,利用从蒸汽轮机机组排出的蒸汽,以通过热交换而从效应器产生蒸馏蒸气和浓盐水。此外,蒸汽是从来自联合循环动力发生装置的至少一个额外的热源引入到效应器的蒸汽,以增加进入效应器的蒸汽的质量流率。在一个实施例中,额外的热源是中间冷却器热交换器。提供来自中间冷却器热交换器的被加热的水到减压闪蒸罐(reduced atmosphere flash tank),并且提供闪蒸罐中闪蒸的蒸汽到效应器。在另一个实施例中,额外的热源是在HRSG中的节热器热交换器。提供来自节热器热交换器的被加热的水到减压闪蒸罐,并且提供闪蒸罐中闪蒸的蒸汽到效应器。
本发明的另一方面涉及一种联合循环动力发生装置和脱盐单元。该装置包括具有压缩机和燃气轮机的燃气轮机机组,在压缩机和燃气轮机之间有燃烧器。压缩机具有高压压缩机和低压压缩机,其中中间冷却器热交换器定位在高压压缩机和低压压缩机之间。该装置也包括蒸汽轮机机组,以及连接到燃气轮机机组上且接收来自燃气轮机机组的热排气的HRSG。HRSG提供蒸汽到蒸汽轮机机组。用于蒸馏盐水的脱盐单元具有接收来自蒸汽轮机机组的排出蒸汽的至少一个效应器。该装置也包括构造成接收来自中间冷却器热交换器的被加热的水的减压闪蒸罐。来自中间冷却器热交换器的被加热的水的一部分在闪蒸罐中被闪蒸成蒸汽,并且然后被提供到脱盐单元的效应器,以增加进入效应器的蒸汽的质量流率。在另一个实施例中,该装置也包含在HRSG中的节热器热交换器。提供来自节热器热交换器的被加热的水到减压闪蒸罐。来自节热器热交换器的被加热的水的一部分在闪蒸罐中被闪蒸成蒸汽,并且然后被提供到脱盐单元的效应器,以增加进入效应器的蒸汽的质量流率。
在参照附图阅读下面的详细描述以及所附权利要求书之后,本发明及其优于现有技术的优点将变得显而易见。
附图说明
通过参照结合附图得到的本发明的实施例的以下描述,本发明的上述及其它特征将变得更显而易见,并且本发明自身将较好被理解,其中:
图1是根据本发明的一个实施例的联合循环动力发生和脱盐组件的示意图;以及
图2是一个实施例的示意图,该实施例包括额外的热交换器,以利用图1的联合循环动力发生和脱盐组件来预热通往热脱盐装置或RO(反渗透)单元的进料水。
具体实施方式
现将参照附图在下面的详细描述中描述本发明,其中详细描述了优选实施例来使本发明的实践成为可能。虽然参照这些具体的优选实施例描述本发明,但将理解,本发明不局限于这些优选实施例。而是与此相反,本发明包括许多的备选方案、修改方案,以及等效方案,通过考虑下面的详细描述,这些方案将变得显而易见。
如本文贯穿说明书和权利要求书所使用,近似语言可以应用于修饰可容许改变的任何数量表达,而不引起与其相关的基本功能的改变。因此,由一个用语或多个用语(例如“大约”)修饰的值不局限于规定的精确值。在至少一些情形中,近似语言可以对应于用于测量该值的仪器的精度。可以组合和/或互换范围限制,并且这种范围被标示,且包括所有本文包括的子范围,除非上下文或语言另外指明。除了在操作实例中或另外指明的地方,在说明书和权利要求书中使用的指示成分、反应条件等的量的所有数字或表达在所有情形中均应该被理解为是由用语“大约”来修饰。
“可选的”或“可选地”意指随后描述的事件或情况也许发生或也许不发生,或者随后标示的材料也许存在或也许不存在,并且该描述包括其中该事件或情况发生或者其中该材料存在的情形,以及其中该事件或情况不发生或者该材料不存在的情形。
如本文所使用,用语“构成”、“包含”、“包括”、“包括在内”、“有”、“具有”或其任何其它变型旨在覆盖非排它性的包含。例如,包括一列要素的工艺、方法、制品或设备不必局限于仅仅那些要素,而是可以包括未明确列举的其它要素,或者这种工艺、方法、制品或设备固有的其它要素。
单数形式“一”、“一个”,以及“该”包括多个所指物,除非上下文清楚地另外指明。
图1是包括动力发生装置102和热脱盐单元103的示例性联合循环动力发生装置和脱盐单元100的示意图。本发明的所有实施例通过将废热流用于热脱盐来降低从联合循环装置转移的电。在示出的实施例中,动力发生装置102包括具有热回收部分106的燃气轮机装置104,该热回收部分106包括热回收蒸汽发生器(HRSG)108。虽然本文实施例使用来自燃气轮机动力装置104的废热来驱动脱盐,但是本领域的技术人员应当理解本发明也能够利用来自工业工艺或来自任何类型的动力装置(例如燃烧化石的锅炉、燃烧生物量的锅炉、废物回收锅炉、废物焚烧炉、核锅炉、燃料电池动力装置、地热源,以及太阳能源)的废热。
在示例性的实施例中,燃气轮机动力装置104包括通过轴124联接到涡轮122上的低压压缩机或增压器114和高压压缩机120。燃烧器126被联接在高压压缩机120和涡轮122之间,使得压缩机120的出口被联接成通过燃烧器126与涡轮122的入口处于流连通。在运行中,空气流动通过高压压缩机120,并且被压缩的空气输送到燃烧器126。来自燃烧器126的排气流驱动涡轮122,如本领域所熟知,涡轮122又驱动发电机(未显示)。用尽的排气通过涡轮排气出口132离开涡轮122,到HRSG 108。排气被引导通过HRSG 108中的通道,使得包含在排气中的热使流动通过HRSG 108的水转换成蒸汽。然后排气从HRSG 108被排出,并且被释放到大气或污染控制装置(未显示)。在一个示例性实施例中,燃气轮机发动机装置104是由通用电气公司制造的机型LMS 100。
在示例性实施例中,燃气轮机发动机装置104包括定位在低压压缩机114和高压压缩机120之间的中间冷却器热交换器140,以有利于降低进入高压压缩机120的空气的温度。使用中间冷却器热交换器140有利于增加燃气轮机发动机装置104的效率,同时降低由高压压缩机120执行的工作的量。合乎需要地,中间冷却器热交换器140使用水作为冷却媒介来冷却离开低压压缩机114的空气流。中间冷却器热交换器对于本领域技术人员是熟知的,并且不需要在本文进一步详细描述。
在HRSG 108中产生的高压蒸汽发送到蒸汽集管146,在蒸汽集管146中,蒸汽可用于分配到蒸汽轮机机组150。在一个实施例中,蒸汽的一部分通过管线154发送到涡轮150的高压部分152。蒸汽抵靠着高压部分152膨胀,并且然后可以返回到HRSG 108,在HRSG 108中,添加额外的过热。然后蒸汽经由管线156回到蒸汽轮机机组150的中压区段,并且在涡轮158的低压部分中继续其膨胀。如本领域所熟知,当高压蒸汽和低压蒸汽抵靠着涡轮机组150膨胀时产生动力,并且该动力经由动力移送轴(未显示)移除。
在传送通过蒸汽轮机机组150的低压部分158之后,然后排出蒸汽发送成以便用作装置100的热脱盐单元103中的热源。在示出的实例中,脱盐单元103是由冷凝器或效应器159组成的单效蒸馏装置。虽然在示意图中显示的是单效蒸馏装置,但是应该理解或者单效蒸馏脱盐装置或者多效蒸馏(MED)脱盐装置都可以集成到联合循环动力发生和脱盐装置100中。此外,在不脱离本发明范围的情况下,热脱盐单元103也可以使用多级闪蒸工艺、膜蒸馏工艺或正向渗透工艺。脱盐单元103包括用来供应原始盐水到效应器159的盐水入口160、用于从效应器159移除处理过的新鲜水且供应处理过的新鲜水到新鲜水存储系统(未显示)的蒸馏产物水出口162,以及返回冷凝的蒸汽到HRSG 108的冷凝物返回线164。在示出的实施例中,冷凝物返回线164首先通往补充水存储罐166。
脱盐单元103接收蒸汽,以在蒸馏工艺中来使原始水沸腾,或者在闪蒸工艺中加热水。引导来自蒸汽轮机机组150的加热蒸汽到效应器159,在效应器159中,加热蒸汽冷凝且一小部分的盐水蒸发。在用来冷凝在蒸馏产物水出口162中的蒸汽的产物水冷凝器168中,来自入口160的进入的盐水可以首先用作冷却水。从而进入的盐水在进入效应器159之前被预热。在一个实施例中,也可以引导在产物水冷凝器168中加热的盐水的一部分经由管线171到RO单元167。通往RO单元167的水的提高的温度会改进RO单元的性能。本文对包括来自大海和大洋的海水的“盐水”作出参照,但是在入口160处引入的盐水也可以被理解为包括淡盐水源、浓盐水、废水,以及包含矿物质、盐以及溶解的固体等的再使用或回收的其它水源。离开效应器159的蒸馏蒸气进入产物水冷凝器168,在产物水冷凝器168中,蒸汽冷凝且变成产物水。在169处抽出在端部处留存的浓盐水。
在将其热量传递到效应器159中的盐水之后,来自蒸汽轮机机组150的排出气体冷凝,并且经由补充水罐166返回到HRSG 108,在HRSG 108中,它在持续的循环中再次被加热成蒸汽。补充水罐166具有通往HRSG 108的第一管线170,以完成蒸汽/冷凝物HRSG循环。补充水罐166也具有通往中间冷却器140的管线172,以供应补充水到中间冷却器。
第一热水管线180传输来自中间冷却器150的热水到减压闪蒸罐184。在闪蒸罐184中,热水的一部分闪蒸成蒸汽。第二热水管线182传输来自在HRSG 108中的节热器的热水到闪蒸罐184,该节热器捕捉来自烟道气的废热。在HRSG中的节热器的使用在本领域中熟知,并且不需要进一步详细讨论。引导在闪蒸罐184中闪蒸的蒸汽经由管线185到蒸馏单元103的效应器159,以增加进入效应器159的蒸汽的质量流。未在闪蒸罐184中闪蒸成蒸汽的水经由返回管线186返回到补充水入口罐166。在一个实施例中,闪蒸罐184可以在物理上集成到蒸馏装置103的蒸发器中。在闪蒸罐中留存的热水返回到补充水罐166。备选地,可以不使用闪蒸罐,并且热水管线180和182直接通往蒸馏单元103的输入管线185。
在包含MED装置的实施例中,减压闪蒸罐166可以位于MED装置的各个效应器之前。各个闪蒸罐166可以在物理上集成到MED装置的对应的效应器中。热水流(例如来自中间冷却器150的热水)的一部分在各个效应器之前被闪蒸,以增加进入效应器的质量流率。
现在来看图2,在额外的实施例中,使来自盐水入口160’的进入的盐水在进料水热交换器190中变暖。在一个实施例中,引导变暖的盐水经由管线171’到RO装置167。然而,应该理解在不脱离本发明范围的情况下,也可以引导变暖的盐水到热脱盐单元103。在示出的实施例中,在热交换器190中的热源可以来自两种不同的流。一种热流是经由管线191来自闪蒸罐184的液体馏分。三通阀192引导液体馏分经由管线186’到热交换器190或到补充水存储罐166(图1)。另一个热流是经由管线182’来源于HRSG 108中的节热器的热水流。备选地,可以输送经由管线180’(未显示)来源于中间冷却器140的热水流到热交换器190。来自节热器或中间冷却器140的热水的量由在进料流管线171’上的温度控制器194确定,该热水直接行进到进料水热交换器190,并且从而绕过闪蒸罐184。温度控制器194发送信号196到温度受控的三通阀198,该温度受控的三通阀199使热水的一部分经由管线199被引导到热交换器190而不是到闪蒸罐184。在传送通过热交换器190之后,水经由管线200被返回到补充水罐166(图1)。
因此,单效蒸馏单元或多效蒸馏单元103替代动力发生装置102的冷凝器。使用来自蒸汽轮机机组150的蒸汽之外的额外的热源来进一步加热进入各个效应器159的盐水。否则这些热源可被排出。本文描述的装置100对这些废热流提供了周到的使用,同时不损害联合循环动力发生装置102的净动力输出。
虽然在典型的实施例中已经示出和描述了本公开,但本公开并不意图局限于所显示的细节,因为在不以任何方式脱离本公开精神的情况下,可以进行各种修改和代替。因而,对于使用不超过常规实验的本领域技术人员而言,可想到本文公开的本公开的进一步修改和等效方案,并且所有这种修改和等效方案被认为是在由所附权利要求书限定的本公开的范围内。

Claims (13)

1.一种用于改进联合循环动力发生装置和脱盐单元的效率的工艺,所述工艺包括:
供应来自用来产生电功率的燃气轮机机组的排气到热回收蒸汽发生器(HRSG);
供应盐水到热脱盐单元中;
在所述热脱盐单元中,利用来自所述HRSG的蒸汽,以通过热交换而从所述脱盐单元产生蒸馏蒸气和浓盐水;以及
从来自所述联合循环动力发生装置的额外的热源引入热能到所述热脱盐单元,以增加来自所述热脱盐单元的产物水的质量流率;
所述工艺还包括:引导来自所述HRSG中的节热器热交换器的被加热或被产生的蒸汽和/或热水到进料盐水热交换器,以经由温度受控的三通阀预热反渗透单元的进料盐水和预热通往所述热脱盐单元的进料盐水。
2.根据权利要求1所述的工艺,其特征在于,所述工艺进一步包括:
引导蒸汽从所述HRSG到蒸汽轮机机组;以及
在所述热脱盐单元中,利用从所述蒸汽轮机机组排出的蒸汽,以通过热交换而从所述脱盐单元产生蒸馏蒸气和浓盐水。
3.根据权利要求1所述的工艺,其特征在于,所述额外的热源是热交换器,其中,提供来自所述热交换器的被加热或被产生的蒸汽到所述热脱盐单元。
4.根据权利要求1所述的工艺,其特征在于,所述额外的热源是热交换器,其中,提供来自所述热交换器的被加热的水到减压闪蒸罐,并且其中,提供在所述闪蒸罐中闪蒸的蒸汽到所述热脱盐单元。
5.根据权利要求4所述的工艺,其特征在于,所述热交换器是所述节热器热交换器,其中,提供来自所述节热器热交换器的被加热的水到减压闪蒸罐,并且提供在所述闪蒸罐中闪蒸的蒸汽到所述热脱盐单元。
6.根据权利要求4所述的工艺,其特征在于,所述热交换器是中间冷却器热交换器,其中,提供来自所述中间冷却器热交换器的被加热的水到减压闪蒸罐,并且提供在所述闪蒸罐中闪蒸的蒸汽到所述热脱盐单元。
7.根据权利要求4所述的工艺,其特征在于,通往所述热脱盐单元的进入的盐水首先在产物水冷凝器中用作冷却水,所述产物水冷凝器用来冷凝离开所述脱盐单元的产物水,并且从而预热所述进入的盐水。
8.根据权利要求7所述的工艺,其特征在于,引导被预热的盐水的一部分到反渗透单元。
9.根据权利要求4所述的工艺,其特征在于,引导来自所述闪蒸罐的热水到RO热交换器,以预热反渗透单元的进料盐水。
10.根据权利要求4所述的工艺,其特征在于,引入来自所述额外的热源的蒸汽到所述脱盐单元的效应器中,以增加进入所述效应器的蒸汽的质量流率。
11.根据权利要求4所述的工艺,其特征在于,所述额外的热源是废热源。
12.一种联合循环动力发生装置和脱盐单元,包括:
燃气轮机机组,其包括压缩机和燃气轮机,在所述压缩机和所述燃气轮机之间有燃烧器,所述压缩机包括高压压缩机和低压压缩机,其中,中间冷却器热交换器定位在所述高压压缩机和所述低压压缩机之间;
蒸汽轮机机组;
连接到所述燃气轮机机组上且接收来自所述燃气轮机机组的热排气的热回收蒸汽发生器(HRSG),所述HRSG提供蒸汽到所述蒸汽轮机机组;
用于蒸馏盐水的脱盐单元,其具有接收来自所述蒸汽轮机机组的排出蒸汽的热交换器;
构造成以接收来自所述中间冷却器热交换器的被加热的水的减压闪蒸罐,其中,所述被加热的水的一部分在所述闪蒸罐中被闪蒸成蒸汽,并且被提供到所述脱盐单元,以增加来自所述脱盐单元的产物的质量流率;以及
进料盐水热交换器,来自所述HRSG中的节热器热交换器的被加热或被产生的蒸汽和/或热水被引导到所述进料盐水热交换器中,以经由温度受控的三通阀预热反渗透单元的进料盐水和预热通往所述脱盐单元的进料盐水。
13.根据权利要求12所述的联合循环动力发生装置和脱盐单元,其特征在于,所述联合循环动力发生装置和脱盐单元进一步包括在所述HRSG中的节热器热交换器,其中,提供来自所述节热器热交换器的被加热的水到所述减压闪蒸罐,并且其中,来自所述节热器热交换器的所述被加热的水的一部分在所述闪蒸罐中被闪蒸成蒸汽,并且被提供到所述热脱盐单元,以增加来自所述单元的产物的质量流率。
CN201080064646.6A 2009-12-23 2010-10-22 废热驱动式脱盐工艺 Expired - Fee Related CN102762501B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/646,481 2009-12-23
US12/646481 2009-12-23
US12/646,481 US8545681B2 (en) 2009-12-23 2009-12-23 Waste heat driven desalination process
PCT/US2010/053647 WO2011078907A1 (en) 2009-12-23 2010-10-22 Waste heat driven desalination process

Publications (2)

Publication Number Publication Date
CN102762501A CN102762501A (zh) 2012-10-31
CN102762501B true CN102762501B (zh) 2015-10-14

Family

ID=43302383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080064646.6A Expired - Fee Related CN102762501B (zh) 2009-12-23 2010-10-22 废热驱动式脱盐工艺

Country Status (12)

Country Link
US (1) US8545681B2 (zh)
EP (1) EP2516334B1 (zh)
CN (1) CN102762501B (zh)
AU (1) AU2010333902B2 (zh)
BR (1) BR112012015571C8 (zh)
CA (1) CA2785533C (zh)
CL (1) CL2012001713A1 (zh)
ES (1) ES2527995T3 (zh)
MX (1) MX2012007464A (zh)
NZ (1) NZ600841A (zh)
PT (1) PT2516334E (zh)
WO (1) WO2011078907A1 (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8790496B2 (en) 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
US10005678B2 (en) 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator
US8801897B2 (en) 2007-03-13 2014-08-12 Heartland Technology Partners Llc Compact wastewater concentrator and contaminant scrubber
US8741100B2 (en) 2007-03-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US20100176042A1 (en) * 2007-03-13 2010-07-15 Duesel Jr Bernard F Wastewater Concentrator
AU2010213608B2 (en) 2009-02-12 2015-03-12 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
GB0918916D0 (en) * 2009-10-28 2009-12-16 Surrey Aquatechnology Ltd Thermal desalination
US8551343B2 (en) * 2010-05-25 2013-10-08 King Abdulaziz City for Science and Technology (KACST) Method and system for utilizing waste energy from a fluid purification system
WO2012100074A2 (en) 2011-01-21 2012-07-26 Heartland Technology Partners Llc Condensation plume mitigation system for exhaust stacks
US9162158B2 (en) * 2011-03-16 2015-10-20 King Abdul Aziz City for Science and Technology (KACST) Method and apparatus for purifying water
US9296624B2 (en) 2011-10-11 2016-03-29 Heartland Technology Partners Llc Portable compact wastewater concentrator
US8808497B2 (en) 2012-03-23 2014-08-19 Heartland Technology Partners Llc Fluid evaporator for an open fluid reservoir
WO2013162965A1 (en) * 2012-04-27 2013-10-31 John Zink Company, Llc Handling liquid hydrocarbon
US8920772B2 (en) 2012-05-18 2014-12-30 Air Products And Chemicals, Inc. System and process for producing a H2-containing gas and purified water
US8709287B2 (en) 2012-05-18 2014-04-29 Air Products And Chemicals, Inc. Water purification using energy from a steam-hydrocarbon reforming process
US8920771B2 (en) 2012-05-18 2014-12-30 Air Products And Chemicals, Inc. Water purification using energy from a steam-hydrocarbon reforming process
US8741101B2 (en) 2012-07-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US10189733B2 (en) * 2012-08-13 2019-01-29 Enviro Water Minerals Company, Inc. Heating system for desalination
WO2014028832A1 (en) * 2012-08-16 2014-02-20 University Of South Florida Systems and methods for water desalination and power generation
CN102865114B (zh) * 2012-10-12 2014-09-24 凤阳海泰科能源环境管理服务有限公司 玻璃生产线余热回收电水联产系统
US8623174B1 (en) * 2012-12-14 2014-01-07 Heartland Technology Partners Llc Liquid evaporation system with heated liquid
US8585869B1 (en) * 2013-02-07 2013-11-19 Heartland Technology Partners Llc Multi-stage wastewater treatment system
US9199861B2 (en) 2013-02-07 2015-12-01 Heartland Technology Partners Llc Wastewater processing systems for power plants and other industrial sources
CN103216283A (zh) * 2013-04-09 2013-07-24 天津大学 朗肯循环海水淡化双效余热回收系统
GB2513174A (en) * 2013-04-18 2014-10-22 Ide Technologies Ltd Pumping apparatus
US20150047355A1 (en) * 2013-08-14 2015-02-19 Harold James Willard, JR. Ciudad Sinergia: a production and research facility in the southwestern United States for electrical power and fresh water, and for processing burnable waste, without the use of nuclear fission, coal or oil
GB2519129A (en) * 2013-10-10 2015-04-15 Ide Technologies Ltd Pumping Apparatus
US9309130B2 (en) 2013-10-23 2016-04-12 Air Products And Chemicals, Inc. Integrated process for the production of hydrogen and water
EP2865640B1 (en) 2013-10-23 2018-08-22 Air Products And Chemicals, Inc. Water purification using energy from a hydrocarbon steam reforming process
US8956587B1 (en) 2013-10-23 2015-02-17 Air Products And Chemicals, Inc. Hydrogen production process with high export steam
ES2573652T3 (es) 2013-10-23 2016-06-09 Air Products And Chemicals, Inc. Sistema y proceso para producir un gas que contiene H2 y agua purificada
JP6333573B2 (ja) * 2014-02-19 2018-05-30 株式会社ササクラ 造水装置及び造水方法
WO2015149124A1 (en) * 2014-04-01 2015-10-08 Graphite Energy N.V. Use of stored heat energy in a combined cycle gas turbine power generating system
US10118108B2 (en) * 2014-04-22 2018-11-06 General Electric Company System and method of distillation process and turbine engine intercooler
CN104193062B (zh) * 2014-09-02 2018-08-28 集美大学 利用低温热源的多技术耦合海水淡化装置及其方法
EP3214076A4 (en) * 2014-10-28 2018-07-25 Shionogi & Co., Ltd. Heterocyclic derivative having ampk activating effect
CN104632307B (zh) * 2014-12-12 2016-01-20 芜湖新兴铸管有限责任公司 一种钢铁厂低压蒸汽回收系统的应用方法
US10024195B2 (en) 2015-02-19 2018-07-17 General Electric Company System and method for heating make-up working fluid of a steam system with engine fluid waste heat
US10267185B2 (en) * 2015-07-30 2019-04-23 General Electric Company System and method for controlling coolant supply to an exhaust gas
US10392266B2 (en) * 2015-08-26 2019-08-27 Conocophillips Company Treatment of produced water using indirect heat
US10464826B2 (en) * 2015-08-26 2019-11-05 Conocophillips Company Semi-continuous treatment of produced water with boiler flue gas
US10487695B2 (en) * 2015-10-23 2019-11-26 General Electric Company System and method of interfacing intercooled gas turbine engine with distillation process
US20170151507A1 (en) 2015-12-01 2017-06-01 Kuwait Institute For Scientific Research Combination multi-effect distillation and multi-stage flash evaporation system
US10221726B2 (en) * 2015-12-21 2019-03-05 Cockerill Maintenance & Ingenierie S.A. Condensing heat recovery steam generator
US10246345B2 (en) 2015-12-30 2019-04-02 General Electric Company Water desalination system and method for fast cooling saline water using turbines
US10961874B2 (en) 2016-03-06 2021-03-30 Husham Al-Ghizzy Enhanced thermoutilizer
US10408128B2 (en) 2016-04-29 2019-09-10 King Fahd University Of Petroleum And Minerals Solar assisted gas turbine desalination and carbon capture system
US10544051B2 (en) * 2016-06-27 2020-01-28 Joe Lynn Vickers Desalination unit with electricity generation
CN106115821A (zh) * 2016-08-05 2016-11-16 四川昊采科技有限公司 一种低能耗含盐废水处理工艺
US11078767B2 (en) * 2016-12-21 2021-08-03 Henry D. Tiffany, III Apparatus and method for potable water extraction from saline aquifers
US10696566B2 (en) * 2018-04-05 2020-06-30 Shawn Erick Lange Power generating and water purifying system
CN109052524A (zh) * 2018-08-16 2018-12-21 西安交通大学 一种利用离心空分压缩机级间余热回收污水处理装置
CN110513156B (zh) * 2019-08-14 2021-10-26 华北电力大学(保定) 水热碳化耦合双闪蒸-有机朗肯循环发电系统及发电方法
US11097203B1 (en) 2020-03-10 2021-08-24 Bechtel Hydrocarbon Technology Solutions, Inc. Low energy ejector desalination system
US11390538B2 (en) * 2020-06-09 2022-07-19 Water Evaporation Systems, Llc Turbine wastewater evaporation system
US10927026B1 (en) * 2020-06-09 2021-02-23 Water Evaporation Systems, Llc Remotely controllable mobile wastewater evaporation system
CN113003786B (zh) * 2021-03-26 2022-04-01 马鞍山钢铁股份有限公司 一种ccpp机组工业煤气除尘用水联合处理工艺
CN113970193A (zh) * 2021-10-12 2022-01-25 东莞理工学院 一种余热深度利用的分布式能源系统
WO2024015977A2 (en) * 2022-07-15 2024-01-18 Research Foundation Of The City University Of New York Thermal desalination system
WO2024046599A1 (en) * 2022-09-02 2024-03-07 Nuovo Pignone Tecnologie - S.R.L. System and method for treating wastewater from an oilfield well with co-production of power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648919A2 (de) * 1993-10-15 1995-04-19 EVT ENERGIE- UND VERFAHRENSTECHNIK GmbH Verfahren und Vorrichtung zur Durchführung zur Erzeugung von Gasen zum Betreiben einer Gasturbine in einem kombinierten Gas- und Dampfkraftwerk
CN1157577A (zh) * 1994-09-05 1997-08-20 雅各布·霍伊斯 海水脱盐方法和装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1620163A (en) * 1926-01-11 1927-03-08 Frank A Milliff Process of and apparatus for refining petroleum
IT1054037B (it) 1976-01-09 1981-11-10 Snam Progetti Sistema per la elettrica e di acqua dissalata
CH593424A5 (zh) * 1976-05-14 1977-11-30 Bbc Brown Boveri & Cie
US4083781A (en) 1976-07-12 1978-04-11 Stone & Webster Engineering Corporation Desalination process system and by-product recovery
US5329758A (en) 1993-05-21 1994-07-19 The United States Of America As Represented By The Secretary Of The Navy Steam-augmented gas turbine
US5925223A (en) * 1993-11-05 1999-07-20 Simpson; Gary D. Process for improving thermal efficiency while producing power and desalinating water
US6804962B1 (en) * 1999-12-23 2004-10-19 Melvin L. Prueitt Solar energy desalination system
US7037430B2 (en) 2002-04-10 2006-05-02 Efficient Production Technologies, Inc. System and method for desalination of brackish water from an underground water supply
IL166089A0 (en) 2002-07-20 2006-01-15 Idalex Technologies Inc Evaporative duplex counterheat exchanger
EP1413554A1 (de) 2002-10-23 2004-04-28 Siemens Aktiengesellschaft Gas- und Dampfkraftwerk zur Wasserentsalzung
US7073337B2 (en) * 2003-05-30 2006-07-11 General Electric Company Combined power generation and desalinization apparatus and related method
EP1713557A2 (en) 2004-02-10 2006-10-25 The Texas A&M University System Vapor-compression evaporation system and method
MX2007000341A (es) * 2004-07-14 2007-03-27 Fluor Tech Corp Configuraciones y metodos para generacion de energia con regasificacion de gas natural licuado integrado.
US7546742B2 (en) * 2004-12-08 2009-06-16 General Electric Company Gas turbine engine assembly and method of assembling same
US7228682B2 (en) 2004-12-16 2007-06-12 Yefim Kashler System for augmented electric power generation with distilled water output
US7799178B2 (en) * 2005-01-07 2010-09-21 Black & Veatch Holding Company Distillation process
US20060157410A1 (en) * 2005-01-14 2006-07-20 Saline Water Conversion Corporation (Swcc) Fully integrated NF-thermal seawater desalination process and equipment
EP1701006B1 (en) 2005-02-22 2016-10-05 Kabushiki Kaisha Toshiba Electric power-generating and desalination combined plant and operation method of the same
US7197876B1 (en) * 2005-09-28 2007-04-03 Kalex, Llc System and apparatus for power system utilizing wide temperature range heat sources
US7922873B2 (en) * 2005-10-15 2011-04-12 St Germain Girard Charles Method and apparatus for desalinating water combined with power generation
US8328995B2 (en) 2006-02-14 2012-12-11 Black & Veatch Holding Company Method for producing a distillate stream from a water stream containing at least one dissolved solid
WO2007149879A2 (en) 2006-06-19 2007-12-27 Energy & Environmental Research Center Foundation Method and apparatus for improving water quality by means of gasification
US7762054B2 (en) * 2007-08-21 2010-07-27 Donald Charles Erickson Thermally powered turbine inlet air chiller heater
US20110100005A1 (en) * 2009-10-30 2011-05-05 Sampson Glenn A Water reclamation in a concentrated solar power-enabled power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648919A2 (de) * 1993-10-15 1995-04-19 EVT ENERGIE- UND VERFAHRENSTECHNIK GmbH Verfahren und Vorrichtung zur Durchführung zur Erzeugung von Gasen zum Betreiben einer Gasturbine in einem kombinierten Gas- und Dampfkraftwerk
CN1157577A (zh) * 1994-09-05 1997-08-20 雅各布·霍伊斯 海水脱盐方法和装置

Also Published As

Publication number Publication date
AU2010333902B2 (en) 2016-07-07
MX2012007464A (es) 2012-08-23
EP2516334A1 (en) 2012-10-31
BR112012015571A2 (pt) 2017-09-05
EP2516334B1 (en) 2014-12-10
CA2785533C (en) 2018-05-15
WO2011078907A1 (en) 2011-06-30
US20110147195A1 (en) 2011-06-23
CN102762501A (zh) 2012-10-31
CL2012001713A1 (es) 2014-04-11
US8545681B2 (en) 2013-10-01
AU2010333902A1 (en) 2012-07-19
NZ600841A (en) 2014-08-29
ES2527995T3 (es) 2015-02-03
BR112012015571C8 (pt) 2019-09-10
BR112012015571B8 (pt) 2019-08-20
PT2516334E (pt) 2015-02-06
CA2785533A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
CN102762501B (zh) 废热驱动式脱盐工艺
US8938966B2 (en) Storage of electrical energy with thermal storage and return through a thermodynamic cycle
US9453432B2 (en) Power generation system
KR100323398B1 (ko) 복합싸이클동력장치
US8286429B2 (en) Solar hybrid combined cycle gas and steam power plant
KR101660923B1 (ko) 증기 터빈 플랜트
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
KR20130025907A (ko) 복합 사이클 발전 시스템의 파워 증강을 위한 에너지 회수 및 증기 공급
CN102016411A (zh) 高效给水加热器
CN101705849B (zh) 低温余热发电系统乏汽冷凝过程自藕冷源热泵循环装置
KR20150050443A (ko) 개선된 효율을 갖는 조합형 순환 발전소
US20190323384A1 (en) Boilor plant and method for operating the same
CN101713334A (zh) 通过使用调峰循环废热回收的联合循环动力增强进行峰值负载管理
CN210176512U (zh) 一种利用燃机余热的海水淡化系统
US20040128976A1 (en) Gas and steam power plant for water desalination
CN111908542A (zh) 一种利用燃机余热的海水淡化系统及方法
JP2593197B2 (ja) 熱エネルギ回収方法、及び熱エネルギ回収装置
JP5463313B2 (ja) 火力発電プラント
CN217400982U (zh) 一种提高二次再热机组热耗率的热力系统
EP3184757A1 (en) Condensing heat recovery steam generator
KR20170138267A (ko) 선박의 폐열회수 시스템
RU2143638C1 (ru) Схема утилизации низкопотенциальной теплоты уходящих газов для энергетических парогенераторов
EP3394402B1 (en) Condensing heat recovery steam generator
RU2003115991A (ru) Способ утилизации теплоты выхлопных газов газотурбинного двигателя и теплоэнергетическая установка для его осуществления
JP2004060507A (ja) 複合発電プラント

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190103

Address after: American Minnesota

Patentee after: BL Technology Co., Ltd.

Address before: New York, USA

Patentee before: General Electric Company

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151014

Termination date: 20201022

CF01 Termination of patent right due to non-payment of annual fee