CN102755792B - 一种气体除尘装置 - Google Patents

一种气体除尘装置 Download PDF

Info

Publication number
CN102755792B
CN102755792B CN201110106958.5A CN201110106958A CN102755792B CN 102755792 B CN102755792 B CN 102755792B CN 201110106958 A CN201110106958 A CN 201110106958A CN 102755792 B CN102755792 B CN 102755792B
Authority
CN
China
Prior art keywords
layer
supporting layer
sand
removing device
roughing sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110106958.5A
Other languages
English (en)
Other versions
CN102755792A (zh
Inventor
秦升益
贾屹海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Renchuang Heli Chemical Technology Co. Ltd.
Original Assignee
Beijing Rechsand Science and Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Rechsand Science and Technology Group Co Ltd filed Critical Beijing Rechsand Science and Technology Group Co Ltd
Priority to CN201110106958.5A priority Critical patent/CN102755792B/zh
Publication of CN102755792A publication Critical patent/CN102755792A/zh
Application granted granted Critical
Publication of CN102755792B publication Critical patent/CN102755792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

本发明提供了一种气体除尘装置,其特征在于,该气体除尘装置包括壳体、位于该壳体内的由原砂自然堆积而成的原砂层以及位于所述原砂层一端的第一过滤支撑层,所述原砂层和所述第一过滤支撑层透气性连接,所述第一过滤支撑层的厚度为1mm-20mm,所述第一过滤支撑层的孔径小于所述原砂层的孔径。本发明提供的气体除尘装置烟尘清除效率高达95%;避免了原砂层的频繁清理或更换,降低了设备运行成本;成功地实现了将低成本且来源广泛的砂子应用于气体除尘,并作为气体除尘装置的主要过滤材料。本发明提供的气体除尘装置结构简单,成本低廉,可广泛应用于工业烟尘减排环保领域。

Description

一种气体除尘装置
技术领域
本发明涉及一种气体除尘装置。
背景技术
随着工业社会的发展,环境日益遭到破坏。造成环境污染的主要原因是大气污染和水污染。大气污染首推工业废气污染。目前解决工业废气污染的方法通常采用喷淋或喷雾的湿式除尘、静电或引风的干式除尘以及布袋除尘。
喷淋或喷雾的湿式除尘,装置为一个密闭的桶体,其中的水在高压作用下形成雾状由上至下的喷淋,污染的废气在鼓风机的作用下,由桶体的下部进入,自下而上地穿过水雾,从桶体上部的烟囱中排出,废气中的颗粒物质在水雾的作用下,沉降到桶体底部,通过排污水流流出,这种除尘只能使大颗粒的粒子在水雾的作用下沉降,但小颗粒的粒子还是随着烟气排放到空中,除尘不彻底,且除尘后的排污水流势必造成二次污染,出现新的水污染源,而且这些装置一般结构复杂,配套设施多,制造成本高,维护、安装不方便。
静电或引风的干式除尘,是利用不均匀电场产生的静电,或鼓风机、引风机产生的风力,清除气体中的固体粒子,从而达到除尘的目的,该方式除尘效率高,压力损失小,但运行费用高,投资大,且不适宜直接净化高浓度含尘气体。
布袋除尘是通过过滤袋滤去含尘气体中的粉尘粒子来达到清除粉尘的目的,虽然除尘效率高,但布袋除尘器的系统复杂,一次性投资较大,后期运行费用较高,且不适于处理粘结性强的含尘气体,如含有煤焦油的烟气在通过布袋纤维时,极易造成粉尘粘附在布袋上,导致其透气性能下降,流体阻力增大,能耗增加,粘附在布袋纤维上的粉尘的清除也极困难。
发明内容
本发明的目的是提供一种新的气体除尘装置。
本发明提供一种气体除尘装置,其特征在于,该气体除尘装置包括壳体、位于该壳体内的由原砂自然堆积而成的原砂层以及位于所述原砂层一端的第一过滤支撑层,所述原砂层和所述第一过滤支撑层透气性连接,所述第一过滤支撑层的厚度为1mm-20mm,所述第一过滤支撑层的孔径小于所述原砂层的孔径。
本发明提供的气体除尘装置由自然堆积而成的原砂层通过其内部形成的毛细网状(迷宫状)过滤通道起主要的过滤作用,并在气体进入原砂层之前由孔径小于原砂层孔径的第一过滤支撑层先过滤掉气体中的大颗粒烟尘,进一步提高了烟尘清除效率,烟尘清除效率高达95%;第一过滤支撑层厚度为1mm-20mm,可使过滤后的气体快速通过,避免了第一过滤支撑层堵塞;由于气体在进入原砂层之前由第一过滤支撑层先过滤掉了气体中的大颗粒烟尘,从而对原砂层起到了有效的保护作用,避免了原砂层的频繁清理或更换,降低了设备运行成本;由于原砂层由原砂自然堆积而成,因此更换方便。
本发明通过上述结构,成功地实现了将低成本且来源广泛的砂子应用于气体除尘,并作为气体除尘装置的主要过滤材料。本发明提供的气体除尘装置结构简单,成本低廉,可广泛应用于工业烟尘减排环保领域。
附图说明
图1是根据本发明的一种实施方式的气体除尘装置的结构示意图。
图2是根据本发明的另一种实施方式的气体除尘装置的结构示意图。
图3是根据本发明的具有第二过滤支撑层的气体除尘装置的结构示意图。
图4是根据本发明的具有第二过滤支撑层和多孔性盖板的气体除尘装置的结构示意图。
附图标记说明
1壳体;2原砂层;3第一过滤支撑层;4第二过滤支撑层;5多孔性盖板
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图1和图2所示,本发明提供了一种气体除尘装置,包括壳体1、位于该壳体1内的由原砂自然堆积而成的原砂层2以及位于原砂层2一端的第一过滤支撑层3,原砂层2和第一过滤支撑层3透气性连接,第一过滤支撑层3的厚度为1mm-20mm,第一过滤支撑层3的孔径小于原砂层2的孔径。
本发明中,所述孔径通过电子显微镜测得。
壳体1的主要作用为固定自然堆积的原砂以形成原砂层,所述壳体1的材质可以是能固定自然堆积的原砂以形成原砂层的各种材料,但考虑到所述气体除尘装置主要用于工业烟尘除尘领域,壳体1的材质优选为耐高温材料和/或表面涂覆有耐高温涂料的材料,更优选为耐高温材料,所述耐高温材料可以是各种能耐工业烟尘温度的耐高温材料,例如可以为石英砂、粘土、菱镁矿、白云石、耐火水泥、镁砖等。对壳体1的厚度无特殊要求,可以是能固定自然堆积的原砂以形成原砂层的各种厚度,优选为3-10mm,更优选为3-5mm。
第一过滤支撑层3的作用为在气体进入原砂层之前先过滤掉气体中的大颗粒烟尘,进一步提高烟尘清除效率,并对原砂层起到有效的保护作用,避免原砂层的频繁清理或更换。因此,第一过滤支撑层3位于原砂层2的一端,是指位于气体进入的一端,即如果气体由上至下通过气体除尘装置,则第一过滤支撑层3位于原砂层2的上端;如果气体由下至上通过气体除尘装置,则第一过滤支撑层3位于原砂层2的下端。
第一过滤支撑层3和原砂层2透气性连接,连接方式可以是能使第一过滤支撑层3和原砂层2透气性连接的各种方式,可以是直接透气性连接,即第一过滤支撑层3和原砂层2直接接触,例如,如果气体由下至上通过气体除尘装置,原砂自然堆积在第一过滤支撑层3上以形成原砂层2,此种情况下,第一过滤支撑层3还起到支撑原砂层2的作用;也可以是间接透气性连接,即第一过滤支撑层3和原砂层2之间不直接接触,例如,如果气体由下至上通过气体除尘装置,原砂自然堆积在其他多孔性载体上,第一过滤支撑层3位于其他多孔性载体下方,第一过滤支撑层3可以与其他多孔性载体直接接触,也可以与其他多孔性载体间接接触,例如第一过滤支撑层3与其他多孔性载体间间隔有一定空间,其他多孔性载体可以是具有通透性的各种载体,例如可以为具有通孔的壳体1本身。无论第一过滤支撑层3和原砂层2采用哪种连接方式,只要保证二者之间透气性连接即可,优选为第一过滤支撑层3和原砂层2直接透气性连接。
第一过滤支撑层3与壳体1的位置关系,可以是本领域技术人员所能想到的各种位置关系,例如第一过滤支撑层3可以位于壳体1内部,如图1所示;第一过滤支撑层3也可以位于壳体1外部覆盖壳体1的端口,如图2所示。第一过滤支撑层3与壳体1的连接关系,可以是本领域技术人员所能想到的各种连接关系,例如可以为铆接、螺栓连接或焊接等。
第一过滤支撑层3为使气体在进入原砂层2之前先过滤掉气体中的大颗粒烟尘,为了使过滤后的气体能够快速通过,并避免第一过滤支撑层3堵塞,第一过滤支撑层3的厚度为1mm-20mm。
第一过滤支撑层3的孔径小于原砂层2的孔径,考虑工业烟尘中的烟尘颗粒的大小,优选情况下,第一过滤支撑层3的孔径为5μm-150μm,原砂层2的孔径为80μm-1000μm;更优选情况下,第一过滤支撑层3的孔径为10μm-100μm,原砂层2的孔径为100μm-800μm。第一过滤支撑层3的孔隙率优选为10-40%。
第一过滤支撑层3的材质可以为本领域常用的各种材质,优选为适于工业除尘的各种材质,更优选为第一过滤支撑层3为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成。硅砂的平均粒径优选为18μm-150μm,进一步优选为20-120μm;粘结剂与硅砂的重量比优选为1-15∶100,进一步优选为5-10∶100。本发明通过同时控制硅砂的平均粒径和粘结剂与硅砂的重量比,使得由硅砂和粘结剂形成的第一过滤支撑层具有足够的透气性,满足上述第一过滤支撑层3的孔径和孔隙率要求。
原砂层2为原砂自然堆积而成,以便形成毛细网状(迷宫状)过滤通道,所述毛细网状(迷宫状)过滤通道是指由颗粒状物质自然堆积形成的通道。经过第一过滤支撑层3过滤后的气体通过原砂层2时,由于毛细网状(迷宫状)过滤通道的存在,气体中的粉尘粒子在进入过滤通道后,与原砂颗粒不断发生碰撞,动能衰竭而被拦截沉降在过滤通道中,即从气体中分离,分离后的气体则通过过滤通道排走。原砂表示未经表面处理的砂质材料,所述砂质材料例如为硅砂、锆砂、烧结镁砂、铬铁矿砂、镁橄榄石砂、蓝晶石砂、石灰石砂、石墨砂、人造宝珠砂、玻璃微珠、活性碳和石灰中的一种或多种,优选为硅砂。可以通过调节原砂颗粒尺寸的大小和不同颗粒大小的原砂之间的搭配关系,以及原砂层2的厚度,来达到不同的消烟除尘效果以满足不同气体除尘领域的需要。形成原砂层2的原砂的平均粒径优选为150μm-830μm,原砂层2的厚度优选为50mm-500mm。
如果气体由下至上通过气体除尘装置,原砂自然堆积在第一过滤支撑层3上以形成原砂层2的优选实施方式中,由于原砂层2的厚度较厚,而第一过滤支撑层3的厚度较薄,优选情况下,如图3所示,气体除尘装置还包括第二过滤支撑层4,第二过滤支撑层4位于第一过滤支撑层3和原砂层2之间,进一步加强对原砂层2的支撑,并起到进一步的过滤作用。
第二过滤支撑层4分别与第一过滤支撑层3和原砂层2透气性连接,即第二过滤支撑层4为一通透性结构。第二过滤支撑层4与原砂层2的结合方式即为原砂自然堆积在第二过滤支撑层4上形成原砂层2,而第二过滤支撑层4与第一过滤支撑层3的结合方式可以为各种结合方式,例如可以为粘接、铆接、螺栓连接或第二过滤支撑层4与第一过滤支撑层3本身即为一体结构等,优选为第二过滤支撑层4和第一过滤支撑层3为一体结构。第二过滤支撑层4与壳体1的连接方式可以为本领域常用的各种连接方式,例如可以为铆接、螺栓连接或焊接等。
为了使经第一过滤支撑层3过滤后的气体在第二过滤支撑层4内能够顺畅通过而不堵塞第二过滤支撑层4,第二过滤支撑层4的孔径大于第一过滤支撑层3的孔径,第二过滤支撑层4的孔隙率大于或等于第一过滤支撑层3的孔隙率,优选为第二过滤支撑层4的孔径为80μm-1500μm,第二过滤支撑层4的孔隙率为25-50%。
对第二过滤支撑层4的厚度优选为10mm-100mm。
第二过滤支撑层4的材质可以为各种材质,优选为适于工业除尘领域的各种材质,更优选为第二过滤支撑层4为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成。硅砂的平均粒径优选为150μm-1200μm,进一步优选为200-1000μm;粘结剂与硅砂的重量比优选为1-15∶100,进一步优选为5-10∶100。本发明通过同时控制硅砂的平均粒径和粘结剂与硅砂的重量比,使得由硅砂和粘结剂形成的第二过滤支撑层既具有足够的强度,又具有足够的透气性,满足上述第二过滤支撑层4的孔径和孔隙率要求,从而使得主要由砂子制成的气体过滤装置成为可能。
由于原砂层2为原砂自然堆积而成,在工业烟尘的气流较大的情况下,气流经过原砂层2时可能会破坏原砂层2,因此,优选情况下,如图4所示,气体除尘装置还包括位于原砂层2另一端并与原砂层2透气性连接的多孔性盖板5,多孔性盖板5位于原砂层2另一端是相对于第一过滤支撑层3位于原砂层2一端而言,即多孔性盖板5用于覆盖原砂层2,将原砂层2夹持固定以防被气流破坏,多孔性盖板5与原砂层2透气性连接,即经原砂层2过滤后的气流能够顺畅排出,多孔性盖板5的多孔结构也使气流经过多孔性盖板5时能够顺畅通过,即多孔性盖板5仅起保护原砂层2以防原砂层2被破坏的作用,对气体的过滤不产生任何影响。
多孔性盖板5的孔径大于原砂层2的孔径,优选为100μm-1500μm;对多孔性盖板5的厚度无特殊要求,只要能起到保护原砂层2的作用即可,优选为5mm-100mm;对多孔性盖板5的孔隙率无特殊要求,只要能使气体顺畅通过即可,优选为25-45%。
多孔性盖板5的材质可以为各种材质,优选为适于工业除尘领域的各种材质,更优选为多孔性盖板5为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成。硅砂的平均粒径优选为180μm-1000μm,进一步优选为300-800μm;粘结剂与硅砂的重量比优选为1-15∶100,进一步优选为5-10∶100。
本发明制备原砂层2、第一过滤支撑层3、第二过滤支撑层4和多孔性盖板5的硅砂可以相同或不同,各自可以为各种硅砂,例如,可以选自石英砂、风积沙、人造砂、再生砂、河沙和海砂和山砂中的一种或多种。更优选情况下,使用表面包覆有覆膜粘结剂的覆膜硅砂。其中,以覆膜硅砂的总量为基准,覆膜粘结剂的含量优选为3-8重量%,进一步优选为4-6重量%。所述覆膜粘结剂可以为酚醛树脂、酚醛改性环氧树脂和呋喃树脂中的至少一种。所述覆膜硅砂的制备方法可以按照本领域公知的方法得到,例如,可以参考CN1083752A的覆膜砂制备工艺所用的方法。所述覆膜硅砂的颗粒大小只要分别满足原砂层2、第一过滤支撑层3、第二过滤支撑层4和多孔性盖板5的孔径要求即可。硅砂的圆球度越好,越能够保证硅砂直径的孔隙较小、且均匀,从而进一步提高均匀透气的效果,因此,本发明所述硅砂的圆球度可以为0.5-0.95,优选为0.7-0.95。其中,“圆球度”指颗粒棱角的相对锐度或曲率的量度,也可以指颗粒接近球形的程度;圆球度的测定方法为本领域技术人员所公知,例如,可采用图版法进行测定。为了达到本发明所要求的圆球度要求,可以采用对硅砂进行球磨等本领域技术人员所公知的控制方法来满足硅砂圆球度的需要。
本发明制备第一过滤支撑层3、第二过滤支撑层4和多孔性盖板5的粘结剂可以相同或不同,各自可以为本领域常用的各种疏水性耐高温粘结剂,这里所说的耐高温是指耐300℃以下优选170-300℃的高温,优选各自选自由环氧树脂、聚偏氟乙烯树脂、水玻璃、酚醛树脂、丙烯酸树脂、聚胺脂树脂、硅酸盐水泥和硅树脂组成的组。
本发明通过创造性地使用不同粒径的砂子来制备原砂层2、第一过滤支撑层3、选择性包括的第二过滤支撑层4和多孔性盖板5,使得以砂子作为过滤材料的气体除尘装置成为可能,由此使得本发明提供的气体除尘装置既符合环保的要求,而且原料来源丰富,结构简单,从而生产成本较低,适于工业扩大利用。
本发明提供的气体除尘装置的制备方法简单,只需将第一过滤支撑层3和第二过滤支撑层4固定在壳体1内,使第二过滤支撑层4和壳体1形成承载空间,在第二过滤支撑层4上自然堆积原砂以形成原砂层2,最后在原砂层2上覆盖多孔性盖板5即可。
本发明提供的气体除尘装置在使用时使气体依次通过第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板。本发明提供的气体除尘装置可以用于各种需要除去气体中的固体颗粒的场合,例如可以用于电厂或炼钢厂的烟气除尘。当本发明提供的气体除尘装置用于电厂或炼钢厂的烟气除尘时,可以将本发明提供的气体除尘装置置于电厂或炼钢厂的现有的烟囱的顶部和/或内部,只要使含尘气体在外排前依次通过本发明提供的气体除尘装置的第一过滤支撑层、原砂层和选择性包括的第二过滤支撑层和透气性盖板层即可。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
实施例
以下的实施例将对本发明作进一步的说明,但并不因此限制本发明。
在下述实施例中,用电子显微镜测定第一过滤支撑层3、第二过滤支撑层4、原砂层2和多孔性盖板5的孔径;并采用本领域技术人员所公知的排水法测定第一过滤支撑层3、第二过滤支撑层4、原砂层2和多孔性盖板5的孔隙率,例如:先测量层/板的长度、宽度、厚度,计算出其总体积V;将层/板缓慢放入盛满水的容器(记录水的体积)中,测量溢出水的重量,根据水的密度(ρ=1g/cm3)计算溢出的水的体积V2,即层/板所用砂子或砂子和粘结剂所占的体积;根据V-V2计算气体通道的体积V1,并根据层/板孔隙率=(V1/V)×100%计算层/板孔隙率。
采用“锅炉烟尘测定方法,呼和铁路局中心卫生防疫站劳动卫生科,呼和铁路局中心卫生防疫站检验科,包头铁路分局卫生防疫站劳动卫生组,1994-2010中国学术期刊,77-98页”中第二部分“除尘效率的计算”所述的方法测定气体除尘装置的烟尘清除效率。
在以下实施例中,石英砂购自永登蓝天石英砂有限公司。
疏水性树脂、固化剂和粘结剂的厂家和牌号如下:
液体聚乙烯醇叔丁醛改性环氧树脂:山东圣泉化工股份有限公司,PF5415;
聚酰胺固化剂:福清王牌精细化工有限公司,Kingcure540W60;
环氧树脂粘结剂:山东圣泉化工股份有限公司,E-44。
实施例1
该实施例用来说明本发明提供的气体除尘装置及其制备方法和应用。
分别将100重量份的粒径为38μm(400目)、80μm(180目)、500μm(32目)、1000μm(16目)、4000μm(5目)和6700μm(3目),圆球度均为0.85的石英砂颗粒加热至50℃,之后,加入液体聚乙烯醇叔丁醛改性环氧树脂6重量份,充分搅拌,再加入聚酰胺固化剂1重量份,搅拌均匀,使得环氧树脂在石英砂颗粒表面覆膜,然后,冷却至室温,破碎、筛分后得到疏水颗粒,分别记为覆膜硅砂A、覆膜硅砂B、覆膜硅砂C、覆膜硅砂D、覆膜硅砂E和覆膜硅砂F。通过增重法,计算出,以具有聚合物包覆层的硅砂为基准,聚合物包覆层的含量均为7重量%。
将100重量份上述覆膜硅砂(覆膜硅砂A50重量份和覆膜硅砂B50重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第一混合物,并铺设在内径为1.2m的圆柱形模具中,得到第一混合物层(用于形成第一过滤支撑层),铺设厚度为12mm;
将100重量份上述覆膜硅砂(覆膜硅砂B25重量份和覆膜硅砂C75重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第二混合物,并将该第二混合物铺设在上述第一混合物层上,得到第二混合物层(用于形成第二过滤支撑层),铺设厚度为55mm;
在25℃、5兆帕压力下将上述两层混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到一体结构的第一过滤支撑层和第二过滤支撑层,其中,第一过滤支撑层的厚度为10mm,孔径为10-20μm,孔隙率为30%;第二过滤支撑层的厚度为50mm,孔径为80-150μm,孔隙率为40%。
将制得的一体结构的第一过滤支撑层和第二过滤支撑层采用铆接的方式结合在一圆柱形钢壳的一端的内部,钢壳的内径与上述一体结构的第一过滤支撑层和第二过滤支撑层的直径相同,钢壳的高度为600mm,从而钢壳的第二过滤支撑层上部形成承载空间。
将上述覆膜硅砂(覆膜硅砂C220重量份和覆膜硅砂E100重量份的混合物)自然堆积于第二过滤支撑层上形成原砂层,原砂层的厚度为350mm,孔径为350μm-550μm。
将100重量份的上述覆膜硅砂D和8重量份粘结剂环氧树脂混合,得到第三混合物,并铺设在内径为1.2m的圆柱形模具中,得到第三混合物层(用于形成多孔性盖板),铺设厚度为35mm;在25℃、5兆帕压力下将上述混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到多孔性盖板,多孔性盖板的厚度为30mm,孔径为1000-1200μm,孔隙率为45%。
将制得的多孔性盖板覆盖在原砂层上,从而制成本发明的气体除尘装置,覆盖后原砂层的厚度为300mm,孔径为300μm-500μm。
将来自热电厂锅炉的含尘气体(含尘量150mg/Nm3,含尘量的计算以粒径大于0.1μm的烟尘计,下同)从下至上依次通过上述气体除尘装置的第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板,根据上述方法计算得到气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通(通过气体除尘装置前的气体压力P1与通过气体除尘装置后的气体压力P2之差除以通过气体除尘装置前的气体压力P1所得的气体压降P小于10%定义为畅通,气体压降P大于10%定义为堵塞,下同)。
实施例2
该实施例用来说明本发明提供的气体除尘装置及其制备方法和应用。
硅砂覆膜的方法同实施例1。
将100重量份上述覆膜硅砂(覆膜硅砂B30重量份和覆膜硅砂C70重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第一混合物,并铺设在内径为1.2m的圆柱形模具中,得到第一混合物层(用于形成第一过滤支撑层),铺设厚度为1.2mm;
将100重量份上述覆膜硅砂(覆膜硅砂D20重量份和覆膜硅砂F80重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第二混合物,并将该第二混合物铺设在上述第一混合物层上,得到第二混合物层(用于形成第二过滤支撑层),铺设厚度为120mm;
在25℃、5兆帕压力下将上述两层混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到一体结构的第一过滤支撑层和第二过滤支撑层,其中,第一过滤支撑层的厚度为1mm,孔径为80-100μm,孔隙率为10%;第二过滤支撑层的厚度为100mm,孔径为1200-1500μm,孔隙率为25%。
将制得的一体结构的第一过滤支撑层和第二过滤支撑层采用铆接的方式结合在一圆柱形钢壳的一端的内部,钢壳的内径与上述一体结构的第一过滤支撑层和第二过滤支撑层的直径相同,钢壳的高度为600mm,从而钢壳的第二过滤支撑层上部形成承载空间。
将上述覆膜硅砂(覆膜硅砂C50重量份和覆膜硅砂E100重量份的混合物)自然堆积于第二过滤支撑层上形成原砂层,原砂层的厚度为550mm,孔径为650μm-850μm。
将100重量份的上述覆膜硅砂(覆膜硅砂D20重量份和覆膜硅砂F80重量份的混合物)和8重量份粘结剂环氧树脂混合,得到第三混合物,并铺设在内径为1.2m的圆柱形模具中,得到第三混合物层(用于形成多孔性盖板),铺设厚度为120mm;在25℃、5兆帕压力下将上述混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到多孔性盖板,多孔性盖板的厚度为100mm,孔径为1200-1500μm,孔隙率为25%。
将制得的多孔性盖板覆盖在原砂层上,从而制成本发明的气体除尘装置,覆盖后原砂层的厚度为500mm,孔径为600μm-800μm。
将来自热电厂锅炉的含尘气体(含尘量150mg/Nm3)从下至上依次通过上述气体除尘装置的第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板,根据上述方法计算得到气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例3
该实施例用来说明本发明提供的气体除尘装置及其制备方法和应用。
硅砂覆膜的方法同实施例1。
将100重量份上述覆膜硅砂(覆膜硅砂A35重量份和覆膜硅砂C65重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第一混合物,并铺设在内径为1.2m的圆柱形模具中,得到第一混合物层(用于形成第一过滤支撑层),铺设厚度为23mm;
将100重量份上述覆膜硅砂(覆膜硅砂D50重量份和覆膜硅砂E50重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第二混合物,并将该第二混合物铺设在上述第一混合物层上,得到第二混合物层(用于形成第二过滤支撑层),铺设厚度为12mm;
在25℃、5兆帕压力下将上述两层混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到一体结构的第一过滤支撑层和第二过滤支撑层,其中,第一过滤支撑层的厚度为20mm,孔径为40-60μm,孔隙率为20%;第二过滤支撑层的厚度为10mm,孔径为500-800μm,孔隙率为50%。
将制得的一体结构的第一过滤支撑层和第二过滤支撑层采用铆接的方式结合在一圆柱形钢壳的一端的内部,钢壳的内径与上述一体结构的第一过滤支撑层和第二过滤支撑层的直径相同,钢壳的高度为600mm,从而钢壳的第二过滤支撑层上部形成承载空间。
将上述覆膜硅砂(覆膜硅砂C100重量份和覆膜硅砂D150重量份的混合物)自然堆积于第二过滤支撑层上形成原砂层,原砂层的厚度为55mm,孔径为120μm-320μm。
将100重量份的上述覆膜硅砂(覆膜硅砂C70重量份和覆膜硅砂E30重量份的混合物)和8重量份粘结剂环氧树脂混合,得到第三混合物,并铺设在内径为1.2m的圆柱形模具中,得到第三混合物层(用于形成多孔性盖板),铺设厚度为7mm;在25℃、5兆帕压力下将上述混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到多孔性盖板,多孔性盖板的厚度为5mm,孔径为300-500μm,孔隙率为40%。
将制得的多孔性盖板覆盖在原砂层上,从而制成本发明的气体除尘装置,覆盖后原砂层的厚度为50mm,孔径为100μm-300μm。
将来自热电厂锅炉的含尘气体(含尘量150mg/Nm3)从下至上依次通过上述气体除尘装置的第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板,根据上述方法计算得到气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例4
该实施例用来说明本发明提供的气体除尘装置及其制备方法和应用。
硅砂覆膜的方法同实施例1。
将100重量份上述覆膜硅砂(覆膜硅砂B50重量份和覆膜硅砂C50重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第一混合物,并铺设在内径为1.2m的圆柱形模具中,得到第一混合物层(用于形成第一过滤支撑层),铺设厚度为6mm;
将100重量份上述覆膜硅砂E和8重量份环氧树脂粘结剂混合,得到第二混合物,并将该第二混合物铺设在上述第一混合物层上,得到第二混合物层(用于形成第二过滤支撑层),铺设厚度为85mm;
在25℃、5兆帕压力下将上述两层混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到一体结构的第一过滤支撑层和第二过滤支撑层,其中,第一过滤支撑层的厚度为5mm,孔径为60-80μm,孔隙率为30%;第二过滤支撑层的厚度为80mm,孔径为800-1200μm,孔隙率为35%。
将制得的一体结构的第一过滤支撑层和第二过滤支撑层采用铆接的方式结合在一圆柱形钢壳的一端的内部,钢壳的内径与上述一体结构的第一过滤支撑层和第二过滤支撑层的直径相同,钢壳的高度为600mm,从而钢壳的第二过滤支撑层上部形成承载空间。
将上述覆膜硅砂(覆膜硅砂D100重量份和覆膜硅砂E50重量份的混合物)自然堆积于第二过滤支撑层上形成原砂层,原砂层的厚度为450mm,孔径为450μm-650μm。
将100重量份的上述覆膜硅砂(覆膜硅砂C20重量份和覆膜硅砂D80重量份的混合物)和8重量份粘结剂环氧树脂混合,得到第三混合物,并铺设在内径为1.2m的圆柱形模具中,得到第三混合物层(用于形成多孔性盖板),铺设厚度为85mm;在25℃、5兆帕压力下将上述混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到多孔性盖板,多孔性盖板的厚度为80mm,孔径为800-1000μm,孔隙率为40%。
将制得的多孔性盖板覆盖在原砂层上,从而制成本发明的气体除尘装置,覆盖后原砂层的厚度为400mm,孔径为400μm-600μm。
将来自热电厂锅炉的含尘气体(含尘量150mg/Nm3)从下至上依次通过上述气体除尘装置的第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板,根据上述方法计算得到气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例5
该实施例用来说明本发明提供的气体除尘装置及其制备方法和应用。
硅砂覆膜的方法同实施例1。
将100重量份上述覆膜硅砂(覆膜硅砂B90重量份和覆膜硅砂C10重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第一混合物,并铺设在内径为1.2m的圆柱形模具中,得到第一混合物层(用于形成第一过滤支撑层),铺设厚度为17mm;
将100重量份上述覆膜硅砂(覆膜硅砂C80重量份和覆膜硅砂E20重量份的混合物)和8重量份环氧树脂粘结剂混合,得到第二混合物,并将该第二混合物铺设在上述第一混合物层上,得到第二混合物层(用于形成第二过滤支撑层),铺设厚度为35mm;
在25℃、5兆帕压力下将上述两层混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到一体结构的第一过滤支撑层和第二过滤支撑层,其中,第一过滤支撑层的厚度为15mm,孔径为20-40μm,孔隙率为15%;第二过滤支撑层的厚度为30mm,孔径为200-400μm,孔隙率为30%。
将制得的一体结构的第一过滤支撑层和第二过滤支撑层采用铆接的方式结合在一圆柱形钢壳的一端的内部,钢壳的内径与上述一体结构的第一过滤支撑层和第二过滤支撑层的直径相同,钢壳的高度为600mm,从而钢壳的第二过滤支撑层上部形成承载空间。
将上述覆膜硅砂(覆膜硅砂C400重量份和覆膜硅砂E100重量份的混合物)自然堆积于第二过滤支撑层上形成原砂层,原砂层的厚度为160mm,孔径为220μm-420μm。
将100重量份的上述覆膜硅砂(覆膜硅砂C30重量份和覆膜硅砂E70重量份的混合物)和8重量份粘结剂环氧树脂混合,得到第三混合物,并铺设在内径为1.2m的圆柱形模具中,得到第三混合物层(用于形成多孔性盖板),铺设厚度为17mm;在25℃、5兆帕压力下将上述混合物层压制30秒,使之成型,并在80℃、20-40%湿度下固化12小时,得到多孔性盖板,多孔性盖板的厚度为15mm,孔径为600-800μm,孔隙率为40%。
将制得的多孔性盖板覆盖在原砂层上,从而制成本发明的气体除尘装置,覆盖后原砂层的厚度为150mm,孔径为200μm-400μm。
将来自热电厂锅炉的含尘气体(含尘量150mg/Nm3)从下至上依次通过上述气体除尘装置的第一过滤支撑层、第二过滤支撑层、原砂层和多孔性盖板,根据上述方法计算得到气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例6
采用同实施例1相同的方法,只不过第一混合物为将100重量份上述覆膜硅砂(覆膜硅砂C60重量份和覆膜硅砂D40重量份的混合物)和8重量份环氧树脂粘结剂混合得到,制得的一体结构的第一过滤支撑层和第二过滤支撑层中,第一过滤支撑层的孔径为150μm-200μm,其余各项数值均与实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例7
采用同实施例1相同的方法,只不过将上述覆膜硅砂D100重量份和覆膜硅砂F350重量份混合均匀后自然堆积于第二过滤支撑层上形成原砂层,覆盖多孔性盖板后原砂层的孔径为1200-1500μm,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例8
采用同实施例1相同的方法,只不过原砂自然堆积的厚度为35mm,覆盖多孔性盖板后原砂层的厚度为30mm,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例9
采用同实施例1相同的方法,只不过没有第二过滤支撑层和多孔性盖板,只有第一过滤支撑层和原砂层,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例10
采用同实施例1相同的方法,只不过没有多孔性盖板,只有第一过滤支撑层、第二过滤支撑层和原砂层,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
实施例11
采用同实施例1相同的方法,只不过没有第二过滤支撑层,只有第一过滤支撑层、原砂层和多孔性盖板,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
对比例1
采用同实施例1相同的方法,只不过没有第一过滤支撑层、第二过滤支撑层和多孔性盖板,只有原砂层,原砂自然堆积在前文所述其他多孔性载体上形成原砂层,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后仍畅通。
对比例2
采用同实施例1相同的方法,只不过第一混合物的铺设厚度为22mm,制得的一体结构的第一过滤支撑层和第二过滤支撑层中,第一过滤支撑层的厚度为30mm,其余各项数值均同实施例1相同,测得制得的气体除尘装置的烟尘清除效率见表1。使用12个月后堵塞。
实施例1-11及对比例1-2的相关参数值及烟尘清除效率见表1。
表1
由表1中实施例1-11与对比例1可以看出,采用本发明的方法,在自然堆积的原砂层之前设置一层第一过滤支撑层,比仅采用自然堆积的原砂层过滤气体的烟尘清除效率要高很多;由表1中实施例1-11与对比例2可以看出,第一过滤支撑层过厚,虽然烟尘清除效率较高,但由于气体不能快速通过第一过滤支撑层,而造成烟尘在第一过滤支撑层中堆积,使用12个月后堵塞,而第一过滤支撑层为硅砂和粘结剂固化而成,不易更换,从而不利于气体除尘装置清除烟尘。
对比实施例1和实施例6可以看出,第一过滤支撑层孔径过大,气体除尘装置的烟尘清除效率低,且不利于第一过滤支撑层对原砂层的保护,需要经常清理或更换原砂层;将实施例1分别与实施例7和实施例8进行对比,可以看出,原砂层孔径较大,或原砂层较薄,均不利于原砂层形成毛细网状(迷宫状)过滤通道,不利于气体除尘装置清除烟尘;将实施例1分别与实施例9和实施例10进行对比,可以看出,没有多孔性盖板,烟尘清除效率较低,理论分析可能是由于原砂层没有被压实,在气体除尘装置使用过程中,由于气流通过,原砂层变得松散,甚至表面的原砂有可能被气流带走,原砂层内不易形成毛细网状(迷宫状)过滤通道,因而不利于气体除尘装置清除烟尘;对比实施例1和实施例11可以看出,第二过滤支撑层的有无对气体除尘装置的烟尘清除效率影响不大。
本发明提供的气体除尘装置,在气体进入原砂层之前由孔径小于原砂层孔径的第一过滤支撑层先过滤掉气体中的大颗粒烟尘,进一步提高了烟尘清除效率,烟尘清除效率高达95%,并对原砂层起到了有效的保护作用,避免了原砂层的频繁清理或更换,降低了设备运行成本。本发明成功地实现了将低成本且来源广泛的砂子应用于气体除尘,并作为气体除尘装置的主要过滤材料。本发明提供的气体除尘装置结构简单,成本低廉,可广泛应用于工业烟尘减排环保领域。

Claims (14)

1.一种气体除尘装置,其特征在于:包括壳体、位于该壳体内的由原砂自然堆积而成的原砂层以及位于所述原砂层一端的第一过滤支撑层,所述原砂层和所述第一过滤支撑层透气性连接,所述第一过滤支撑层的厚度为1mm-20mm,所述第一过滤支撑层的孔径小于所述原砂层的孔径,所述第一过滤支撑层的孔隙率为10-40%,所述第一过滤支撑层为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成,所述硅砂的平均粒径为18μm-150μm,所述粘结剂与所述硅砂的重量比为1-15:100。
2.根据权利要求1所述气体除尘装置,其特征在于:所述第一过滤支撑层的孔径为5μm-150μm,所述原砂层的孔径为80μm-1000μm。
3.根据权利要求2所述气体除尘装置,其特征在于:所述第一过滤支撑层的孔径为10μm-100μm,所述原砂层的孔径为100μm-800μm。
4.根据权利要求1-3中任意一项所述气体除尘装置,其特征在于:所述原砂选自硅砂、锆砂、烧结镁砂、铬铁矿砂、镁橄榄石砂、蓝晶石砂、石灰石砂、石墨砂、人造宝珠砂、玻璃微珠、活性碳和石灰中的一种或多种。
5.根据权利要求1-3中任意一项所述气体除尘装置,其特征在于:所述原砂的平均粒径为150μm-830μm,所述原砂层的厚度为50mm-500mm。
6.根据权利要求1-3中任意一项所述气体除尘装置,其特征在于:所述气体除尘装置还包括第二过滤支撑层,所述第二过滤支撑层位于所述第一过滤支撑层和所述原砂层之间,用于支撑所述原砂层,所述第二过滤支撑层分别与所述第一过滤支撑层和所述原砂层透气性连接,并且所述第二过滤支撑层的孔径大于所述第一过滤支撑层的孔径,所述第二过滤支撑层的孔隙率大于或等于所述第一过滤支撑层的孔隙率。
7.根据权利要求6所述气体除尘装置,其特征在于:所述第二过滤支撑层和所述第一过滤支撑层为一体结构。
8.根据权利要求7所述气体除尘装置,其特征在于:所述第二过滤支撑层的孔径为80μm-1500μm,孔隙率为25-50%。
9.根据权利要求8中所述气体除尘装置,其特征在于:第二过滤支撑层的厚度为10mm-100mm。
10.根据权利要求9所述气体除尘装置,其特征在于:所述第二过滤支撑层为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成,所述硅砂的平均粒径为150μm-1200μm,所述粘结剂与所述硅砂的重量比为1-15:100。
11.根据权利要求1-3中任意一项所述气体除尘装置,其特征在于:所述气体除尘装置还包括位于所述原砂层另一端并与所述原砂层透气性连接的多孔性盖板,所述多孔性盖板用于覆盖所述原砂层,且所述多孔性盖板的孔径大于所述原砂层的孔径。
12.根据权利要求11所述气体除尘装置,其特征在于:多孔性盖板的孔径为100μm-1500μm,厚度为5mm-100mm,孔隙率为25-45%。
13.根据权利要求12所述气体除尘装置,其特征在于:所述多孔性盖板为通过粘结剂将硅砂和/或覆膜硅砂粘结固化而成,所述硅砂的平均粒径为180μm-1000μm,所述粘结剂与所述硅砂的重量比为1-15:100。
14.根据权利要求13所述气体除尘装置,其特征在于:所述粘结剂选自环氧树脂、聚偏氟乙烯树脂、水玻璃、酚醛树脂、丙烯酸树脂、聚胺脂树脂、硅酸盐水泥和硅树脂中的一种或多种。
CN201110106958.5A 2011-04-27 2011-04-27 一种气体除尘装置 Active CN102755792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110106958.5A CN102755792B (zh) 2011-04-27 2011-04-27 一种气体除尘装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110106958.5A CN102755792B (zh) 2011-04-27 2011-04-27 一种气体除尘装置

Publications (2)

Publication Number Publication Date
CN102755792A CN102755792A (zh) 2012-10-31
CN102755792B true CN102755792B (zh) 2015-12-16

Family

ID=47050583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110106958.5A Active CN102755792B (zh) 2011-04-27 2011-04-27 一种气体除尘装置

Country Status (1)

Country Link
CN (1) CN102755792B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713692B (zh) * 2016-01-28 2018-05-15 青岛华睿能源科技有限责任公司 一种沼气提纯用过滤干燥装置
CN105597423A (zh) * 2016-03-02 2016-05-25 邱彦伶 一种用沙子制作空气过滤板及利用沙子制造过滤板的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202070265U (zh) * 2011-04-27 2011-12-14 北京仁创科技集团有限公司 一种气体除尘装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2509953A1 (de) * 1975-03-07 1976-09-23 Kernforschung Gmbh Ges Fuer Anlage zur filterung fester aerosole
US4290785A (en) * 1979-02-12 1981-09-22 Alldredge Robert L Dust collector and method of operation
FR2607720B1 (fr) * 1986-12-05 1990-12-14 Electricite De France Ensemble de filtration pour fluides gazeux
CN1027683C (zh) * 1993-08-31 1995-02-22 秦升益 一种覆膜砂配制工艺
CN1305550C (zh) * 2004-11-22 2007-03-21 宁波大学 颗粒床气体净化装置及其方法
CN102019118A (zh) * 2010-11-02 2011-04-20 宁波大学 一种颗粒床气体过滤装置及其过滤除尘方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202070265U (zh) * 2011-04-27 2011-12-14 北京仁创科技集团有限公司 一种气体除尘装置

Also Published As

Publication number Publication date
CN102755792A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
CN103495346B (zh) 含尘有毒高温气体处理用陶瓷膜及其制备方法
RU2474762C2 (ru) Способ (варианты) и система снижения загрязнения воздуха
CN110171934B (zh) 一种垃圾焚烧飞灰与建筑废材的协同再生处理方法
CN109265102B (zh) 一种铸造除尘灰无害化处理方法
CN102762273A (zh) 陶瓷蜂窝结构体及其制造方法
CN109140461A (zh) 危废高温熔融微晶净化装置及尾气净化方法
CN102755792B (zh) 一种气体除尘装置
CN201552671U (zh) 混凝土搅拌站料仓除尘装置
Wang et al. Silica/mullite fiber composite membrane with double-layer structure for efficient sub-micrometer dust removal
CN108295636A (zh) 一种基于膜材料的烟气脱硫脱硝除尘一体化系统及工艺
CN107158942A (zh) 一种烧结炉烟气除尘脱硫系统
CN107321119A (zh) 一种废液焚烧烟气净化设备
CN105498431A (zh) 一种木质纤维干燥装置尾气环保处理系统
CN202070265U (zh) 一种气体除尘装置
CN103060515B (zh) 转炉煤气复合净化设备
ES2635939T3 (es) Procedimiento y planta para tratar lodos procedentes del mecanizado de artículos de material de piedra aglomerada
CN205042256U (zh) 一种高温气体除尘装置
CN207169346U (zh) 一种废液焚烧烟气净化设备
CN206927695U (zh) 一种燃煤炉渣污水处理装置
JP2006255705A (ja) 炭酸固化体の製造方法
CN208786156U (zh) 一种煅烧烟气脱硫除尘辅助干燥电石渣的系统
CN203200293U (zh) 转炉煤气复合净化设备
JP4355817B2 (ja) 高温排ガス用の浄化処理剤及びそれを用いた高温排ガスの浄化処理方法
RU2464072C2 (ru) Насадка для дымовой трубы
CN207085568U (zh) 回转窑布袋除尘器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170615

Address after: 102502, Beijing, Fangshan District, Shandong, Yan River, No. 17, 1

Patentee after: Beijing Renchuang Heli Chemical Technology Co. Ltd.

Address before: 100085, Beijing, Haidian District on the 3rd Street, No. 9, block B, room 508, room 5

Patentee before: Beijing Renchuang Sci-Tech Group Corp., Ltd.

TR01 Transfer of patent right